
Lp-MULTIPLIERS ON HOMOGENEOUS GROUPS

SENSITIVE TO THE GROUP STRUCTURE

PAWE L G LOWACKI

Abstract. We propose new sufficient conditions for Lp-multipliers on
homogeneous nilpotent groups. The multipliers generalise the flag mul-
tipliers of Nagel-Ricci-Stein-Wainger, but the approach and the tech-
niques applied are entirely different. Our multipliers are better adapted
to the specific commutation rules on the Lie algebra of the given group.
The proofs are based on a new symbolic calculus fashioned after Hörmander.
We also take advantage of Cotlar-Stein lemma, and Littlewood-Paley
theory in the spirit of Duoandikoetxea-Rubio de Francia.
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1. Introduction

Classical multiplier operators are convolution linear operators of the form

S(RN ) 3 f 7→ TKf = f ? K ∈ C∞(RN ),

where

f ? K(x) =

∫
RN

f(x− y)K(y)dy = 〈K, fx〉, fx(y) = f(x− y).

Here K is a tempered distribution on RN such that m(ξ) = K̂(ξ) is a locally
integrable function. The function m is then called a multiplier. As the space
of test functions f one may adopt the Schwartz class S(RN ) of smooth
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functions which decay rapidly at infinity along with all their derivatives.
The primary goal of the study is the boundedness of such operators in terms
of the function m. We say that a linear operator T on S(RN ) is bounded
in the Lebesgue norm ‖ · ‖Lp , where 1 < p < ∞, if there exists a constant
C > 0 such that

‖Tf‖Lp ≤ C‖f‖Lp , f ∈ S(RN ).

There are numerous classical results which give (mostly) sufficient conditions
on the function m that assure the boundedness of the multiplier operator.
Let us mention just two such results relevant to the subject of this paper.

By the Plancherel theorem we know that the multiplier operator is boun-
ded on L2(RN ) if and only if the symbol m is essentially bounded. The
other result is known as the Marcinkiewicz theorem and gives a sufficient
condition for the boundednes on the Lp(RN )-spaces, for all 1 < p <∞. One
of the versions of this theorem requires that m is differentiable everywhere
except where ξk = 0, for some 1 ≤ k ≤ N , and satisfies the estimates

|Dαm(ξ)| ≤ C
N∏
k=1

|ξk|−αk ,

for a constant C > 0 and all multiindices α = (α1, α2, . . . , αN ), where αk = 0
or 1.

Similar questions have been dealt with in the context of a nilpotent ho-
mogeneous group. Instead of the usual addition of vectors (x, y) 7→ x+ y in
RN we consider a group multiplication

(x, y) 7→ xy = x+ y + P (x, y),

where P : RN ×RN → RN is a polynomial mapping

P (x, y) =
(
P1(x, y), P2(x, y), . . . , PN (x, y)

)
with terms of order at least two. For every j, the polynomial Pj depends
only on the variables xk, yk, where 1 ≤ k < j. Furthermore,

P (x, 0) = P (0, x) = P (x,−x) = 0,

for every x ∈ RN . Additionally, we assume that our group is homogeneous,
that is, there exist numbers 1 ≤ p1 ≤ p2 ≤ · · · ≤ pN such that the mappings

δtx =
(
tp1x1, t

p2x2, . . . , t
pNxN

)
are group automorphisms called dilations. Such a group is necessarily con-
nected, simply connected, and nilpotent. The simplest and best known
noncommutative group of this type is the Heisenberg group, where the poly-
nomial multiplication is defined on R3 in the following way

xy =
(
x1 + y1, x2 + y2, x3 + y3 +

1

2
(x1y2 − x2y1)

)
.

The mappings

δtx =
(
tp1x1, t

p2x2, t
p3x3

)
, t > 0,

are automorphic dilations if and only if p1 + p2 = p3.
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The multiplier operators on (RN , P ) are convolution operators

S(RN ) 3 f 7→ f ? K ∈ C∞(RN ),

where

f ? K(x) =

∫
RN

f(xy−1)K(y)dy = 〈K, fx〉, fx(y) = f(xy−1),

for a tempered distribution K on RN . Again, the question is: What are the

conditions we may impose on the Fourier transform K̂ that are sufficient
for the operator f 7→ f ? K to be bounded on Lp(RN )? Various examples
in the theory of pseudodifferential operators which is intimately connected
to the analysis on the higher-dimensional Heisenberg groups show that the
conditions we know from the classical theory of multipliers have to be sub-

stantially strengthened. For instance, the boundedness of K̂ is no longer
sufficient for the boundedness of TK on L2(RN , P ). The weakest sufficient
conditions for the Lp-boundedness have been obtained by Nagel-Ricci-Stein-

Wainger [16]. Here the smoothness of K̂ is assumed where ξN 6= 0 and it is
required that

|DαK̂(ξ)| ≤ Cα
N∏
k=1

(∑
j≥k
|ξj |1/pj

)−pkαk
,

for |α| ≤ M , where M is sufficiently large. (Actually, this is a somewhat
simplified version of the condition. For a full version, see Example 8.10
below.) The operator norm of the multiplier operator depends on a finite
number of constants Cα.

Let us pause here to reflect on the occurrence of the variables with higher
indexes in the above estimates. This is a consequence of the noncommuta-
tivity of the group and is closely related to the fact that the polynomials
Pk defining the multiplication depend on the “earlier” variables. Turning
the matter around we may say that each variable xj or yj occurs only in
polynomials Pk, for k > j. This suggests the idea of a new order in the set

N = {k ∈N : 1 ≤ k ≤ N}.

Let us write k ≺ j if Pj really depends on xk or yk. This relation can be
extended to a partial order in N . Examples show that the order may be
much coarser than the natural linear order in N .

In this paper we wish to offer an improvement on the described above
results. The condition for the L2-boundedness is weakened to

(1.1) |DαK̂(ξ)| ≤ Cα
∏

k∈N\Nmax

(∑
j�k
|ξj |1/pj

)−pkαk
,

where Nmax consists of the maximal elements of N with regard to the partial
order ≺. The condition for the Lp-boundedness takes the form

(1.2) |DαK̂(ξ)| ≤ Cα
∏
k∈N

(∑
j�k
|ξj |1/pj

)−pkαk
.

In (1.1) as well as in (1.2) it is assumed that ξj 6= 0 if j ∈ Nmax. As before,
the norms of the multiplier operators depend on a finite number of constants
Cα. The flag kernels of Nagel-Ricci-Stein-Wainger [16] satisfy (1.2).
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These conditions are not only weaker but also seem much better adjusted
to the individual group structure. For example, if the group is Abelian, the
conditions (1.2) easily reduce to the classical Marcinkiewicz C∞-conditions.

Our approach is based on a new symbolic calculus, where the typical
estimates look like

(1.3) |Dαa(ξ)| ≤ Cα
∏
k∈N

gk(ξ)
−pkαk , ξ ∈ (RN )?.

In the most interesting cases the weight functions gk do not depend on the
independent variables, that is the variables ξj , where k 6� j. If, for instance,

gk(ξ) = 1 +
∑
j�k
|ξj |1/pj ,

then by differentiating with respect to the variable ξk no gain is produced
in the independent directions.

The idea of the calculus goes back to Hörmander [12] and Melin [14] (see,
Manchon [13] or G lowacki [8]). Central to the method is the formula

(f ? g)∧(ξ) =

∫∫
RN×RN

e−i〈x+y,ξ〉e−i〈P (x,y),ξ〉f(x)g(y)dxdy,

for Schwartz functions f, g. This calculus seems to be well suited to the
approximation of “symbols” like those in (1.2) by symbols (1.3) of the cal-
culus and transferring, perhaps in a weaker form, some of the properties
of the latter. In particular, it is shown that if distributions K1, K2 satisfy
(1.2), then they are convolvable (see Definition 10.3) and the convolution
K1 ? K2 also satifies (1.2). This is proved without using the fact that the
corresponding operators are bounded on L2 and extends to similar classes
of distributions of order different from zero.

This paper is heavily influenced by Duoandikoetxea-Rubio de Francia [4],
Hörmander [12], and Melin [14]. The idea of N-kernels has been inspired by
the concept of flag kernels of Nagel-Ricci-Stein-Wainger [16].

2. Basic Setup

Let X be a real N -dimensional vector space with a fixed linear basis
{ek}Nk=1. Accordingly, each element x ∈ X has a representation as

x = (x1, x2, . . . , xN ).

Occasionally, it will be more convenient to write

x = (xk)k∈N , N = {1, 2, . . . , N}.

The space X is assumed to be homogeneous, that is, endowed with a
family of dilations {δt}. The vectors in the basis are supposed to be invariant
under dilations:

δtek = tpkek, t > 0, k ∈ N ,
where 1 ≤ p1 ≤ p2 ≤ · · · ≤ pN . The number Q =

∑N
k=1 pk is called the

homogeneous dimension of X. We have

dδtx = tQdx, t > 0.
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The function

ρ(x) =

N∑
k=1

|xk|1/pk , x ∈ X,

will play the role of a homogeneous norm on X. We also choose and fix the
l1-norm

(2.1) ‖x‖ = ‖
N∑
k=1

xkek‖ =
N∑
k=1

|xk|.

By α, β, . . . , A,B, . . . , a, b, · · · we shall denote multiindices in AN = NN ,
where N stands for the set of all nonnegative integers. Let

|α| =
N∑
k=1

αk. p(α) =
N∑
k=1

pkαk.

The set of multiinices M = (m1,m2, . . . ,mN ), where mk ∈ R will be de-
noted by AR. Here R denotes the field of real numbers.

We shall adopt the following notation for partial derivatives:

Dk = Dxk =
∂

∂xk
, Dα =

∏
k

Dαk
k .

For a function f on X we shall write

f̃(x) = f(−x), x ∈ X.
The Schwartz space of smooth functions which vanish rapidly at infinity

along with all their derivatives will be denoted by S(X). The seminorms

f → max
|α|+|β|≤m

sup
x∈X
|xαDβf(x)|, m ∈N ,

form a complete set of seminorms in S(X) giving it a structure of a lo-
cally convex Fréchet space. Needless to say that the seminorms are actually
norms. The subspace C∞c (X) of functions with compact support is dense in
S(X). By L1(X) and L2(X) we denote the usual Lebesgue spaces. S(X) is
a dense subspace of the Lebesgue spaces.

Analogous notation will be applied to the objects on the dual space X?

with the dual basis {e?k}k∈N and the dual dilations still denoted by {δt}t>0.
The Fourier transforms are denoted by f 7→ f∧ and g 7→ g∨. We choose

Lebesgue measures dx in X and dξ in X? so that

f∧(ξ) = f̂(ξ) =

∫
X
f(x)e−i〈x,ξ〉dx, g∨(x) =

∫
X?

g(ξ)ei〈x,ξ〉dξ,

where f ∈ S(X), g ∈ S(X?) and

〈x, ξ〉 =
N∑
k=1

xkξk

is the duality of vector spaces. If P is a polynomial on X, then(
Pf
)∧

= P (iD)f̂ ,

for f ∈ S(X).
By |M | we denote the cardinality of a finite set M .
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Let A,B be positive quantities. We shall write A <∼ B to say that there
exists a constant c > 0 whose precise value is irrelevant such that A ≤ cB.

Some more notation is explained in Appendix (Section 10) or in the cur-
rent text of the paper.

3. Metrics

Let ≺ be a partial order in N = {1, 2, . . . , N} such that k ≺ j implies
k < j. Instead of k ≺ j we shall also write j � k. The expressions k � j
and j � k mean that k ≺ j or k = j.

Another basic structure in N which is going to be intrumental throughout
the paper is filtration. A family N = {Nk}k∈N of subsets of N is called a
filtration if for every k ∈ N and every j ∈ N ,

a) j � k implies j ∈ Nk.
b) j ∈ Nk implies Nj ⊆ Nk.

If, for every k ∈ N , k ∈ Nk, we say that the filtration is closed.
Any filtration N = {Nk}k∈N determines a set of partial homogeneous

norms

(3.1) Nk(ξ) =
∑
j∈Nk

|ξj |1/pj , ξ ∈ X?.

We shall consider metrics, that is, families of norms on X? of the form

(3.2) gξ(η) =

N∑
k=1

|ηk|
gk(ξ)pk

, ξ ∈ X?, η ∈ X?,

where gk are continuous strictly positive functions. Every filtration N de-
termines a metric g = gN, where

gk(ξ) = 1 +Nk(ξ), ξ, η ∈ X?.

Definition 3.3. This class of metrics will be denoted by G.

With few exceptions, these are the metrics we are going to consider here
(see Remark 3.19 below). The metric corresponding to the filtration {Nk},
where

Nk = {j ∈ N : j � k}
is special. We will denote it by q and will refer to it as the basic metric on
X?. We have

(3.4) qξ(η) =

N∑
k=1

|ηk|
qk(ξ)pk

,

where
qk(ξ) = 1 +

∑
j�k
|ξj |1/pj , k ∈ N , ξ ∈ X?.

The following proposition says that the metric q is self-tempered.

Proposition 3.5. There exist C0, T > 0 such that, for all ξ, η, ζ ∈ X?,(
qξ(ζ)

qη(ζ)

)±1

≤ C0

(
1 + qξ(ξ − η)

)T
.
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Proof. It is sufficient to show that, for every k ∈ N , there exists Tk > 0 such
that

(3.6)

(
qk(ξ)

qk(η)

)±1
<∼

1 +
∑
j�k

|ξj − ηj |
qj(ξ)pj

Tk

,

for ξ, η, ζ ∈ X?. Let us prove (3.6). We have

qk(ξ)

qk(η)
<∼ 1 + qk(η)−1

∑
j�k
|ξj − ηj |1/pj

<∼ 1 +
∑
j�k

|ξj − ηj |1/pj
qj(η)

<∼ 1 +
∑
j�k

|ξj − ηj |
qj(η)pj

.

The other part is proved by reverse induction. If k is a maximal element
with respect to ≺, then

qk(ξ) = qk(η) = 1.

If not, let us assume that

(3.7)
qj(ξ)

qj(η)
<∼

1 +
∑
l�j

|ξl − ηl|
ql(ξ)pl

,

Tj

for j � k. As in the first part of the proof,

qk(ξ)

qk(η)
<∼ 1 +

∑
j�k

|ξj − ηj |
qj(ξ)pj

·
(
qj(ξ)

qk(η)

)pj
,

so that, by (3.7) and qj(η) ≤ qk(η),

qk(ξ)

qk(η)
<∼

1 +
∑
j�k

|ξj − ηj |
qj(ξ)pj

1 +
∑
l�j

|ξl − ηl|
ql(ξ)pl

pNTj

<∼

1 +
∑
j�k

|ξj − ηj |
qj(ξ)pj

Tk

,(3.8)

where Tk = pN maxj�k Tj + 1, which implies (3.6). �

Corollary 3.9. The metric q is slowly varying, that is, if qξ(ξ − η) < 1,
then

(3.10)

(
qξ(ζ)

qη(ζ)

)±1

≤ C1,

for some C1 ≥ 1.

Corollary 3.11. Let q̃k(ξ) = |ξk|1/pk + qk(ξ), k ∈ N , ξ ∈ X?. For every
k ∈ N , there exists Rk > 0 such that(

q̃k(ξ)

q̃k(η)

)±1
<∼

1 +
∑
j�k

|ξj − ηj |
qj(ξ)pj

Rk

,

The metrics g ∈ G are q-tempered:
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Proposition 3.12. Let g ∈ G. Then, for every k ∈ N , qk ≤ gk, and, for
all ξ, η, ζ ∈ X?, (

gξ(ζ)

gη(ζ)

)±1
<∼
(
1 + qξ(ξ − η)

)T
,

where T > 0 is as in Proposition 3.5.

Proof. We note first that qk ≤ gk, since the sets Nk for the basic metric q
are, by definition, minimal. Now, observe that, for every k ∈ N ,

gk(ξ)

gk(η)
≤ 1 +

gk(η − ξ)
gk(η)

.

If j ∈ Nk, then by the filtration property, Nj ⊆ Nk, hence qj ≤ gj ≤ gk.
Therefore,

1 +
gk(η − ξ)
gk(η)

≤ 1 +
∑
j∈Nk

|ηj − ξj |1/pj
qj(η)

<∼ 1 +
∑
j∈N

|ηj − ξj |
qj(η)pj

= 1 + qη(η − ξ),

which implies
gξ(ζ)

gη(ζ)
<∼ 1 + qξ(ξ − η).

By the above and Proposition 3.5,

gη(ζ)

gξ(ζ)
<∼ 1 + qη(η − ξ) <∼

(
1 + qξ(ξ − η)

)T
,

which completes our proof. �

Let g be a metric (not necessarily in G) and let m be a strictly positive
function on X?. For a smooth function f on X?, ξ ∈ X? and s ≥ 0, let

(3.13) |f |m,g
s (ξ) = m(ξ)−1 max

p(α)≤s
gα(ξ)|Dαf(ξ)|,

where

(3.14) gα(ξ) =
N∏
k=1

gk(ξ)
pkαk .

Let also

|f |m,g
s = sup

ξ∈X?
|f |m,g

s (ξ).

Instead of | · |1,gs we shall write | · |gs . Let

S(m,g) = {f ∈ C∞(X?) : ∀s≥0 |f |m,g
s <∞}.

The space S(m,g) with the seminorms | · |m,g
s is a Fréchet space.

Let g1,g2 be metrics and m1,m2 strictly positive functions. A linear
mapping

(3.15) T : S(m1,g1)→ S(m2,g2)

is Fréchet continuous, if for every n, there exist k such that

|Tf |m2,g2
n

<∼ |f |
m1,g1

k , f ∈ S(m1,g1).
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The product S(m1,g)×S(m2,g) is a Fréchet space with the product topol-
ogy. We shall also consider Fréchet continuous bilinear mappings

(3.16) T : S(m1,g)× S(m2,g)→ S(m3,g).

We need, however, still another concept of convergence. A sequence
fn ∈ S(m,g) is said to be weakly convergent if it is bounded and point-
wise convergent (see Hörmander [12], page 369). Note that, by the Ascoli
theorem, for a bounded sequence, pointwise convergence is equivalent to the
convergence in C∞-topology: for each α, the sequence Dαfn is uniformly
convergent on compact subsets of X?.

A linear mapping (3.15) is said to be weakly continuous if the weak con-
vergence fn → f in S(m1,g1) implies the weak convergence Tfn → Tf in
S(m2,g2). A bilinear mapping (3.16) is said to be weakly continuous if the
weak convergence fn → f in S(m1,g) together with the weak convergence
gn → g in S(m2,g) imply the weak convergence T (fn, gn) → T (f, g) in
S(m3,g2).

Proposition 3.17. Let g be a metric and m a strictly positive function
on X?. The subspace C∞c (X?) is weakly dense in S(m,g).

Proof. Let ψ ∈ C∞c (X?) be equal to 1 in a neighbourhood of the origin.
Let ψn(ξ) = ψ(δ1/nξ). Let f ∈ S(m,g). Of course, the sequence ψnf is
pointwise convergent to f , so we only have to show that it is bounded in
S(m,g). In fact, if p(α) ≤ s, then

m(ξ)−1gα(ξ)|Dα(ψnf)(ξ)|
<∼

∑
β+γ=α

(1 + ρ(ξ))p(β)n−p(β)m(ξ)−1gγ(ξ)|Dγf(ξ)|

≤ |f |m,g
s

since ρ(ξ) ≈ n on the support of Dβψn, if β 6= 0. If β = 0, the estimate is
obvious. �

We denote byM(q), the class of strictly positive functions m on X? such
that there exists T1 > 0 such that, for all ξ, η ∈ X?,(

m(ξ)

m(η)

)±1
<∼
(
1 + qξ(ξ − η)

)T1 .
We may express this property, by saying that the functions m are q-tempered.

The elements ofM(q) will be called q-weights or simply weights. Observe
also that if m1,m2 ∈ M(q), then m1m2 ∈ M(q) and mθ

1 ∈ M(q), for
every θ ∈ R.

Proposition 3.18. Let g ∈ G. Let M = (m1,m2, . . . ,mN ) ∈ AR and let

mM (ξ) =
N∏
k=1

gk(ξ)
mk ,

Then, mM is a q-weight. In particular, for every α ∈ AN , gα ∈M(q).

Proof. It follows from Proposition 3.12 that functions gk are g-weights.
Thus, by the preceding remark mM ∈M(g), for every M ∈ AR. �
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Let g ∈ G. The metric g ⊕ g on X? ×X? is defined by

(g ⊕ g)(ξ1,ξ2)(η1, η2) = gξ1(η1) + gξ2(η2), ξ1, ξ2, η1, η2 ∈ X?.

This metric no longer belongs to G. For f ∈ S(X? × X?) and a strictly
positive function m on X? ×X?, let

|f |m,g⊕g
s = sup

ξ,η
sup

p(α)+p(β)≤s
m(ξ, η)−1gα(ξ)gβ(η)|Dα

ξD
β
η f(ξ, η)|.

Remark 3.19. Througout the paper, the metric g⊕ g, where g ∈ G, is the
only instance of a metric which is not in G. In addition, it will only play an
auxiliary role.

4. A partition of unity

Let v be a norm on X?. Denote

Bv(a, r) = {ξ ∈ X? : v(ξ − a) < r},
for a ∈ X?, r > 0. The following is a simplified lemma of Hörmander ([12],
Lemma 2.5). We adapt the original proof to our needs.

Proposition 4.1. There exists a discrete set B = {bν : ν ∈ N} ⊆ X?

such that the family of the balls Aν = Bqbν
(bν , 1/2) is a covering of X?,

and no point ξ ∈ X? can belong to more than (4C3
1 + 1)N larger balls Bν =

Bqbν
(bν , 1). There also exists a sequence of functions ϕν ∈ C∞c (Bν) bounded

in S(1,q) and such that for every ξ ∈ X?∑
ν

ϕν(ξ) = 1.

Furthermore, there exist constants m,M > 0 such that

(4.2)
∑
ν∈N

(
1 + qbν (ξ − bν)

)−m
≤M,

for every ξ ∈ X?.

Proof. Let C1 be as in (3.10). Let {bν} be a maximal sequence of points in
X? such that

(4.3) qbν (bµ − bν) ≥ 1

2C1
, µ 6= ν.

Let ξ ∈ X?. Note that

qξ(ξ − bν) < 1/2C1 implies qbν (ξ − bν) < 1/2.

Therefore, either qbν (ξ − bν) < 1/2 for some ν, or

qξ(ξ − bν) ≥ 1

2C1
and qbν (ξ − bν) ≥ 1/2 ≥ 1

2C1
.

The latter contradicts the maximality of our sequence. The former implies
that {Aν}ν∈N is a covering, which proves the first statement of the propo-
sition.

To show that the covering {Bν}ν∈N is uniformly locally finite take a
ξ ∈ X? and let

M(ξ) = {ν : ξ ∈ Bν}.
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If ν ∈ M(ξ), then qbν (ξ − bν) < 1, which implies qξ(ξ − bν) < C1. On the
other hand

qξ(bµ − bν) ≥ qbν (bν − bµ)/C1 ≥ 1/2C2
1 ,

for µ 6= ν. Thus, for every ν ∈M(ξ),

Bqξ(bν , 1/4C
2
1 ) ⊆ Bqξ(ξ, C1 + 1/4C2

1 ),

and the balls Bqξ(bν , 1/4C
2
1} are pairwise disjoint, so

|M(ξ)| ≤
(
C1 + 1/4C2

1

1/4C2
1

)N
= (4C3

1 + 1)N ,

as claimed.
Let ψ ∈ C∞c

(
B‖·‖(0, 1)

)
be equal to 1 on the smaller ball B‖·‖(0, 1/2).

Let

ψν(ξ) = ψ
(
∆−1
ν (ξ − bν)

)
,

where

(4.4) ∆νξ =
(
qk(bν)pkξk

)
k∈N

.

By (3.10),

qα(ξ)|Dαψν(ξ)| = qα(ξ)q−α(bν)|Dαψ(∆−1
ν (ξ − bν)|

≤ Cp(α)
1 sup

‖η‖≤1
|Dαψ(η)| = Cα,

for all ν and all α, which shows that ψν ∈ S(1,q) with uniform bounds.
Since {Aν} is a covering,

∑
µ ψµ(ξ) ≥ 1 for every ξ ∈ X?, and it is not

hard to see that the sequence

ϕν(ξ) =
ψν(ξ)∑
µ ψµ(ξ)

is a partition of unity.
It remains to prove (4.2). Given ξ ∈ X? and k ∈N , let

Mk(ξ) = {ν : qbν (ξ − bν) < k}.

For every ν ∈Mk(ξ),

qξ(ξ − bν) ≤ C0k(1 + k)T ≤ C0(1 + k)T+1,

wher C0 is as in Proposition 3.12. Furthermore, for ν, µ ∈ Mk(ξ) such that
bν 6= bµ,

qξ(bν − bµ) > C−1
0 qbν (bν − bµ)(1 + k)−T >

1

2C0C1(1 + k)T
,

so the balls

Bqξ

(
bν ,

1

4C0C1(1 + k)T

)
are mutually disjoint and contained in the ball Bqξ(ξ, 2C0(1+k)T+1). There-
fore,

|Mk(ξ)| ≤ (8C2
0C1(1 + k)2T+1)N <∼ (1 + k)(2T+1)N .
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Finally,∑
ν∈N

(
1 + qbν (ξ − bν)

)−m
≤ |M1(ξ)|+

∞∑
k=1

(1 + k)−m
∣∣∣Mk+1(ξ) \Mk(ξ)

∣∣∣
<∼ 1 +

∞∑
k=1

(1 + k)−m+(2T+1)N ≤M,

if m > (2T + 1)N + 1. �

Let

dν(ξ) = 1 + qbν (bν − ξ), ν ∈N , ξ ∈ X?.

Proposition 4.5. We have(
1 + qξ(ξ − bν)

) 1
T+1 <∼ dν(ξ) <∼

(
1 + qξ(ξ − bν)

)T+1

uniformly in ξ and ν.

Proof. In fact,

1 + qξ(ξ − bν) <∼ 1 + qbν (bν − ξ)
(

1 + qbν (bν − ξ)
)T
≤ dν(ξ)T+1,

for ξ ∈ X?. The other inequality is proved in a similar way. �

Let

dνµ = max
{
dν(bµ), dµ(bν)

}
.

Corollary 4.6. We have

dνµ
<∼ dν(ξ)2T+1dµ(ξ)2T+1

uniformly for ν, µ and ξ.

Proof. In fact,

(4.7) 1 + qξ(bν − bµ) ≤
(

1 + qξ(ξ − bν)
)(

1 + qξ(ξ − bµ)
)
,

so, by (4.7) and Proposition 4.5,

dν(bµ) = 1 + qbν (bν − bµ) <∼
(

1 + qξ(bν − bµ)
)(

1 + qbν (bν − ξ)
)T

<∼
(

1 + qξ(ξ − bν)
)(

1 + qξ(ξ − bµ)
)
dν(ξ)T

<∼ dν(ξ)T+1dµ(ξ)T+1dν(ξ)T <∼ dν(ξ)2T+1dµ(ξ)2T+1.

Our claim follows by symmetry. �

5. The Melin operator

We specify the abstract structure of X. From now on X = g is a homoge-
neous Lie algebra with the Campbell-Hausdorff multiplication (see Corwin-
Greenleaf [3])

(5.1) xy = x+ y + P (x, y),

where P is a polynomial mapping with non-zero terms of order at least 2.
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We assume there is a fixed family of automorphic dilations on g. By
definition, dilations of a Lie algebra are automorphisms of the form

δt = tP , t > 0,

where P : g→ g is a diagonalizable linear operator with positive eigenvalues

0 < p1 ≤ p2 ≤ · · · ≤ pN ,

listed along with their multiplicities. We assume that p1 ≥ 1. If D = {pkj}
is a complete set of pairwise different eigenvalues, then

g =
⊕
j

g(kj),

where

[g(ki), g(kj)] ⊆

{
g(ks), if pki + pkj = pks ,

{0}, if pki + pkj 6∈ D.

Let {ek}Nk=1 be a basis of eigenvectors for P. Of course, there is some freedom
in the choice of such a basis. However, once we have chosen and fixed one,
we may apply the notation of Section 2.

The mapping P commutes with the dilations, that is,

(5.2) P (δtx, δty) = δtP (x, y),

so the dilations are also automorhisms of the group. We also have

(5.3) DxkPj(x, y) = DykPj(x, y) = 0, j ≤ k,

where Pj(x, y) = 〈P (x, y), e?j 〉. From

−x− y − P (x, y) = −xy = (xy)−1 = y−1x−1

= −y − x+ P (−y,−x),

one gets P (x, y) = −P (−y,−x), which in turn implies

(5.4) DxkPj 6= 0 iff DykPj 6= 0.

Definition 5.5. We define≺ as the smallest order inN such thatDxkPj 6= 0
or, equivalently, DykPj 6= 0 implies k ≺ j (cf. (5.4)).

Remark 5.6. The partial order ≺ is determined by our choice of basis and
is by no means canonical.

Lemma 5.7. An integer k ∈ N is maximal if and only if the basis vector
ek is central in g.

Proof. In fact, suppose that k is maximal and let x ∈ g. Since DxkPj(x, y) =
DykPj(x, y) = 0, for j > k, it follows that Pj(x, ek) = Pj(ek, x) = 0, for
every j ∈ N . Therefore, xek = x + ek = ekx. The converse implication is
trivial. �

Lemma 5.8. Let N = {Nk}k∈N be a filtration in N . Let gk be the linear
subspace of g generated by the vectors ej, j ∈ Nk. Then, gk is an ideal in g.
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Proof. Let j ∈ Nk. By the Campbell-Hausdorff formula, for any l, s ∈ N ,

λs = 〈[el, ej ], e?s〉 = 2DxlDyjPs(0, 0).

If λs 6= 0, then s � j, hence s ∈ Nk. Therefore,

[el, ej ] =
∑
s∈Nk

λses ∈ gk.

�

Example 5.9. Let g be the 6-dimensional Lie algebra with a basis {ek}6k=1
and the nonzero commutators

[e1, e2] = e4, [e1, e5] = e6, [e2, e3] = e5, [e3, e4] = −e6.

As automorphic dilations one can take

δt(x) = (tx1, tx2, tx3, t
2x4, t

2x5, t
3x6).

If

X =

6∑
j=1

xjej , Y =
6∑

k=1

ykek,

then

[X,Y ] = (x1y2 − x2y1)e4 + (x2y3 − x3y2)e5

+ (x1y5 − x5y1 − x3y4 + x4y3)e6,

and

[X, [X,Y ]] = (x1x2y3 − x1x3y2 − x3x1y2 + x3x2y1)e6,

so, by the Campbell-Hausdorff formula,

P (x, y) =
1

2
[X,Y ] +

1

12

(
[X, [X,Y ]] + [Y, [Y,X]]

)
=

6∑
j=1

Pj(x, y)ej ,

where

P1(x, y) = P2(x, y) = P3(x, y) = 0,

P4(x, y) =
1

2
(x1y2 − x2y1),

P5(x, y) =
1

2
(x2y3 − x3y2),

P6(x, y) =
1

2
(x1y5 − x5y1 − x3y4 + x4y3)

+
1

12
(x1x2y3 − x1x3y2 − x3x1y2 + x3x2y1

+ y1y2x3 − y1y3x2 − y3y1x2 + y3y2x1).

Then,

q1(ξ) = 1 + |ξ4|1/2 + |ξ6|1/3, q2(ξ) = 1 + |ξ4|1/2 + |ξ5|1/2 + |ξ6|1/3,

q3(ξ) = 1 + |ξ5|1/2 + |ξ6|1/3, q4(ξ) = q5(ξ) = 1 + |ξ6|1/3, q6(ξ) = 1.

�
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Definition 5.10. We define the Melin operator on g? × g? by

(5.11) Uf(ξ) =

∫∫
g×g

e−i〈x+y,ξ〉e−i〈P (x,y),ξ〉f∨(x, y)dxdy,

for f ∈ S(g? × g?).

By a linear differential operator on g? with polynomial coefficients we
understand a differential operator of the form

Lf(ξ) =
∑
α

pα(ξ)Dαf(ξ), f ∈ C∞(g?),

where pα are polynomials and the sum is finite. If f is a differentiable
function on g? × g? we write Dξf = D1f and Dηf = D2f for the partial
derivatives with respect to the variable (ξ, η) ∈ g? × g?.

Lemma 5.12. For every linear differential operator L with polynomial co-
efficients on g?, there exists a finite number of operators Lk of the same type
on g? × g? such that

|LUf(ξ)| <∼
∑
k

‖Lkf‖A(g?×g?), f ∈ S(g? × g?), ξ ∈ g?,

where

‖f‖A(g?×g?) =

∫∫
g×g
|f∨(x, y)|dxdy.

Consequently, the mapping U : S(g? × g?)→ S(g?) is continuous.

Proof. Let

P 1
j,k(x, y) = DxkPj(x, y), P 2

j,k(x, y) = DykPj(x, y)

and

D1
j,k = P 1

j,k(iDξ, iDη) D2
j,k = P 2

j,k(iDξ, iDη).

Directly from (5.11) one obtains

ξkU(f)(ξ) = U(T 1
k f)(ξ)−

∑
j�k

ξjU
(
D1
j,kf

)
(ξ)(5.13)

= U(T 2
k f)(ξ)−

∑
j�k

ξjU
(
D2
j,kf

)
(ξ),

where

T 1
k f(ξ, η) = ξkf(ξ, η), T 2

k f(ξ, η) = ηkf(ξ, η).

We also have

(5.14) DkUf(ξ) = U(Dkf)(ξ),

where

Dk = Dξk +Dηk − iPk(iDξ, iDη).

By iteration of (5.13) and (5.14), for every linear differential operator L
with polynomial coefficients, there exist operators Lk of the same type such
that

|LU(f)(ξ)| ≤
∑
k

|U(Lkf)(ξ)|.
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By (5.11),

|U(f)(ξ)| ≤
∫∫

g×g
|f∨(x, y)|dxdy = ‖f‖A(g?×g?),

for f ∈ S(g? × g?) and ξ ∈ g?. Therefore,

|LU(f)(ξ)| ≤
∑
k

‖Lkf‖A(g?×g?).

�

Lemma 5.15. Let g ∈ G. For every α ∈ AN ,

Dα =
∑

p(A)+p(B)=p(α)

gα≤gAgB

cABD
A
ξ D

B
η ,

where
Dα = Dα1

1 D
α2
2 . . .DαNN ,

and the symbols gα have been defined in (3.13).

Proof. It is not hard to see that if the assertion holds for α and β, then
it holds for α + β as well. Therefore, it is sufficient to prove it for single
derivatives Dk. We have

Dk =
∑

p(A)+p(B)=pk

cABD
A
ξ D

B
β .(5.16)

If cAB 6= 0, then Aj = Bj = 0 unless j � k. The sequence gj is decreasing,
so

gpkk = g
p(A)
k g

p(B)
k ≤ gAgB.

�

6. Estimates for the basic metric

In this section we only consider the basic metric q.

Lemma 6.1. Let {Bν}ν∈N be the covering of Proposition 4.1. Then,

|U(f)(ξ)| <∼ |f |
q⊕q
N+1, f ∈ C∞c (Bν ×Bµ),

uniformly in ν, µ.

Proof. We have

|U(f)(ξ)| <∼
∫∫

g×g
|f∨(x, y)|dxdy =

∫∫
g×g
|F∨(x, y)|dxdy,

where
F (ξ, η) = f(bν + ∆νξ, bµ + ∆µη)

and ∆ν is as in (4.4). Note that

qbν (∆νξ) = ‖ξ‖,
hence F is supported in the product K ×K, where

K = {ξ ∈ g? : ‖ξ‖ < 1}.
By the Sobolev inequality (10.1),

|U(f)(ξ)| ≤ max
|α|+|β|≤N+1

‖Dα
ξD

β
ηF‖L2(g?×g?),
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where

‖Dα
ξD

β
ηF‖2L2(g?×g?) =

∫
K

∫
K
|Dα

ξD
β
ηF (ξ, η)|2dξdη

=

∫
K

∫
K

qα(bν)2qβ(bµ)2|Dα
ξD

β
η f(bν + ∆νξ, bµ + ∆µη)|2dξdη.

Recall that, by (3.10),

qα(bν) ≈ qα(bν + ∆νξ),

for bν + ∆νξ ∈ Bν . Thus,

‖Dα
ξD

β
ηF‖2L2(g?×g?)

<∼
∫
K

∫
K
|f |q⊕qN+1(bν + ∆νξ, bµ + ∆µη)2dξdη

<∼
(
|f |q⊕qN+1

)2
.

�

Let

dν,k(ξ) = 1 +
∑
j�k

|ξj − (bν)j |
qj(bν)

, ξ ∈ X?.

By Corollary 3.11, there exists R > 0 such that, for every k ∈ N ,

(6.2)

(
q̃k(ξ)

q̃k(bν)

)±1
<∼ dν,k(ξ)

R.

Recall that the functions q̃k have been defined in Corollary 3.11.

Proposition 6.3. For every L ∈ N , there exists s0 > 0 such that, for all
ν, µ,

|Uf(ξ)| <∼ dν(ξ)−Ldµ(ξ)−L|f |q⊕qs0 , ξ ∈ g?,

if f ∈ C∞c (Bν ×Bµ).

Proof. For the sake of the proof we refine our claim:

For every L ∈N and every 1 ≤ k ≤ N , there exists sk > 0 such that, for
all ν, µ,

(6.4) |Uf(ξ)| <∼ dν,k(ξ)
−Ldµ,k(ξ)

−L|f |q⊕qsk
.

Once we prove (6.4) for all minimal k ∈ N , our claim will follow. We
proceed by induction starting with maximal k. If k is maximal in N , then,
by (5.13),

ξk − (bν)k
qk(bν)pk

Uf(ξ) = U
(T 1

k − (bν)k
qk(bν)pk

f
)

(ξ),

where ∣∣∣∣T 1
k − (bν)k
qk(bν)pk

f

∣∣∣∣ ≤ |f |, f ∈ C∞c (Bν ×Bµ),

so our claim is reduced to that of Lemma 6.1. Otherwise, assume that, for
any j � k, any L1, L2 ∈N , and some s > 0,

(6.5) |Uf(ξ)| <∼ C(ξ)|f |q⊕qs ,
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where

C(ξ) =

(
1 +
|ξk − (bν)k|
qk(bν)

)−M1
(

1 +
|ξk − (bµ)k|
qk(bµ)

)−M2

dν,j(ξ)
−L1dµ,j(ξ)

−L2 .

The inductive step consists in showing that (6.5) implies that, for every
j � k, there exists s′ such that

(6.6)
|ξk − (bν)k|
qk(bν)

|Uf(ξ)| <∼ C1(ξ)|f |q⊕qs′

and

(6.7)
|ξk − (bµ)k|
qk(bµ)

|Uf(ξ)| <∼ C1(ξ)|f |q⊕qs′ ,

where

C1(ξ) = dν,j(ξ)
2Rdµ,j(ξ)

2RC(ξ),

for some m1, R > 0. Since the cases (6.6) and (6.7) are almost identical, let
us only consider the first one.

By (5.13),

ξk − (bν)k
qk(bν)pk

Uf(ξ) = U
(T 1

k − (bν)k
qk(bν)pk

f
)

(ξ)(6.8)

−
∑
j�k

ξj
qk(bν)pk

U
(
D1
j,kf

)
(ξ)(6.9)

= U(fν,k)(ξ)−
∑
j�k

ξj
qk(bν)pk

U(D1
j,kf)(ξ).(6.10)

Note that, by (6.5),

|Ufν,k(ξ)| <∼ C(ξ)

∣∣∣∣Tk − (bν)k
qk(bν)pk

f

∣∣∣∣q⊕q
s′

<∼ C(ξ)|f |q⊕qs .

To prove (6.6), it is, therefore, sufficient to estimate each of the terms

Uk,j(ξ) =
ξj

qk(bν)pk
U(D1

k,jf)(ξ).

Note that, by (5.16),

D1
j,k =

∑
p(α)+p(β)=pj−pk

cαβD
α
ξD

β
η .

Therefore, by (6.5), there exists s′ > 0 such that

|U(D1
j,kf)(ξ)| <∼ |D1

j,kf |q⊕qs

<∼ C(ξ)|f |q⊕qs′

∑
p(α)+p(β)=pj−pk

qα(bν)−1qβ(bµ)−1,

where αr = βr = 0 unless r ≺ j. Therefore,

qα(bν)−1 <∼ q̃j(bν)−p(α), qβ(bµ)−1 <∼ q̃j(bµ)−p(β).

By (6.2),

|U(D1
j,kf)(ξ)| <∼ C(ξ)|f |q⊕qs′ q̃j(ξ)

pk−pjdν,j(ξ)
R/2dµ,j(ξ)

R,
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for some R > 0, so that

|Uk,j(ξ)| <∼ C(ξ)|f |q⊕qs′
|ξj |

qk(bν)pk
q̃j(ξ)

pk

q̃j(ξ)pj
dν,j(ξ)

R/2dµ,j(ξ)
R

= C(ξ)|f |q⊕qs′
|ξj |

q̃j(ξ)pj
q̃j(ξ)

pk

qk(ξ)pk
dν,j(ξ)

Rdµ,j(ξ)
R.

Now,

|ξj | <∼ q̃j(ξ)
pj , q̃j(ξ)

<∼ qk(ξ),

hence

|Uk,j(ξ)| <∼ C1(ξ)|f |q⊕qs′ .

The proof is complete. �

Corollary 6.11. Let m1,m2 be q-weights on g? and let m = m1 ⊗m2.
Let s0 > 0 be as in Proposition 6.3. For every s > 0 and every L ∈N ,

(6.12) |Uf |m1m2
s (ξ) <∼ |f |ms0+sdν(ξ)−Ldµ(ξ)−L

if f ∈ C∞c (Bν ×Bµ). The estimate is uniform in ν, µ.

Proof. Let C be a multiindex with p(C) ≤ s. Then, by Lemma 5.15,

|DCUf(ξ)| = |U(DCf)(ξ)| <∼
∑

p(A)+p(B)≤s
qC≤qAqB

|U(DA
1 D

B
2 f)(ξ)|.

By Proposition 6.3,

|U(DA
1 D

B
2 f)(ξ)| <∼ dν(ξ)−Ldµ(ξ)−L|DA

1 D
B
2 f |q⊕qs0

<∼ dν(ξ)R−Ldµ(ξ)R−L|f |m,q⊕q
s0+s m1(ξ)m2(ξ)qA(ξ)−1qB(ξ)−1,

<∼ dν(ξ)R−Ldµ(ξ)R−L|f |m,q⊕q
s0+s m1(ξ)m2(ξ)qC(ξ)−1,

which implies

|Uf |m1m2,q
s (ξ) <∼ |f |

m,q⊕q
s0+s dν(ξ)R−Ldµ(ξ)R−L.

�

Recall that the numbers T and dνµ have been defined respectively in
Proposition 3.12 and just before Proposition 4.6.

Corollary 6.13. For every L > 0, there exists s > 0 such that

‖U(f)‖A(g?)
<∼ |f |q⊕qs d−Lνµ , f ∈ C∞c (Bν ×Bµ),

uniformly in ν, µ.

Proof. Let

F (ξ) = Uf(∆νξ), ξ ∈ X?, ν ∈N ,

where ∆ν is as in (4.4).Then,

‖Uf‖A(X?) = ‖F‖A(X?),

and, by (10.1),

‖Uf‖A(X?)
<∼ max
|α|≤N/2+1

‖DαF‖L2(X?),
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where

|DαF (ξ)| = qα(bν)|(DαUf)(∆νξ)|

<∼
(

1 + qbν (bν −∆νξ)
)p(α)T

qα(∆νξ)|(DαUf)(∆νξ)|
<∼ dν(∆νξ)

R|Uf |qr (∆νξ),

for sufficiently large R, r > 0. Let

L1 = L(2T + 1) +
N + 1

2
+R, L2 = L(2T + 1).

By Corollary 6.11,

|DαF (ξ)| <∼ |f |
q⊕q
s0+rdν(∆νξ)

−L1+Rdµ(∆νξ)
−L2

<∼ |f |
q⊕q
s0+rdν(∆νξ)

−L(2T+1)dµ(∆νξ)
−L(2T+1)dν(∆νξ)

−N+1
2 .

By Corollary 4.6,

|DαF (ξ)| <∼ |f |
q⊕q
s0+rd

−L
νµ

(
1 +

N∑
k=1

∣∣∣∣ξk − (bν)k
qk(bν)pk

∣∣∣∣
)−N+1

2

,

so that, finally,

‖Uf‖A(X?)
<∼

∑
|α|≤N/2+1

‖DαF‖L2(X?)
<∼ |f |

q⊕q
s0+rd

−L
νµ .

�

7. Twisted multiplication and L2-multipliers

Let ϕν be the partition of unity of Proposition 4.1. For a function f ∈
S(g? × g?), let

fν,µ(ξ, η) = ϕν(ξ)ϕµ(η)f(ξ, η), ν, µ ∈N .

Recall that the weak convergence of linear and bilinear mappings has been
defined in Section 3 (see (3.15) and below).

Theorem 7.1. Let g ∈ G. Let m(ξ, η) = m1(ξ)m2(η), where m1,m2 are
weights on g?. The linear mapping U defined on the weakly dense subspace
S(g?×g?) of S(m,g⊕g) with values in S(g?) ⊆ S(m1m2,g) is weakly con-

tinuous. Consequently, it has a unique extension Ũ to a weakly continuous
linear mapping from S(m,g ⊕ g) into S(m1m2,g).

Proof. We begin with g = q. Let fn ∈ S(g? × g?) be weakly convergent in
S(m,q⊕ q) to 0. Then,

(7.2) Ufn =
∑
µ,ν

U(fn)ν,µ

in S(g?). By (6.12), for every s, such that

|Ufn|m1m2,q
s (ξ) ≤

∑
µ,ν

|U(fn)ν,µ|m1m2,q
s (ξ)

<∼
∑
ν,µ

|(fn)ν,µ|m,q⊕q
s0+s dν(ξ)−Ldµ(ξ)−L,(7.3)
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where L is so large that the series is convergent (see (4.2)). Thus,

(7.4) |Ufn|m1m2,q
s

<∼ |fn|
m,q⊕q
s0+s ,

which shows that the sequence Ufn is bounded in S(m1m2,q). The se-
ries (7.2) is absolutely pointwise convergent. Formula (7.3) with m = 0
implies that it is convergent uniformly in n. Therefore, the sequence Ufn
is pointwise convergent to 0. Being bounded, it is weakly convergent in
S(m1m2,q). This completes the first part of the proof.

Now, let g ∈ G. Let fn ∈ S(g? × g?) be weakly convergent to 0 in
S(m,g⊕g). Since g ≤ q, the sequence is weakly convergent in S(m,q⊕ q).
Therefore, by the first part of the proof, Ufn is convergent to 0 in the C∞-
toplology. It remains to show that it is bounded in S(m1m2,g).

Let α be a multiindex of length p(α) ≤ s. By (5.14) and Lemma 5.15,

m−1
1 m−1

2 gα|DαUf | = m−1
1 m−1

2 gα|U(Dαf)|
<∼
∑
A,B

(m−1
1 gA)(m−1

2 gB)|U(DA
ξ D

B
η )f | =

∑
A,B

n−1
A n−1

B |U(DA
ξ D

B
η )f |

<∼
∑
A,B

|U(DA
ξ D

B
η f)|nAnB ,q0 ,

where the summation is extended over A,B such that p(A) + p(B) = p(α),
and nA = g−Am1, nB = g−Bm2. By (7.4),

|U(DA
ξ D

B
η f)|nAnB ,q0

<∼ |DA
ξ D

B
η f |nA⊗nB ,q⊕qs0

= max
p(a)+p(b)≤s0

sup
ξ,η

m−1(gA ⊗ gB)(qa ⊗ qb)|Da
ξD

b
ηD

A
ξ D

B
η f |

<∼ max
p(a)+p(b)≤s0

sup
ξ,η

m−1(gA+a ⊗ gB+b)|DA+a
ξ DB+b

η f |

≤ |f |m,g⊕g
s0+s .

We have taken advantage of the fact that qβ ≤ gβ. Thus,

|Uf |g,m1m2
s

<∼ |f |
m,g⊕g
s0+s ,

which shows that the sequence Ufn is bounded in S(m1m2,g).
�

Remark 7.5. The extension Ũ will be still denoted by U.

The twisted product of f, g ∈ S(g?) is defined by

(7.6) f#g(ξ) = (f∨ ? g∨)∧(ξ), ξ ∈ g?.

It is checked directly that

(7.7) f#g(ξ) = U(f ⊗ g)(ξ), f, g ∈ S(g?).

As an immediate application of Theorem 7.1 and (7.7) we obtain the
following extension of the twisted product.

Corollary 7.8. Let g ∈ G. Let m1,m2 be g-weights on g?. The twisted
product (f, g) 7→ f#g defined for Schwartz functions on g? extends uniquely
to a weakly continuous bilinear mapping

S(m1,g)× S(m2,g) 3 (f, g) 7→ f#g ∈ S(m1m2,g),
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denoted by the same symbol #.

Proof. The mapping

S(m1,g)× S(m2,g) 3 (f, g) 7→ f ⊗ g ∈ S(m1 ⊗m2,g ⊕ g)

is obviously weakly continuous. Thus, our claim follows from Theorem 7.1.
�

Definition 7.9. Let Nmax be the set of maximal elements in N . Denote
by z = 〈ek〉k∈Nmax the linear subspace of g spanned by the vectors ek such
that k ∈ Nmax. By Lemma 5.7, z is a subspace of the centre of g. Let
N0 = N \Nmax. Let g0 = 〈ek〉k∈N0 . Let z? = 〈e?k〉k∈Nmax and g?0 = 〈e?k〉k∈N0 .

Recall that M(q) denotes the set of all q-weights. Let

S(q) =
⋃

m∈M(q)

S(m,q).

Note that, for every g ∈ G and every weight m, S(m,g) ⊆ S(q). A sequence
an in S(q) is said to be weakly convergent if it is weakly convergent in one
of the spaces S(m,g).

Assume that M∧ ∈ C∞(g?) is symmetric, depends only on the z?-variable,
and

M∧(ξ) =

{
0, R(ξ) ≤ 1/2,

1, R(ξ) ≥ 1,

where R(ξ) = mink∈Nmax |ξk|1/pk . Then, M is a central S-convolver (see
(10.8) and (10.9)) and

(M ?K)∧ = M∧K∧,

for every K ∈ S ′(g). Let also

(7.10) S0(g) = {f ∈ S(g) : ∃δ>0 f̂(ξ) = 0 for R(ξ) < δ}.
This space is dense in L2(g).

Recall the Cotlar-Stein lemma (see Stein [19], Chapter VII, 2.1 and 5.3).

Lemma 7.11. Let Tν be a sequence of bounded linear operators on a Hilbert
space. Suppose there exists a constant C > 0 such that∑

ν

‖TνT ?µ‖1/2 ≤ C,
∑
ν

‖T ?ν Tµ‖1/2 ≤ C.

Then, the series
∑

ν Tν is strongly convergent.

Let

H? = {ξ ∈ g? : ∃k∈Nmax ξk = 0}.

Theorem 7.12. Let K ∈ S ′(g) be such that K̂ is locally integrable, smooth
away from H?, and satisfies the estimates

|DαK̂(ξ)| ≤ Cα
∏
k∈N0

Nk(ξ)
−pkαk , ξ /∈ H?,

where Nk(ξ) =
∑

j�k |ξj |1/pj with the ordering ≺ of Definition 5.5. Then,

‖f ? K‖L2(g)
<∼ CK‖f‖L2(g), f ∈ C∞c (g),
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where CK depends on a finite number of constants Cα. Thus, the operator
f 7→ f ? K extends to a bounded operator on L2(g).

Proof. Let us assume first that K̂ ∈ S(1,q). This part of the proof is

based on the Cotlar-Stein lemma. Let a = K̂. We write a =
∑

ν aν , where
aν(ξ) = a(ξ)ϕν(ξ) and {ϕν} is the partition of unity of Proposition 4.1 for
the metric q. Let Tf = f#a and Tνf = f#aν . By Corollary 6.13, there
exists s > 0 such that

(7.13) ‖TνT ?µ‖ ≤ ‖(aν#āµ)∨‖L1(g)
<∼ (|a|qs )2d−2N−1

νµ ,

which implies ∑
ν

‖TνT ?µ‖1/2 ≤ C,

for some C > 0. By replacing a by ā, we get analogous estimate for
‖T ?ν Tµ‖1/2.

Our argument so far shows that, by the Cotlar-Stein lemma, the series is
convergent in the strong sense. Thus, the operator

∑
ν Tν is bounded. Since

Tνf = f ? Kν , K̂ν = aν ,

and, obviously, K =
∑

ν Kν in the sense of distributions, we get∑
ν

Tνf = Tf = f ? K,

for f ∈ S(g). The norm of T is bounded by CK = C.
We turn to the general case. It is not hard to see that M ?K has Fourier

transform in S(1,q). Note that, for every f ∈ S0(g), there exists t > 0 such
that

ft = ft ? M, ft(x) = t−Qf(δt−1x).

Therefore,

‖f ? K‖L2(g) = tQ/2‖ft ? Kt‖L2(g)

= tQ/2‖(ft ? M) ? Kt‖L2(g) = tQ/2‖ft ? (M ?Kt)‖L2(g),

where M ?Kt satisfies the estimates of Theorem 7.12 with constants <∼ Cα
independently of t. Consequently,

‖f ? K‖L2(g)
<∼ CtQ/2‖ft‖L2(g) = C‖f‖L2(g),

which proves our case. �

Remark 7.14. When g is a two step nilpotent Lie algebra, then Theorem
7.12 reduces to the simplest version of the Calderón-Vaiilancourt theorem
for the class S0

0,0 of symbols. (See Stein [19], chapter VII, 2.4.)

8. Convolution of N-kernels

We have defined the twisted multiplication by (7.6) for f, g ∈ S(g?), and
then extended it to the elements of our symbol classes. On the other hand
the convolution on g can be also extended to various types of distributions.
The most obvious case is when one of the distributions has compact support.
A general definition of convolvable distributions due to Chevalley [1] is given
in Definition 10.3.
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Proposition 8.1. i) If a ∈ S(q) and f ∈ S(g?), then

a#f, f#a ∈ S(g?).

ii) If a, b ∈ S(q) and f ∈ S(g?), then

〈a#b, f〉 = 〈a, f#b̃〉 = 〈b, ã#f〉.

iii) Let T̂ ∈ S(q) and f ∈ S(g). Then,

(T ? f)∧ = T̂#f̂ , (f ? T )∧ = f̂#T̂ .

iv) Let Ŝ, T̂ ∈ S(q). Then,

(S ? T )∧ = Ŝ#T̂ .

Remark 8.2. By i) and iii), every distribution T such that T̂ ∈ S(q) is an
S-convolver (see (10.8)). Therefore, by (10.9), iv) makes sense.

Proof of (8.1). i) Let a ∈ S(m,q) for a q-weight m. For every m > 0,
f ∈ S(m−1(1 + ρ)−m,q). By Corollary 7.8, a#f, f#a ∈ S((1 + ρ)−m,q).
Since m is arbitrary a#f, f#a ∈ S(g?).

ii) This is obvious by weak approximation.
iii) We have

〈(T ? f)∧, ϕ〉 = 〈T ? f, ϕ∨〉 = 〈T, ϕ∨ ? f̃〉,

whence

〈(T ? f)∧, ϕ〉 = 〈T̂ , ϕ#(f̂)∼〉 = 〈T̂#f̂ , ϕ〉.
iv) Similarly,

〈(S ? T )∧, ϕ〉 = 〈S ? T, ϕ∨〉 = 〈S, ϕ∨ ? T̃ 〉,

whence, by iii) and ii),

〈(S ? T )∧, ϕ〉 = 〈Ŝ, ϕ#
˜̂
T 〉 = 〈Ŝ#T̂ , ϕ〉.

�

The concept of an N-kernel we are about to introduce is independent of
the group structure. To underscore this fact we return for a while to the
setting of the vector space X and its dual X?.

Let N = {Nk}k∈N be a closed filtration in N (cf. Section 3). Recall that
a filtration determines a set of partial homogeneous norms

Nk(ξ) =
∑
j∈Nk

|ξj |1/pj , k ∈ N , ξ ∈ X?,

and the metric

gξ(η) =
∑
k∈N

|ηk|
(1 +Nk(ξ))pk

, ξ, η ∈ X?,

which is in the class G. If M ∈ AR, then, by Proposition 3.18,

mM (ξ) =
∏
k∈N

(1 +Nk(ξ))
mk

is a weight.
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We say that a finite set ∅ 6= J ⊆ AR of multiindicesM = (m1,m2, . . . ,mN )
is admissible if ∑

M∈I
mj > −pj/2, j ∈ N ,

for every ∅ 6= I ⊆ J . If a singleton {M} is admissible, we just say that M
is admissible.

Definition 8.3. For a closed filtration N and an admissible multiindex
M = (m1,m2, . . . ,mN ), we denote by FM (N) the class of all K ∈ S ′(g)

such that K̂ is locally integrable, smooth away from H? (see below), and
satisfies

(8.4) |DαK̂(ξ)| <∼
∏
k∈N

Nk(ξ)
mk−pkαk , α ∈ AN , ξ ∈ g? \H?.

Let also

‖K‖FM ,j = max
p(α)≤j

sup
ξ∈X?\H?

∏
k∈N

Nk(ξ)
−mk+pkαk |DαK̂(ξ)|.

Note that

(8.5) ‖Kt‖FM ,j = tσ(M)‖K‖FM ,j , t > 0,

where
〈Kt, f〉 = 〈K, f ◦ δt〉, σ(M) =

∑
k∈N

mk.

Remark 8.6. Recall that H? is the set of all ξ ∈ X? such that ξk = 0 for

some k ∈ Nmax. By (10.2), K̂ is in fact smooth and satisfies the estimates
(8.4) outside the set

H?
N = {ξ ∈ X? : ∃k∈N Nk(ξ) = 0} ⊆ H?.

Remark 8.7. If K ∈ FM (N), then K̂ is locally square-integrable.

Remark 8.8. If K,L ∈ FM (N) and

〈K, f〉 = 〈L, f〉, f ∈ S0(X),

then K = L. The space S0(X) has been defined by (7.10).

Remark 8.9. Let N be a closed filtration. The classes FM (N) and SM (N) =
S(mM ,gN) (see Proposition 3.18) are related in a formally similar way as
the classes of flag kernels and truncated flag kernels in Nagel-Ricci-Stein-
Wainger [16], Definition 6.20. Note, however, the difference. One relation-
ship is expressed in terms of Fourier transforms, the other in terms of the
kernels themselves.

Example 8.10. Assume that N > 1. Let

k0 = 1 < k1 < · · · < kr < kr+1 = N + 1.

If kl ≤ k < kl+1, let
Nk = {j ∈ N : j ≥ kl}.

This is a closed filtration. Note that the linear space generated by {ej}j∈Nk
is an algebra. The class F 0(N) is exactly the class of flag kernels of Nagel-
Ricci-Stein [15] or Nagel-Ricci-Stein-Wainger [16] corresponding to the flag

{0} ⊆ 〈ej〉j<k1 ⊆ . . . ⊆ 〈ej〉j<kl ⊆ . . . ⊆ 〈ej〉j≤N = X.
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In particular, when r = 0, we get Nk = N , for every k. Then, the flag
kernels become Calderón-Zygmund kernels.

Example 8.11. Let N = {Nk}, where, for every k ∈ N ,

Nk = {j ∈ N : j � k}.
This is a closed filtration and F 0(N) is the class of Lp-multiplier kernels
of Theorem 9.1 below. The filtration N is minimal in the sense that if
M = {Mk} is a closed filtration, then Nk ⊆Mk, for every k ∈ N .

Definition 8.12. Let N be a closed filtration and M ∈ AR an admissible
multiindex. Let g = gN and m = mM . A sequence Kν ∈ S ′(g) will be
called an (N,M)-approximate sequence if it is convergent in S ′(g) and the
sequence

aν = νσ(M)(Kν)∧ ◦ δ1/ν ∈ S(m,g)

is bounded.

Lemma 8.13. Let K ∈ FM (N), where N is a closed filtration and M is
admissible. Then there exists a (N,M)-approximate sequence Kν convergent
to K in S ′(X).

Proof. Let X?
k be the linear subspace of X? generated by {e?j}j∈Nk . Denote

by ξ(k) = (ξj)j∈Nk the variable in X?
k . Note that Nk is a homogenous norm

in X?
k . Let ψk ∈ C∞(g?k) be equal to 0 for Nk(ξ(k)) ≤ 1/2 and equal to 1 for

Nk(ξ(k)) ≥ 1. For every ν ∈N \ {0}, let

(Kν)∧(ξ) = ψ1(δνξ(1))ψ2(δνξ(2)) . . . ψN (δνξ(N))K̂(ξ), ξ ∈ X?.

Then, for every ν and every k ∈ N , Nk(ξ) ≈ 1/ν on the support of K̂ν .
Therefore,

aν = νσ(M)(Kν)∧ ◦ δ1/ν ∈ S(m,g)

and
|aν |m,g

s
<∼ ‖K‖FM ,s, s ∈N .

Now, K̂ and (Kν)∧ are uniformly locally square-integrable, uniformly

polynomially bounded, and (Kν)∧(ξ)→ K̂(ξ) pointwise almost everywhere.

Therefore, (Kν)∧ → K̂ in S ′(X?) which is equivalent to Kν → K in S ′(X).
�

We return to the Lie algebra setting.

Proposition 8.14. Let M ∈ AR be admissible and let N be a closed filtra-
tion. Let Kν be a (N,M)-approximate sequence convergent to K ∈ S ′(g).

Then, (Kν)∧ is convergent in C∞(g? \H?) to K̂ and K ∈ FM (N). More-
over, for every ϕ ∈ S(g), K ? ϕ ∈ L2(g) and Kν ? ϕ→ K ? ϕ in L2(g).

Proof. We have

|DαK̂ν(ξ)| <∼
∏
k∈N

Nk(ξ)
mk−pkαk

uniformly in ν and ξ ∈ g? \ H?. Therefore, by the Ascoli theorem, DαK̂ν

converges uniformly, for every α, on every compact subset of g? \H?. Since

K̂ν → K̂ in the sense of distributions, the C∞-limit must be equal to K̂.
Consequently, K ∈ FM (N).
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For M ′ = (m′1,m
′
2, . . . ,m

′
N ) ∈ AR, we let

m′(ξ) =
∏
k∈N

(1 +Nk(ξ))
m′k , ξ ∈ g?.

Let ϕ ∈ S(g). Then, for every M ′ ∈ (−∞, 0]N , ϕ̂ ∈ S(m′,g). By Corollary
7.8,

(Kν ? ϕ)∧ ∈ S(m′,g).

Let 0 < ε < 1/2. There exist multiindices M ′ with m′k ≤ 0 such that
mk +m′k = −pk/2 + εk, where εk = ±ε. Thus,

|(Kν ? ϕ)∧(ξ)| <∼
∏
k∈N

γ
(
Nk(ξ)

)ε
Nk(ξ)

−pk/2, ξk 6= 0,

where γ(t) = min(t, t−1), which shows that the sequence Fν = (Kν ? ϕ)∧ is
dominated by a square-integrable function. Furthermore, Fν is convergent
in C∞(g? \ H? (cf. the first part of the proof), hence almost everywhere.
By the Lebesgue theorem, we conclude that Fν is convergent in L2(g?) to
(K ? ϕ)∧, which implies our assertion. �

Theorem 8.15. Let N be a closed filtration. Let K ∈ FM1(N), L ∈
FM2(N), where the set {M1,M2} of multiindices is admissible. Then the
distributions K and L are convolvable and K ? L ∈ FM1+M2(N).

Proof. By Propositions 8.14 and 10.4, K and L are convolvable. Let Kν

and Lν be the approximate sequences converging to K and L, respectively.
Then, by Theorem 7.1, the sequence

Ûν = K̂ν#L̂ν ∈ S(m1m2,g)

is bounded. This implies that the distributions Uν are equicontinuous in
S ′(g). Once we show that Uν is convergent to K ? L in S ′(g), we shall
be able to conclude that Uν is an (M1 +M2,N)-approximate sequence and
K ? L ∈ FM1+M2(N).

Let f, g ∈ S(g). By Proposition 10.4,

〈Uν , f ? g〉 =

∫
g
K̃ν ? f(x)Lν ? g̃(x)dx,

where, by Proposition 8.14, K̃ν ? f → K̃ ? f and Lν ? g̃ → L ? g̃ in L2(g).
Therefore,

〈K ? L, f ? g〉 =

∫
g
K̃ ? f(x)L ? g̃(x)dx = lim

ν
〈Uν , f ? g〉,

which shows that, in fact, Uν → K ? L in S ′(g). Since the distributions Uν
are equicontinuous, it is sufficient to test the convergence on functions of
the form f ? g, where f, g ∈ S(g).

�

Corollary 8.16. Let N be a closed filtration. Let {M1,M2,M3} be an ad-
missible set of multiindices. If Kj ∈ FMj (N), 1 ≤ j ≤ 3, then

K1 ? (K2 ? K3) = (K1 ? K2) ? K3.
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Proof. By Theorem 8.15, all convolutions are legitimate. Let

KL = K1 ? (K2 ? K3), KR = (K1 ? K2) ? K3,

and Cjf = Kj ? f , for 1 ≤ j ≤ 3. It is not hard to see that Cj maps S0(g)
into S0(g), so

KL ? f = KR ? f, f ∈ S0(g).

Both sides are continuous functions, so

〈KL, f〉 = 〈KR, f〉, f ∈ S0(g),

which, by Remark 8.8, implies KL = KR. �

In our terminology a product kernel K is a distribution in F 0(N′), where
N ′k = {k}. This filtration is associated with the usual linear order in N .

Proposition 8.17. Let M ∈ AR be admissible. Let K be a Schwartz func-
tion regarded as a kernel in FM (N′). Then, there exists l > 0 such that

(8.18) |K(x)| <∼ ‖K‖FM ,l
N∏
k=1

|xk|−1−mk/pk , xk 6= 0, k ∈ N .

Proof. The case of product kernels is dealt with in Theorem 2.1.11 of Nagel-
Ricci-Stein [15]. The general case is very similar. �

Corollary 8.19. Let M ∈ AR be admissible and let N be a closed filtration.
Let K ∈ FM (N) be a continuous function. Then, there exists l > 0 such
that

|K(x)| <∼ ‖K‖FM ,l
N∏
k=1

|xk|−1−mk/pk , xk 6= 0.

Proof. By Lemma 8.13, there is no harm in assuming that K ∈ S(g) as long
as the estimates only depend on seminorms in FM (N). As in Proposition
8.17, we may regard K as a member of FM (N′) and get

|K(x)| <∼ ‖K‖FM (N′),l

N∏
k=1

|xk|−1−mk/pk , xk 6= 0, k ∈ N .

Since the filtration N is closed, ‖K‖Fm(N′),l ≤ ‖K‖Fm(N),l, which gives the
desired estimate. �

Remark 8.20. One could have defined admissible multiindices M as satis-
fying the weaker constraint mk > −pk, for k ∈ N . Thus we could have had
a broader class of convolvable kernels. However, what has been achieved is
sufficient for proving the multiplier theorem in the next section and spares
much additional work. Also, it is possible to obtain much better estimates
for a general K ∈ FM (N) than those of Corollary 8.19, but for the same
reason we do not want to go into details here. We hope to return to these
questions in the next paper.
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9. Lp-Multipliers

We turn to the main multiplier theorem. This part is strongly influenced
by Duoandikoetxea-Rubio de Francia [4].

Theorem 9.1. Let K ∈ S ′(g) be such that K̂ is locally integrable, smooth
away from H?, and satisfies the estimates

(9.2) |DαK̂(ξ)| ≤ Cα
N∏
k=1

Nk(ξ)
−pkαk , ξ /∈ H?,

where Nk(ξ) =
∑

j�k |ξj |1/pj and

H? = {ξ ∈ g? : ∃k∈Nmax ξk = 0}.

Then, for 1 < p <∞,

‖f ? K‖Lp(g) ≤ CK‖f‖Lp(g), f ∈ C∞c (g),

where CK depends on a finite number of constants Cα. Thus, f 7→ f ? K
extends to a bounded operator on Lp(g).

Having established the calculus of N-kernels, we just may invoke the ar-
gument from [10]. However, for the convenience of the reader, we give a
sketch of the proof.

Let Nk = {j ∈ N : j � k}, for k ∈ N , and N = {Nk}k∈N . Let gk be the
linear subspace of g generated by the vectors ej , where j ∈ Nk (see Lemma
5.8). By Dziubański [5], [6] and Lemma 7.2 of [10], for every k ∈ N , there
exists an even real Schwartz function ϕk on gk such that∫

gk

xαϕk(x)dx = 0, α ∈N |Nk|,

and ∫ ∞
0

(ϕk)t ? (ϕk)t ? f
dt

t
= f

in L2(gk). Recall that ϕt(x) = t−Qϕ(δt−1x). Let Φk = ϕk ⊗ δk, where δk is
the Dirac delta at 0 on g⊥k = 〈ej〉j /∈Nk .

Lemma 9.3. For every admissible M ∈ RN ,

Φ = Φ1 ? Φ2 ? · · · ? ΦN ∈ S(g) ∩ FM (N).

Proof. Let g be the metric on g? determined by the filtration N. Then,

for every k ∈ N and every r > 0, Φ̂k ∈ S(g−rk ,g). By Corollary 7.8,

Φ̂ ∈ S(m−r,g), where

m(ξ) = g1(ξ)g2(ξ) . . . gN (ξ) ≥ 1 + ρ(ξ), ξ ∈ g?,

which implies Φ̂ ∈ S(g?). Hence, Φ ∈ S(g).
If mk ≤ 0, for k ∈ N , then Φ ∈ S(g) implies Φ ∈ FM (N). Otherwise,

we need vanishing moments of ϕk. Let {ak}k∈N be an admissible set of
multiindices such that (ak)j = 0 for j /∈ Nk and σ(ak) = mk. If ϕk has

vanishing moments, then Φk ∈ F ak(N), so, by Theorem 8.15, Φ ∈ FM (N).
�
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The following proposition collects together the results described and proved
in [10], Sections 7 and 8. Even though the kernels considered in [10] are less
general, the proofs stay valid with just cosmetic changes.

Proposition 9.4. For T = (t1, t2, . . . , tN ) ∈ RN
+ , let

ΦT (x) = (Φ1)t1 ? (Φ2)t2 ? . . . (ΦN )tN (x), x ∈ g.

1) For every admissible M ∈ RN , ΦT ∈ FM (g), and

‖ΦT ‖FM ,l <∼
N∏
k=1

tmkk , l ∈N ,

uniformly in T ∈ RN
+ ;

2) For f, g ∈ L2(g),

〈f, g〉 =

∫
RN

+

〈f ? ΦT , g ? ΦT 〉
dT

|T |
,

where
dT

|T |
=
dt1dt2, . . . , dtN
t1t2 . . . tN

;

3) The Littlewood-Paley operator

GΦ(f)(x) =

(∫
RN

+

|f ? ΦT (x)|2 dT
|T |

)1/2

is of type (p, p), for every 1 < p <∞.

For T, S ∈ RN
+ , let TS = (t1s1, t2s2, . . . , tNsN ). Let

KT,S = Φ̃TS ? K ? ΦT , T, S ∈ RN
+ ,

and

K?Sf(x) = sup
T
|f ? KT,S(x)|, S ∈ RN

+ .

Note that, by Proposition 8.14 and Lemma 9.3, KT,S is a continuous and
square-integrable function. Let us also define

γ(T ) =

N∏
k=1

γ(tk), T = (t1, t2, . . . , tN ) ∈ RN
+ ,

where γ(t) = min{t, t−1}. Let

F (x) =

N∏
k=1

γ(|xk|)1/4|xk|−1

and

FT (x) =

(∏
k∈N

t−pkk

)
F (δt−1

1
x1, δt−1

2
x2, . . . , δt−1

N
xN ),

for T = (t1, t2, . . . , tN ).
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Theorem 9.5 (Christ). The maximal operator

MF f(x) = sup
T
|f ? FT (x)|.

is of strong type (p, p), for 1 < p <∞.

For the proof, see Christ [2].

Proposition 9.6. Let 1 < p < ∞. Then, there exists l > 0 such that, for
every S and every T in RN

+ ,

|KT,S(x)| <∼ γ(S)1/4FT (x), x ∈ g,

and

‖K?Sf‖Lp <∼ γ(S)1/4‖f‖Lp , f ∈ Lp(g).

Proof. The second part follows from (9.5) and the first part. The first part
is a consequence of 1) of Proposition 9.4, Theorem 8.15, and Corollary 8.19.

�

Propositions (9.4) and (9.6) give everything that is needed to complete
the proof of Theorem 9.1. Here is the conclusion of the proof with some

shortcuts. There is no loss of generality in assuming that K̃ = K.
Let f, g ∈ S(g). By 2) of Proposition 9.4,

〈f ? K, g〉 =

∫
Rd

+

∫
Rd

+

〈fT , gTS ? KT,S〉
dT

T

dS

S
,

where fT = f ? ΦT . We want to estimate

LS(f, g) =

∫
Rd

+

〈fT , gTS ? KT,S〉
dT

T
,

for a given S. Recall that, by 3) of Proposition 9.4, the square function
operator GΦ is of type (p, p), for every 1 < p < ∞. Let 1 < p < 2. By the
Schwartz and Hölder inequalities,

|LS(f, g)| <∼ ‖f‖p

∥∥∥∥∥
∫
Rd

+

|gTS ? KT,S(·)|2 dT
T

∥∥∥∥∥
1/2

q/2

,

where 1/p + 1/q = 1. Note that q > 2. Thus, there exists a nonnegative
function u with ‖u‖r = 1, where 2/q + 1/r = 1, such that

A =

∥∥∥∥∥
∫
Rd

+

|gTS ? KT,S(·)|2 dT
T

∥∥∥∥∥
q/2

=

∫
g

∫
RN

+

|gTS ? KT,S(x)|2 dT
T
u(x)dx

≤
∫
g

∫
RN

+

‖KT,S‖1|gTS |2 ? |KT,S |(x)| dT
T
u(x)dx.
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Therefore, by Proposition 9.6, there exists l ∈N such that

A <∼ ‖K‖F 0,lγ(S)1/4

∫
g

∫
Rd

+

|gTS(x)|2 dT
T
K?
Su(x)dx

<∼ ‖K‖F 0,lγ(S)1/4‖GΦ(g)‖2q‖K?
Su‖r

<∼ ‖K‖2F 0,l
γ(S)1/2‖g‖2q ,

whence, by 3) of Proposition 9.4,

(9.7) |LS(f, g)| <∼ ‖K‖F 0,lγ(S)1/4‖f‖p‖g‖q.

Finally,

|〈f ? K, g〉| <∼ ‖K‖F 0,l

(∫
Rd

+

γ(S)1/4 dS

S

)
‖f‖p‖g‖q

≈ ‖K‖F 0,l‖f‖p‖g‖q,

which proves our case for 1 < p < 2. The result for 2 < p < ∞ follows by
duality. The case p = 2 has already been established in Theorem 7.12.

10. Appendix. Convolution of distributions.

Let X be an N -dimensional vector space as described in Section 2.

10.1 (Sobolev inequality). We have

‖f‖A(X)
<∼ max
|α|≤N/2+1

‖Dαf‖L2(X), f ∈ S(X),

where ‖f‖A(X) =
∫
g? |f̂(ξ)|dξ. (Proposition 3.5.14 of Narasimhan [17].)

The following is a direct consequence of (10.1).

10.2. Let F be a measurable function on an open subset of X. If, for every
α ∈ AN , DαF is a locally bounded function, then F is smooth.

Let g be a nilpotent Lie group as described in Section 5. The following
definition of the general convolution is due to C. Chevalley. See Chevalley
[1], Section 8.

Definition 10.3. We say that distributions S, T ∈ S ′(g) are convolvable if∫
g

∣∣∣(S̃ ? f)(x)
(
T ? g̃

)
(x)
∣∣∣ dx <∞, f, g ∈ S(g).

Proposition 10.4. If S, T are convolvable, then there exists a unique dis-
tribution S ? T such that

(10.5) 〈S ? T, f ? g〉 =

∫
g

(
S̃ ? f

)
(x)
(
T ? g̃

)
(x)dx. f, g ∈ S(g).

10.6. If S, T ∈ S ′(g) are convolvable, then

(10.7) (S ? T ) ? ϕ = S ? (T ? ϕ), ϕ ? (S ? T ) = (ϕ ? S) ? T,

for ϕ ∈ S(g). Moreover, T̃ and S̃ are also convolvable and

(S ? T )∼ = T̃ ? S̃.
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10.8. A distribution R ∈ S ′(g) is said to be an S-convolver if R ? f, f ?R ∈
S(g), for every f ∈ S(g).

10.9. If K ∈ S ′(g) and R is an S-convolver, then K,R and R,K are con-
volvable and

〈K ? R, f〉 = 〈K, f ? R̃〉, 〈R ? K, f〉 = 〈K, R̃ ? f〉, f ∈ S(g).

10.10. A distribution R ∈ S ′(g) is central if R ? f = f ? R, for every
f ∈ S(g). If R is a central S-convolver, then R ? K = K ? R, for every
K ∈ S ′(g).

10.11. If S and T are convolvable and R is an S-convolver, then S, T ? R
and R ? S, T are convolvable, and

(S ? T ) ? R = S ? (T ? R), R ? (S ? T ) = (R ? S) ? T.

If, moreover, R is central, then

(S ? R) ? T = S ? (R ? T ).
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