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Abstract. We prove that the flag kernel singular integral operators of Nagel-
Ricci-Stein on a homogeneous group are bounded on Lp, 1 < p < ∞. The
gradation associated with the kernels is the natural gradation of the underlying
Lie algebra. Our main tools are the Littlewood-Paley theory and a symbolic
calculus combined in the spirit of Duoandikoetxea and Rubio de Francia.
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1. Introduction

Flag kernels on homogeneous groups have been introduced by Nagel-Ricci-
Stein [10] in their study of quadratic CR-manifolds. They can be regarded as
a generalization of Calderón-Zygmund singular kernels with singularities extend-
ing over the whole of the hyperspace x1 = 0, where x1 is the top level variable.
The definition is complex, as it involves cancellation conditions for each variable
separately. However, the descritption of flag kernels in terms of their Fourier
transforms is much simpler and bears a striking resemblance to that of the sym-
bols of convolution operators considered independently by the author in, e.g. [6].

In Nagel-Ricci-Stein [10] we find an Lp-boundedness theorem for the very spe-
cial flag kernels where the associated gradation consists of commuting subalgebras
of the underlying Lie algebra of the homogeneous group. The natural question
of what happens if the gradation is the natural gradation of the homogeneous
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Lie algebra is left open. The aim of this paper is to answer the question in the
affirmative. We prove that such flag kernels give rise to bounded operators.

The smooth symbolic calculus mentioned above has been adapted to an ex-
tended class of flag kernels of small (positive and negative) orders and combined
with a variant of the Littlewood-Paley theory built on a stable semigroup of
measures with smooth densities very similar to the Poisson kernel on the Eu-
clidean space (see G lowacki [5]). The strong maximal function of Christ [1] is
also instrumental. The approach has been inspired by the well-known paper by
Duoandicoetxea and Rubio de Francia [3]. The influence of Duoandicoetxea and
Rubio de Francia [3] and, of course, Nagel-Ricci-Stein [10] is evident throughout.

A preliminary step is the L2-boundedness of operators with flag kernels which
we reproduce here for the convenience of the reader (see also G lowacki [7]). This
is proved solely by means of the symbolic calculus.

After this paper had been completed, a preprint of Nagel-Ricci-Stein-Wainger
[11] has been made available, where the Lp-boundedness theorem for flag kernels
is proved. This comprehensive treatment of flag kernels on homogeneous groups
has been announced for some time. Professor Stein has lectured a couple of times
on the subject, see, e.g. [13]. The authors also use a version of Littlewood-Paley
theory but otherwise the approach differs from the one presented here in many
respects, the most important being our use of the symbolic calculus and partitions
of unity related to a stable semigroup of measures. That is why we believe that
what is presented here has an independent value and may count as a contribution
to the theory.

2. Preliminaries

Let g be a nilpotent Lie algebra with a fixed Euclidean structure and g? its
dual. Let δtx = tx, t > 0 be a family of dilations on g and let

gj = {x ∈ g : δtx = tpjx}, 1 ≤ j ≤ d,

where 1 = p1 < p2 < · · · < pd. Denote by

Qj = pj dim gj

the homogenous dimension of gj . The homogeneous dimension of g is

Q =

d∑
j=1

Qj .

We have

(2.1) g =
d⊕
j=1

gj , g? =
d⊕
j=1

g?j

and

[gi, gj ] ⊂
{

gk, if pi + pj = pk,
{0}, if pi + pj /∈ P,

where P = {pj : 1 ≤ j ≤ d}.
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Let

x→ |x| =
d∑
j=1

‖xj‖1/pj

be a homogeneous norm on g. Let also

|x|k =

k∑
j=1

‖xj‖1/pj =

k∑
j=1

|xj |, 1 ≤ k ≤ d.

In particular, |x|1 = |x1|, and |x|d = |x|. Another notation will be applied to g?.
For ξ ∈ g?,

|ξ|k =
d∑
j=k

‖ξj‖1/pj =

d∑
j=k

|ξj |, 1 ≤ k ≤ d.

In particular, |ξ|1 = |ξ|, and |ξ|d = |ξd|.
We shall also regard g as a Lie group with the Campbell-Hausdorff multipli-

cation

xy = x+ y + r(x, y),

where r(x, y) is the (finite) sum of terms of order at least 2 in the Campbell-
Hausdorff series for g. Under this identification the homogeneous ideals

g(k) =
d⊕
j=k

gj

are normal subgroups.
In expressions like Dα or xα we shall use multiindices

α = (α1, α2, . . . , αd),

where

αk = (αk1, αk1, . . . , αknk
), nk = dim gk = dim g?k,

are themselves multiindices with positive integer entries corresponding to the
spaces gk or g?k. The homogeneous length of α is defined by

|α| =
d∑

k=1

|αk|, |αk| = pk(αk1 + αk2 + · · ·+ αknk
).

The Schwartz space of smooth functions which vanish rapidly at infinity along
with their derivatives will be denoted by S(g). This is a Fréchet space with
the usual countable set of seminorms. Its dual S ′(g) is the space of tempered
distributions. If T ∈ S ′(g) is a tempered distribution on g, we let

〈T̃ , f〉 = 〈T, f̃〉,

where f̃(x) = f(x−1). For t > 0, we let

ft(x) = t−Qf(t−1x), x ∈ g.

This extends to distributions by

〈Mt, f〉 = 〈M,f ◦ δt〉, t > 0.
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The convolution of f, g ∈ S(g) is

f ? g(x) =

∫
g
f(xy−1)g(y) dy.

where dy is Lebesgue measure which is also invariant under the group translations.
The convolution is easily extended to distributions in the following way. If T ∈
S ′(F) and g ∈ S(g), then g ? T is a distribution acting by

〈g ? T, f〉 = 〈T, g̃ ? f〉, f ∈ S(g).

If, furthermore, S ∈ S ′(g) has the property that f → f ? S̃ is a continuous
endomorphism of S(g), then the distribution T ? S is defined by

〈T ? S, f〉 = 〈T, f ? S̃〉, f ∈ S(g).

The Fourier transforms are

f̂(ξ) =

∫
g
e−ixξf(x) dx, f∨(ξ) =

∫
g?
eixξf(ξ) dξ,

where the Lebesgue measures dx and dξ are normalised so that the Plancherel
formula

‖f̂‖22 =

∫
g?
|f̂(ξ)|2 dξ =

∫
g
|f(x)|2 dx = ‖f‖22

holds.
Whenever we use the symbol ? or refer to convolution, we mean the group

convolution. There is one instance (proof of Proposition 4.2) where we use the
vector space convolution

f ◦ g(x) =

∫
g
f(x− y)g(y) dy.

3. Multipliers

Let µ = (µ1, µ2, . . . , µd) ∈ Rd. We say that a distribution A ∈ S ′(g) belongs

to the class S(µ), if its Fourier transform Â is a smooth function which satisfies
the estimates

|DαÂ(ξ)| ≤ Cα
d∏

k=1

(1 + |ξ|k)µk−|αk|, all α.

The space S(µ) is a locally convex space if endowed with the family of seminorms

‖A‖S(µ),l = sup
|α|≤l

sup
ξ∈V ?

d∏
k=1

(1 + |ξ|k)−µk+|αk||DαÂ(ξ)|,

for l ∈N . Apart from the locally convex topology, one also considers the topology
of bounded convergence in S(µ), that is the topology of uniform convergence on
compact subsets of g? of Fourier transforms and all their derivatives of sequences
of elements of S(µ) bounded in the locally convex topology. Note that S(g) is
dense in S(µ) with respect to the topology of bounded convergence.
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3.1. Proposition. The mapping

S(g)× S(g) 3 (f, g) 7→ f ? g ∈ S(µ+ ν)

is continuous if the space S(g)×S(g) is considered as a subspace of S(µ)×S(ν). It
is also continuous when all the spaces are endowed with the topology of bounded
convergence. By continuity, it extends to a mapping S(ν) × S(µ) → S(ν + µ)
which is continuous in the twofold sense.

Proof. This follows from Corollary 5.2 of G lowacki [6]. �

3.2. Corollary. Let A ∈ S(µ). Then f 7→ f ? Ã is a continuous endomorphism
of the Schwartz space S(g).

3.3. Remark. Let A ∈ S(µ), B ∈ S(ν). Then, by Corollary 3.2, we can define

〈A ? B, f〉 = 〈A, f ? B̃〉,
where A?B ∈ S(µ+ ν). The mapping (A,B) 7→ A?B is the extension mapping
S(ν)× S(µ)→ S(ν + µ) of Proposition 3.1.

Let
N = {ν = (ν1, ν2, . . . , νd) : |νk| < Qk, 1 ≤ k ≤ d}.

Let µ ∈ N . We say that a distribution M on g belongs to the class M(µ), if its
Fourier transform is a locally integrable function which is smooth where ξd 6= 0
and satisfies the estimates

|DαM̂(ξ)| ≤ Cα
d∏

k=1

|ξ|µk−|αk|
k , ξd 6= 0, all α.

The spaceM(µ) is a locally convex space if endowed with the family of seminorms

‖M‖M(µ),l = sup
|α|≤l

sup
ξd 6=0

d∏
k=1

|ξ|−µk+|αk|
k |DαM̂(ξ)|,

for l ∈N .

3.4. Remark. Recall that, for M ∈ S ′(g) whose Fourier transform is locally inte-
grable,

M̂t(ξ) = M̂(tξ), ξ ∈ g?, t > 0.

Therefore,

‖Mt‖M(µ),l = ts(µ)‖M‖M(µ),l, t > 0, l ∈N ,

where s(µ) =
∑d

k=1 µk.

Let u : g? → [0, 1] be a smooth even function depending only on ξd and such
that

u(ξ) =

{
1, if 1 ≤ |ξd| ≤ 2,

0, if |ξd| ≤ 1/2 or |ξd| ≥ 4,

and

(3.5)
∑
k∈Z

uk(ξ) =
∑
k∈Z

u(2−kξ) = 1, ξd 6= 0.
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Let Uk = u∨k . Note that Uk = (U0)2−k and Uk ? f = f ? Uk, for f ∈ S(g). It is

also clear that, for any T ∈ S ′(g) such that T̂ is locally integrable on g?,

T =
∑
k∈Z

Uk ? T = lim
n→∞

∑
|k|≤n

Uk ? T,

where the series is convergent in S ′(g).

3.6. Remark. We shall write

A(s) ≈ B(s), s ∈ S,

whenever A(s), B(s) are quantities dependent on s and there exists a constant
C > such that

C−1A(s) ≤ B(s) ≤ CA(s), s ∈ S.

3.7. Lemma. If M ∈M(µ), then, for every k, Uk?M , Uk?Uk?M ∈M(µ)∩S(µ),
and

‖U0 ? U0 ? M‖M(µ) ≈ ‖U0 ? U0 ? M‖S(µ).

Furthermore,

‖M‖M(µ),l ≈ sup
k∈Z
‖Uk ? M‖M(µ),l, M ∈M(µ), l ∈N .

Proof. The first claim is checked directly by looking at the Fourier transforms.
For the other, observe that

Uk ? M =
(
U0 ? M2k

)
2−k

,

which combined with Remark 3.4 yields

‖Uk ? M‖M(µ),l ≤ C‖M‖M(µ),l.

To complete the proof it is sufficient to use the fact that the partition of unity
(3.5) is uniformly locally finite. �

3.8. Proposition. Let µ, ν, µ + ν ∈ N . For every M ∈ M(µ) and every N ∈
M(ν), the sequence

Tn =
∑
|k|≤n

(Uk ? M) ? (Uk ? N)

is convergent in S ′(g) to an element T ∈ M(µ+ ν), and, for every l ∈N , there
exist l1, l2 ∈N and a constant C > 0 such that

(3.9) ‖Tn‖M(µ+ν),l ≤ C‖M‖M(µ),l1‖N‖M(ν),l2 .

Proof. We have

‖Tn‖M(µ+ν),l ≈ sup
|k|≤n

‖(Uk ? M) ? (Uk ? N)‖M(µ+ν),l,
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and, by Proposition 3.1, Remark 3.4, and Lemma 3.7,

‖(Uk ? M) ? (Uk ? N)‖M(µ+ν),l

= 2−s(µ)−s(ν)‖(U0 ? M2k) ? (U0 ? N2k)‖M(µ+ν),l

= 2−s(µ)−s(ν)‖(U0 ? U0) ? (M2k ? N2k)‖M(µ+ν),l

≤ C12−s(µ)−s(ν)‖(U0 ? M2k) ? (U0 ? N2k)‖S(µ+ν),l

≤ C22−s(µ)−s(ν)‖U0 ? M2k‖S(µ),l1‖U0 ? N2k‖S(ν),l

≤ C32−s(µ)‖M2k‖M(µ),l12−s(ν)‖N2k‖M(ν),l2

= C3‖M‖M(µ),l1‖N‖M(ν),l2 ,

which gives the bound (3.9). Now, for every ξ ∈ g? with ξd 6= 0, there exists n0

such that
T̂n(ξ) = T̂n0(ξ), n ≥ n0,

which shows that the locally integrable functions T̂n are pointwise convergent
almost everywhere. By the first part of the proof,

|T̂n(ξ)| ≤ C
d∏
j=1

|ξ|µj+νj
j ,

where the function on the right is locally integrable, so T̂n are convergent almost

everywhere to a locally integrable function T̂ , which, by the Lebesgue dominated
convergence theorem, implies Tn → T in S ′(g). �

3.10. Remark. If M,N , and Tn are as above, we shall write

M ?N = lim
n
Tn =

∑
k∈Z

(Uk ? M) ? (Uk ? N).

The following is a convenient class of test functions. Let S0(g) be the subspace
of f ∈ S(g) whose Fourier transform is disjoint with the hyperspace ξd = 0 and
compact in ξd. The class is total for M(µ), that is, for every M,N ∈M(µ),

〈M,f〉 = 〈N, f〉 for f ∈ S0(g) =⇒ M = N.

3.11. Corollary. Let M , N be as above. Then f 7→ f ? Ñ is a continuous
endomorphism of S0(g). Therefore,

〈M ?N, f〉 = 〈M,f ? Ñ〉, f ∈ S0(g).

3.12. Lemma. Let |a| < Q. Let m be locally integrable and smooth on g? \ {0}.
If m satisfies

|Dαm(ξ)| ≤ Cα|ξ|a−|α|, ξ 6= 0,

then the Fourier transform k = m∨ is a smooth function away from the origin
and satisfies

|Dαk(x)| ≤ C ′α|x|−a−Q−|α|, x 6= 0.

Proof. When a = 0 and | · | is the Euclidean norm, this is Proposition 2a of Stein
[12], VI.4.4. With minor corrections the same proof works in our case. �
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3.13. Proposition. Let M ∈Md(ν) ∩ L2(g). Then M satisfies the estimate

|M(x)| ≤ C‖M‖M(ν),l

d∏
k=1

|x|−Qk−νk
k , x1 6= 0,

for some l ∈N .

Proof. The proof is based on an argument adapted from Nagel-Ricci-Stein [10].

We proceed by induction on d. Let M ∈ Md(ν) ∩ L2(g) and m = M̂ . If d = 1,
then the claim follows by Lemma 3.12. Suppose then, that d > 1 and the claim
holds for every 1 ≤ d′ < d. While taking the induction step, there is no harm in

considering only multipliers m = M̂ ∈ L2(g) with compact support as long as the
final estimate does not depend on the support. Let, therefore, m have compact
support. Let x ∈ g, x1 6= 0. Fix 1 ≤ k ≤ d such that |xk| ≥ d−1|x|. We split the
vector space in the following way:

g = g′ ⊕ g′′,

where

g′ = g1 ⊕ · · · ⊕ gk−1, g′′ = gk ⊕ · · · ⊕ gd,

and write the variable x as

x = (x′, x′′) = (x1, . . . , xk−1 | xk, . . . , xd).

Similarly,

ξ = (ξ′, ξ′′) ∈ (g?)′ ⊕ (g?)′′ = g?.

The choice of k implies that

(3.14) |x′′| ≈ |x|j ≈ |xk|, k ≤ j ≤ d.

By definition,

|ξ′′| = |ξ|k.

The proof is carried out in three steps. First we prove that, for every ξd 6= 0,

(3.15) |m(ξ′, ·)∨(x′′)| ≤ C|x′′|−Q′′−N ′′
k−1∏
j=1

|ξ|νjj ,

where Q′′ =
∑d

j=kQj , N
′′ =

∑d
j=k νj .

In fact, let ϕ be a compactly supported smooth function on (g?)′′ equal to 1
in a neighbourhood of zero |ξ′′| < c. Then,

m(ξ′, ·)∨(x′′) =

∫
(g?)′′

eix
′′ξ′′ϕ(|x′′|ξ′′)m(ξ) dξ′′

+

∫
(g?)′′

eix
′′ξ′′(1− ϕ(|x′′|ξ′′))m(ξ) dξ′′ = I1(x′′) + I2(x′′).
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The first integral is estimated by a simple change of variable:

|I1(x′′) ≤ C1|x′′|−Q
′′−N ′′

k−1∏
j=1

|ξ|νjj
∫

(g?)′′
|ϕ(ξ′′)|

d∏
j=k

|ξ|νjj dξ′′

≤ C2|x′′|−Q
′′−N ′′

k−1∏
j=1

|ξ|νjj ,

We turn to I2(x′′). Let us pick a unit vector u ∈ g?k such that ux′′ ≥ 1
2‖xk‖ =

1
2 |xk|

pk and a sufficiently large integer M . Denote by ∂u the derivative in the
direction of u. Then, by integration by parts,

2−M |x′′|Mpk |I2(x′′)| ≤

∣∣∣∣∣
M−1∑
r=0

(
M

r

)∫
eix
′′ξ′′ |x′′|Mpk−rpk∂M−ru ϕ(|x′′|ξ′′)∂rum(ξ) dξ′′

∣∣∣∣∣
+

∣∣∣∣∫ eix
′′ξ′′(1− ϕ(|x′′|ξ′′)∂Mu m(ξ) dξ′′

∣∣∣∣ .
The integrands in all the above integrals vanish for |x′′| |ξ′′| < c so, by the change
of variable,

2−M |x′′|Mpk |I2(x′′)| ≤C|x′′|Mpk−Q′′−N ′′
k−1∏
j=1

|ξ|νjj
∫
|ξ′′|≥c

|ξ|−Mpk
k

d∏
j=k

|ξ|νjj dξ′′

≤C1|x′′|Mpk−Q′′−N ′′
k−1∏
j=1

|ξ|νjj
∫

(g?)′′
(1 + |ξ′′|)−Mpk

d∏
j=k

|ξj |νj dξ′′

≤C2|x′′|Mpk−Q′′−N ′′
k−1∏
j=1

|ξ|νjj ,

where the integral on the right is convergent if Mpk > Q′′ + N ′′, which finally
gives

|I2(x′′)| ≤ C|x′′|−Q′′−N ′′
k−1∏
j=1

|ξ|νjj .

In step two we show that

(3.16) |Dα
ξ′m(ξ′, ·)∨(x′′)| ≤ C|x′′|−Q′′−N ′′

k−1∏
j=1

|ξ|νj−|αj |
j ,

which is accomplished by arguing in a similar way as in step one with m replaced
by Dα

ξ′m.

Finally, we come to step three. By (3.16), for every x′′,

ξ′ 7→ mx′′(ξ
′) = m(ξ′, ·)∨(x′′)
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is the Fourier transform of an element in Mk−1(ν1, . . . , νk−1) on g′ so, by the
induction hypothesis,

|M(x)| = |m∨x′′(x′)| ≤ C|x′′|−Q
′′−N ′′

k−1∏
j=1

|x|−Qj−νj
j ,

which combined with (3.14) completes the estimate. The argument shows also
the desired dependence of the estimate on the norm ‖M‖M(ν),l, for sufficiently
large l. �

More on the classes M(µ) the reader will find in G lowacki [8], where they are
regarded as generalised flag kernels of arbitrary order.

4. Semigroups of measures

Following Folland-Stein [4], we say that a function ϕ belongs to the class R(a),
where a > 0, if it is smooth and

(4.1) |Dαϕ(x)| ≤ Cα(1 + |x|)−Q−a−|α|, all α.

4.2. Proposition. Let ϕ ∈ R(a) for some 0 < a < 1 and let
∫
ϕ = 0. Then,

ϕ̂ ∈ C∞(g? \ {0}), and for every b ≤ a and every multiindex α,

|Dαϕ̂(ξ)| ≤ Cα|ξ|b−|α|.

Proof. Let 0 6= ξ ∈ g?. Choose a unit eignevector of the dilations u ∈ g such
that δtu = tpu and uξ ≥ 1

2 |ξ|
p, where p ∈ P. Denote by ∂u the derivative in the

direction of u. For a given multiindex α, let m be an integer such that mp ≥ |α|.
Let

ψ = (−i∂u)m(−ix)αϕ.

Since
∫
ϕ = 0, the same holds true for ψ, for any α and m as above. Moreover,

ψ ∈ R(mp+ a− |α|). Therefore,

(uξ)mDαϕ̂(ξ) = ψ̂(ξ) =

∫
g
eixξψ(x) dx =

∫
g
(eixξ − 1)ψ(x) dx

=

∫
|x|≤|ξ|−1

(eixξ − 1)ψ(x) dx+

∫
|x|≥|ξ|−1

(eixξ − 1)ψ(x) dx

= I1(ξ) + I2(ξ),

where

|I1(ξ)| ≤ C1|ξ|
∫
|x|≤|ξ|−1

|x||x|−Q−a−mp+|α|dx ≤ C2|ξ|mp+a−|α|,

and

|I2(ξ)| ≤ 2

∫
|x|≥|ξ|−1

|x|−Q−a−mp+|α| dx ≤ C2|ξ|mp+a−|α|,

which implies

|Dαϕ̂(ξ)| ≤ Cα|ξ|a−|α|.
Thus we get our estimate for b = a.
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The proof will be completed once we show that for every α and every N ∈N ,
there exists a constant CN > 0 such that

|Dαϕ̂(ξ)| ≤ CN |ξ|−N , |ξ| ≥ 1.

Fix α and let ψ = (−ix)αϕ(x). We will take advantage of the Taylor expansion
formula

ψ(x− y) =
∑
|β|<N

Dβψ(x)

β!
(−y)β +RN (x, y),

where

(4.3) |RN (x, y)| ≤ KN (1 + |x|)−Q−a−N+|α|(1 + |y|)Q+a+N−|α||y|N ,
where KN > 0 is a constant and N ≥ |α|.

Denote by ◦ the vector space convolution on g. Let f ∈ S(g) be such that f̂ is
supported where 1/2 ≤ |ξ| ≤ 4 and equal to one where 1 ≤ |ξ| ≤ 2. By definition,∫

xβf(x) dx = 0,

for all β, hence,

ft ◦ ψ(x) =

∫
ft(y)ψ(x− y) dy =

∫
ft(y)RN (x, y) dy,

where ft(x) = t−Qf(t−1x). Therefore, by (4.3),

|ft ◦ ψ(x)| ≤ LN tN (1 + |x|)−Q−a−N−|α|, 0 < t ≤ 1,

which implies

|f̂(tξ)ψ̂(ξ)| ≤ CN tN , 0 < t ≤ 1,

and, consequently, by letting t = |ξ|−1,

|Dαϕ̂(ξ)| = |ψ̂(ξ)| ≤ CN |ξ|−N |ξ| ≥ 1,

which completes the proof. �

Let

〈P, f〉 = lim
ε→

∫
|x|≥ε

(
f(0)− f(x)

) dx

|x|Q+1
, f ∈ S(g).

The distribution −P is a generalised laplacian (see Duflo [2], Section 2) and,
therefore, a generating functional of a continuous semigroup of probability mea-
sures µt (Hunt [9]). In other words,

µt ? µs = µt+s, t, s > 0,

and

lim
t→0
〈µt, f〉 = f(0), f ∈ S(g),

as well as
d

dt

∣∣∣
t=0
〈µt, f〉 = −〈P, f〉, f ∈ S(g).

(See Duflo [2], Proposition 4 or Hunt [9]) The operator Pf = f ? P is positive
and essentially selfadjoint with S(g) for its core domain. The densities ht belong
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to the domain of P. It is also an infinitesimal generator of a strongly continuous
semigroup of contractions

Tt = f ? ht, t > 0,

on the Hilbert space L2(g) (see Duflo [2], Example 4, p 247).
By Theorem 2.3 of G lowacki [5], the measures µt have smooth desities ht,

where h1 ∈ R(1). By the definition of the distribution P ,

(4.4) P(ft) = t−1(Pf)t,

which implies

ht(x) = (h1)t(x) = t−Qh1(t−1x), x ∈ g, t > 0.

For 0 < a < 1, let Pa be the fractional power of P. By Yosida [14], Theorem
2, IX.11,

(4.5) Paf =
1

Γ(−a)

∫ ∞
0

t−1−a(I − e−tP)f dt =
1

Γ(1− a)

∫ ∞
0

t−aP(f ? ht) dt.

4.6. Proposition. For every 0 < a < 1,

Pah1 ∈ R(a) and

∫
g
Pah1(x) dx = 0.

Proof. By (4.5),

Pah1(x) =
1

Γ(1− a)

∫ ∞
0

t−aPht+1(x) dt,

whence

|DαPah1(x)| ≤ Cα
Γ(1− a)

∫ ∞
0

t−a dt

(t+ 1 + |x|)Q+1+|α|

≤ C ′α
∫ ∞

0

t−a dt

( t
1+|x| + 1)Q+1+|α| · (1 + |x|)−Q−1−|α|

≤ C ′′α
∫ ∞

0

t−a dt

(t+ 1)Q+1+|α| · (1 + |x|)−Q−a−|α|

≤ C ′′′α (1 + |x|)−Q−a−|α|,

as required.
Now, for every t > 0, ∫

g
ht dx = 1.

Therefore, ∫
g
Pht dx = − d

dt

∫
g
ht dx = 0, t > 0.

which combined with (4.5) gives the second part of the assertion. �
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5. Littlewood-Paley theory

From now on we fix the function

ϕ = P1/2h1/2 =
√

2
(
P1/2h1

)
1/2
.

Note that

ϕ ? ϕ = P1/2h1/2 ?P
1/2h1/2 = T1/2P

1/2(P1/2h1/2) = P(T1/2h1/2) = Ph1,

hence, by (4.4),
ϕt ? ϕt = (ϕ ? ϕ)t = (Ph1)t = tPht.

5.1. Remark. By Propositions 4.2 and 4.6, ϕ is a smooth function, and

(5.2) |Dαϕ(x)| ≤ Cα(1 + |x|)−Q−1/2−|α|

as well as
|Dαϕ̂(ξ)| ≤ Cα|ξ|b|ξ|−|α|, ξ 6= 0,

for |b| ≤ 1/2.

5.3. Lemma. We have

f =

∫ ∞
0

f ? ϕt ? ϕt
dt

t
, f ∈ S(g),

where the integral is convergent in the L2(g)-norm. In particular,∫ ∞
0
〈f ? ϕt, g ? ϕt〉 = 〈f, g〉, f, g ∈ L2(g).

Proof. By the semigroup properties,

− d

dt
f ? ht = f ? Pht =

1

t
f ? (ϕt ? ϕt),

whence ∫ M

ε
f ? ϕt ? ϕt

dt

t
= f ? hε − f ? hM .

Now, if ε → 0 and M → ∞, the expression on the right-hand side tends to f in
L2(g). �

5.4. Proposition. Let

gϕ(f)(x) =

(∫ ∞
0
|f ? ϕt(x)|2 dt

t

)1/2

,

be the Littlewood-Paley square function operator. Then,

‖gϕ(f)‖2 = ‖f‖2, f ∈ S(g).

Proof. Let f ∈ S(g). By Lemma 5.3,

‖f‖22 = 〈f, f̄〉 =

∫ ∞
0
〈f ? ϕt ? ϕt, f̄〉

dt

t
=

∫ ∞
0

∫
g
|f ? ϕt(x)|2dx dt

t

=

∫
g

∫ ∞
0
|f ? ϕt(x)|2 dt

t
dx = ‖gϕ‖22.

�
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Let T = (t1, . . . , td) ∈ Rd
+. We shall regard Rd

+ as a product of copies of the

multiplicative group R+. We shall write

T a = (ta1, . . . , t
a
d), TS = (t1s1, . . . , tdsd),

dT

T
=
dt1 . . . dtd
t1 . . . td

, a ∈ R.

Let ϕk be the counterpart of ϕ for g replaced by g(k), 1 ≤ k ≤ d. Let

Φk = δk ⊗ ϕk,

where δk stands for the Dirac delta at 0 ∈ ⊕k−1
j=1gj .

5.5. Corollary. If

gΦk
(f)(x) =

(∫ ∞
0
|f ? (Φk)t(x)|2 dt

t

)1/2

,

then

‖gΦk
f‖2 = ‖f‖2, f ∈ S(g).

Proof. This is a direct consequence of Proposition 5.4. �

Let

Φ = Φ1 ? Φ2 ? · · · ? Φd,

and

ΦT = (Φ1)t1 ? · · · ? (Φd)td , T ∈ Rd
+.

5.6. Corollary. For every T ,

ΦT ∈ S(g),

and fo every ν ∈ [−1/2, 1/2]d,

‖ΦT ‖M(ν),l ≤ Cl
d∏

k=1

tνkk .

Proof. That ΦT ∈ S(g) is a simple exercise. By Remark 5.1,

(Φk)tk ∈
⋂
|b|≤1/2

M(0, . . . 0, b, 0, . . . , 0),

where the only nonzero term stands on the k-th position, and

‖(Φk)tk‖M(0,...0,b,0,...,0),l ≤ cltbk.

Therefore the assertion follows by Proposition 3.8. �

5.7. Corollary. We have

〈f, g〉 =

∫
Rd

+

〈f ? ΦT , g ? ΦT 〉
dT

T
, f, g ∈ L2(g).

Proof. This follows from Lemma 5.3 by iteration. �
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5.8. Proposition. The Littlewood-Paley square function operator

GΦ(f)(x) =

(∫
Rd

+

|f ? ΦT (x)|2 dT
T

)1/2

,

is of type (p, p), for every 1 < p <∞. That is, there exists a constant C dependent
on p such that

‖GΦ(f)‖p ≤ C‖f‖p, f ∈ S(g).

Proof. The proof is implicitly contained in Folland-Stein [4] (see Theorem 6.20.b
and Theorem 7.7) so we dispense ourselves with presenting all details.

We start with defining some Hilbert spaces and operators. Let X0 = C and

Xk = L2(Rk
+,
dT

T
), 1 ≤ k ≤ d.

Let Wk : L2(g, Xk−1)→ L2(g, Xk) be the operator

Wkf(x)(T, tk) = f ? (Φk)tk(x)(T ) =

∫
g(k)

(ϕk)tk(y)f(xy)(T ) dy,

where T = (t1, . . . , tk−1). Note that Wk acts only on the (xk, . . . , xd)-variable.
We can also write

Wkf(x) =

∫
g(k)

wk(y)f(xy) dy,

where, for every y ∈ g(k) and every m ∈ Xk−1,

wk(y) : Xk−1 → Xk, wk(y)m(T, tk) = (ϕk)tk(y)m(T ).

We claim that Wk is a bounded operator, even an isometry. In fact, by the
definition of Φk and Corollary 5.5,

‖Wkf‖2L2(g,Xk) =

∫
g
‖Wkf(x)‖2Xk

dx

=

∫
g
dx

∫ ∞
0

dt

t

∫
Rk−1

+

dT

T

∫
g(k)
|(ϕk)t(y)f(xy)(T )|2 dy

=

∫
Rk−1

+

dT

T

∫ ∞
0

dt

t

∫
g

∫
g(k)
|(ϕk)t(y)f(xy)(T )|2 dydx,

=

∫
Rk−1

+

dT

T

∫ ∞
0

dt

t
〈fT ? (Φk)t, fT ? (Φk)t〉

=

∫
Rk−1

+

‖gΦk
(fT )‖22

dT

T
=

∫
Rk−1

+

‖fT ‖22
dT

T
= ‖f‖2L2(g,Xk−1),

where fT (x) = f(x)(T ).
Another property of the kernel wk of Wk that is needed is the following. For

every α

(5.9) ‖Dαwk(x)‖(Xk−1,Xk) ≤ Cα|x|
−Q(k)−|α|
k ,
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where Q(k) = Qk + Qk+1 + · · · + Qd. This follows readily from (5.2) specialized
to ϕk:

|Dαϕk(x)| ≤ Cα(1 + |x|k)−Q
(k)−1/2−|α|.

As a bounded operator from L2(g, Xk−1) to L2(g, Xk) satisfying (5.9) is Wk a
vector-valued kernel of type 0, and, by Theorem 6.20.b of Folland-Stein [4], maps
Lp(g, Xk−1) into Lp(g, Xk) boundedly for every 1 < p <∞.

This implies our assertion. In fact,

GΦ(f)(x) = ‖WdWd−1 . . .W1f(x)‖Xd
,

and therefore

‖GΦ(f)‖Lp(g) = ‖WdWd−1 . . .W1f‖Lp(g,Xd) ≤ C‖f‖Lp(g,X0) = C‖f‖p.

�

A word of comment on the symbol ΦT would be appropriate here. The notation
may suggest that the functions ΦT are dilates of a single function. They are not,
but they have estimates of this form, which is our justification. In the next section
we are going to use the same notation for the “real” dilates of a function. We
hope the reader will not get confused.

6. The strong maximal function

Let

Tx 7→ (t1x1, t2x2, . . . , tdxd), x ∈ g, T ∈ Rd
+.

For a function F on g and a T ∈ Rd
+, let

FT (x) = t−Q1
1 t−Q2

2 . . . t−Qd
d F (T−1x).

Let Bj be the unit ball in gj and let D = B1× · · ·×Bd. Let |D| be the Lebesgue
measure of D. The strong maximal function on g is defined by

(6.1) Mf(x) = sup
T∈Rd

+

∫
D
|f(x(Ty)−1)| dy = sup

T
|f | ? (χD)T (x).

A theorem of Michael Christ asserts that, for every 1 < p < ∞, there exists a
constant C > 0 such that

‖Mf‖p ≤ C‖f‖p, f ∈ Lp(g),

that is, M is of (p, p) type (see Christ [1]). Actually, Christ considers a slightly
different but obviously equivalent maximal function, where χD is replaced with
χB, B being a unit ball in g. .

We shall need the following corollary to the Christ theorem. Let

γ(r) = min{r, r−1}, r > 0.

6.2. Corollary. Let

F (x) =
d∏
j=1

γ(|xj |)a|xj |−Qj , x 6= 0,
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for some a > 0.Then the maximal function

MF f(x) = sup
T∈Rd

+

|f | ? FT (x)

is of (p, p) type for 1 < p <∞.

Proof. The function F is radially decreasing in each variable so

F (x) = sup
hR≤F

hR(x),

and ∫
F (x) dx = sup

hR≤F

∫
hR(x) dx,

where

hR =
∑
R∈R

cRχD(R−1x), R = (r1, r2, . . . , rd) ∈ Rd
+,

and R ⊂ Rd
+ is a finite set. For f ≥ 0, we have

f ? (hR)T (x) =
∑
R

cRr
Q1
1 rQ2

2 . . . rQd
d f ? (χD)RT (x)

≤
( 1

|D|
∑
R

cRr
Q1
1 rQ2

2 . . . rQd
d |D|

)
Mf(x)

≤ ‖hR‖1
|D|

Mf(x)

and therefore

MF f(x) ≤ ‖F‖1
|D|

Mf(x),

which completes the proof. �

7. Flag kernels

In the context of this paper it is natural to work with a description of flag ker-
nels given in terms of flag multipliers (see Nagel-Ricci-Stein [10], Theorem 2.3.9).
We say that a tempered distribution K on g is a flag kernel if its Fourier transform

K̂ is a smooth function where ξd 6= 0 and satisfies the following estimates

|DαK̂(ξ)| ≤ Cα
d∏

k=1

|ξ|−|αk|
k , ξd 6= 0, all α.

Thus, K is a flag kernel if and only if K ∈M(0), where 0 = (0, 0, . . . , 0).

7.1. Lemma. The class S0(g), as defined in Section 3 before Corollary 3.11, is
a dense subspace of Lp(g), for 1 < p <∞.

Proof. Let 1/q + 1/p = 1, and let g ∈ Lq(g) be such that∫
g
f(x)g(x) dx = 0, f ∈ S0(g).
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We are going to show that g = 0, which implies the required density. For ϕ ∈
S(g′), where g′ = g1 ⊕ . . . gd−1, let

g1(xd) =

∫
g′
ϕ(x′)g(x′, xd) dx

′.

Then, g1 ∈ Lq(gd) and, by hypothesis, ĝ1 ∈ S ′(gg) is supported at the origin.
Therefore, g1 is also a polynomial so it must be zero. Since ϕ ∈ S(g′) was
arbitrary, g itself must be zero. �

7.2. Lemma. If K is a flag kernel and f ∈ S0(g), then f ? K ∈ S0(g). In other
words, S0(g) is invariant under convolutions with flag kernels.

Proof. This is a special case of Corollary 3.11. �

7.3. Proposition (Theorem 2.5 of [7]). Let K be a flag kernel on g. The convo-
lution operator f 7→ f ?K defined initially on S0(g) extends uniquely to a bounded
operator K on L2(g) and there exists a constant C > 0 and an integer l such that

‖K‖ ≤ C‖K‖M(0),l.

Proof. By Theorem 5.5 of G lowacki [6], there exists a constant C > 0 and an
integer l ∈N such that

(7.4) ‖f ? T‖2 ≤ C‖T‖S(0),l‖f‖2, f ∈ S(g),

for T ∈ S(0). By the definition of the distributions Uk (see Secton 3) and the
Plancherel theorem,

(7.5) ‖f‖22 ≈
∑
k∈Z
‖Uk ? f‖22 ≈

∑
k∈Z
‖Uk ? Uk ? f‖22, f ∈ S(g),

where the symbol ≈ has been defined in Remark 3.6. Recall also that Uk =
(U0)2−k . Therefore, by Remark 3.4, Lemma 3.7, and (7.4),

‖Uk ? Uk ? f ? K‖22 = 2kQ‖(U0 ? f2k) ? (U0 ? K2k)‖22
≤ 2kQ‖U0 ? K2k‖2S(0),l‖U0 ? f2k‖22
≈ 2kQ‖U0K2k‖2M(0),l‖U0 ? f2k‖22
≤ C‖K‖2M(0),l‖f ? Uk‖

2
2,

which combined with (7.5) gives the required estimate. �

7.6. Remark. The convolution of flag kernels can be understood in two equivalent
ways: in terms of Proposition 3.8, Remark 3.10, and Corollary 3.11, or as a
composition of two convolvers on L2(g) (Proposition 7.3).

7.7. Proposition (Theorem 2.2 of [7]). If K1,K2 are flag kernels on g, then
K1 ? K2 is also a flag kernel.

Proof. This is a corollary to Proposition 3.8. �

We keep the notation established in previous sections.



FLAG KERNELS 19

7.8. Lemma. Let

KT,S = Φ̃TS ? K̃ ? ΦT , T, S ∈ Rd
+.

For every T, S ∈ Rd
+, KT,S is an integrable function such that

|KT,S(x)| ≤ Cγ(S)1/4
d∏

k=1

γ(|tkx|k)1/4|x|−Qk
k

where
γ(S) = γ(s1)γ(s2) · · · γ(sd), γ(s) = min{s, s−1}.

Proof. By Corollary 5.6, for every µ, ν, µ+ν ∈ [−1/2, 1/2]d, there exist constants
Cα such that, for all ξ ∈ g? with ξd 6= 0 and all sk > 0, tk > 0,

|DαΦ̃TS
∧

(ξ)| ≤ Cα
d∏

k=1

(tksk|ξ|k)µk |ξ|
−|αk|
k ,

|DαΦ̂T (ξ)| ≤ Cα
d∏

k=1

(tk|ξ|k)νk |ξ|
−|αk|
k ,

|DαK̂(ξ)| ≤ Cα
d∏

k=1

|ξ|−|αk|
k ,

which, by Proposition 3.8, yields

|DαK̂T,S(ξ)| ≤ C ′α
d∏

k=1

sµkk (tk|ξ|k)µk+νk |ξ|−|αk|
k , ξd 6= 0, tk > 0, sk > 0.

Note also that, by Propositions 5.6 and 7.3, KT,S ∈ L2(g). Hence, by Proposition
3.13,

|KT,S(x)| ≤ C
d∏

k=1

sµkk t
µk+νk
k |x|−µk−νkk |x|−Qk

k .

By choosing appropriately µk = ±1/4 and νk = 0,±1/2 depending on whether
sk and t−1

k |x|k are smaller or greater than 1, we get our assertion. �

7.9. Corollary. For a given S ∈ Rd
+, the maximal operator

K?
Sf(x) = sup

T
|f | ? |K̃T,S |(x)

is of type (p, p) with

‖K?
Sf‖p ≤ Cγ(S)1/4‖f‖p, f ∈ Lp(g).

Proof. By Lemma 7.8,

|KT,S(x)| ≤ Cγ(S)1/4FT (x),

where

F (x) =

d∏
k=1

γ(|x|k)|x|−Qk
k .

Thus the assertion follows by Corollary 6.2. �
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7.10. Lemma. Let K ∈ L1(g), g ∈ L2(g). Then,

|g ? K(x)|2 ≤ ‖K‖1 |g|2 ? |K|(x), x ∈ g.

Proof. In fact,

|g ? K(x)|2 ≤
(∫

g
|g(xy−1)| · |K(y)|1/2 · |K(y)|1/2 dy

)2

≤
∫
g
|g|2(xy−1) · |K|(y) dy ·

∫
g
|K(y)| dy

≤ ‖K‖1 |g|2 ? |K|(x),

for every x ∈ g. �

We turn to the main result of this paper. The reader may wish to com-
pare the proof we give with that of Theorem B and the preceding lemma of
Duoandicoetxea-Rubio de Francia [3].

7.11. Theorem. Let K be a flag kernel on g. For every 1 < p <∞, the singular
integral operator

f → f ? K, f ∈ S0(g),

extends uniquely to a bounded operator K on Lp(g), and there exists a constant
C > 0 and an integer l such that

‖K‖ ≤ C‖K‖M(0),l.

Proof. By Lemma 7.1, we may choose S0(g) as our space of test functions. Let
f, g ∈ S0(g). By Corollary 5.7, Proposition 7.7, and Lemma 7.2,

〈f ? K, g〉 = 〈f, g ? K̃〉 =

∫
Rd

+

〈f ? ΦT , g ? K̃ ? ΦT 〉
dT

T

=

∫
Rd

+

∫
Rd

+

〈f ? ΦT , g ? ΦTS ? Φ̃TS ? K̃ ? ΦT 〉
dS

S

dT

T

=

∫
Rd

+

∫
Rd

+

〈fT , gTS ? KT,S〉
dT

T

dS

S
,

where

fT = f ? ΦT , gTS = g ? ΦTS , KT,S = Φ̃TS ? K̃ ? ΦT .

We are going to estimate

LS(f, g) =

∫
Rd

+

〈fT , gTS ? KT,S〉
dT

T
,
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for a given S. Recall that, by Proposition 5.8, the square function GΦ of Section
5 is of type (p, p), for every 1 < p <∞. Therefore, for 1 < p < 2 and f, g ∈ S0(g),

|〈LSf, g〉| ≤
∫
g

(∫
Rd

+

|fT (x)|2dT
T

)1/2(∫
Rd

+

|gTS ? KT,S(x)|2 dT
T

)1/2

dx

≤ C1‖GΦ(f)‖p

∫
g

(∫
Rd

+

|gTS ? KT,S(x)|2 dT
T

)q/2
dx

1/q

= C2‖f‖p ·

∥∥∥∥∥
∫
Rd

+

|gTS ? KT,S(·)|2 dT
T

∥∥∥∥∥
1/2

q/2

,

where 1/p+ 1/q = 1. Note that q > 2. Thus, there exists a nonnegative function
u with ‖u‖r = 1, where 2/q + 1/r = 1, such that∥∥∥∥∥

∫
Rd

+

|gTS ? KT,S(·)|2 dT
T

∥∥∥∥∥
q/2

=

∫
g

∫
Rd

+

|gTS ? KT,S(x)|2 dT
T
u(x) dx.

Therefore, by Corollary 7.9, Lemma 7.8, and Lemma 7.10,∥∥∥∥∥
∫
Rd

+

|gTS ? KT,S(·)|2 dT
T

∥∥∥∥∥
q/2

≤ Cγ(S)1/4

∫
Rd

+

∫
g
|gTS |2 ? |KT,S |(x)u(x) dx

dT

T

≤ Cγ(S)1/4

∫
g

∫
Rd

+

|gTS(x)|2 dT
T
·K?

Su(x) dx

≤ C1γ(S)1/4‖GΦ(g)‖2q · ‖K?
Su‖r ≤ C2γ(S)1/2‖g‖2q ,(7.12)

whence

(7.13) |LS(f, g)| ≤ Cγ(S)1/4‖f‖p‖g‖q..
Finally,

|〈f ? K, g〉| ≤ C

(∫
Rd

+

γ(S)1/4 dS

S

)
‖f‖p‖g‖q = C1‖f‖p‖g‖q,

which proves our case for 1 < p < 2. The result for 2 < p <∞ follows by duality.
The case p = 2 has been already established in Lemma 7.3. �

7.14. Corollary. Let 1 < p <∞. Let K be a flag kernel on g. For each n ∈N ,
let

Kn =
∑
|k|≤n

Uk ? K, Knf = f ? Kn.

Then, for every f ∈ Lp(g),

‖Knf −Kf‖p → 0, n→∞.

Proof. By Lemma 3.7,

‖Kn‖M(0),l ≤ C max
|k|≤n

‖Uk ? K‖M(0),l ≤ C1‖K‖M(0),l
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so the family {Kn} is bounded in M(0). By Theorem 7.11, the norms of the
operators Kn acting on Lp(g) are uniformly bounded. It remains to recall from
Section 3 that, for every f ∈ S0(g),

Kf = Knf,

if n is large enough. Therefore, by Lemma 7.1, the convergence holds on a dense
subset of Lp(g). �
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