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The aim of this note is to prove the following theorem.

Let
Af(z) = P(D)f(x) + V() f(x),
where P(ix) is a nonnegative homogeneous elliptic polynomial on R% and V is a
nonnegative polynomial potential. Then for every 1 < p < oo and every a > 0 there
exist constants C7,C5 > 0 such that

[1P(D)* fllee + [V fllLr < CLl[A" fl o

and
[A%fl[r < Cof (P(D)* + V) fliz»
for f € C®(RY).
We take advantage of the Christ inversion theorem for singular integral operators
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1 Introduction

Let . ,
0

A= i

Z 83:?

j=1
be the (positive) Laplace operator on R%. Let

Lf(x) = Af(x) + V() f(x)

be a Schrodinger operator with a nonnegative polynomial potential V. The
following maximal LP-estimates

1A% Fllze + 1V flle < CLILfll o (1)

and

ILEFI < Col (A% + V) fllw (2)
for 1 < p < oo and a > 0, attracted attention of a number of authors. Let
us briefly recall some results. The estimate (1) is due to Nourrigat [16] (p = 2
and o = 1), Guibourg [14] (1 < p < 00, @ = 1) and Zhong [18] (1 < p < oo,
a > 0). In the case of the Hermite operator estimates similar to (2) were
recently obtained for positive integers o by Bongioanni and Torrea [2] by
using the Mehler kernel.

Under much less restrictive assumption that V' belongs to the reverse Holder
class B,, Shen [17] obtained the estimates (1) for a =1,1/2, ¢ > d/2, d > 3,
and the range of p depending on ¢. These were subsequently generalized by
Auscher and Ben Ali [1] for 0 < « < 1,¢ > 1,and 1 < p < 2(¢+¢). They also
succeeded in obtaining the estimates

ILFI < Cs([[A% flle + [IVESlle),  T<p<oo, a=1/2

Note that if V' is a polynomial, then V' € -, B,, and the estimates (1) of
Auscher-Ben Ali hold for all 1 < p < oc.

Nourrigat uses the method of representations of nilpotent Lie groups, whereas
Guibourg works with the machinery of Hérmander’s slowly varying metrics.
The methods applied by Shen and Auscher-Ben Ali include the Fefferman-
Phong inequalities, the Calderén-Zygmund decompositions, and various tech-
niques of interpolation.

Let

o = ("™, 1"y, . T y), x = (21,%2, ..., Tq),
be a family of dilations on R¢, where m1, mao, ..., mq are positive integers. Let
P(x) be a homogeneous polynomial such that

P(ixz) >0 for x #0. (3)



We consider the Schrodinger type operator
A=P(D)+V(x)

on R? with a nonnegative polynomial potential V (x).

The aim of this note is to prove the following theorem.

Theorem 1 For every 1 < p < oo and every a > 0 there exist constants
C,Cy > 0 such that

IPD)* flle + IV fllee < CLl[A*f | (4)

and
1A% fllze < Col[ (P(D)* + V) fll1o ()
for f in the Schwartz class S(R?).

The estimate (5) with the full range of @ > 0 seems to be new even for
P(D) = A. A typical example of a constant coefficient homogeneous differen-
tial operator occurring in the theorem is

The essential part of our considerations is limited to the analysis on homo-
geneous nilpotent groups. We take advantage of the Christ inversion theo-
rem for singular integral operators with a small amount of smoothness, the
maximal subelliptic L?-estimates for the generators of stable semi-groups of
measures, and the principle of transference of Coifman-Weiss. We believe that
the combination of the above-mentioned means applied in this context may
be interesting.

2 Preliminaries

Let AV be a finite-dimensional homogeneous group endowed with a family of
dilations {d;}+~0 and a homogeneous norm z +— |z| which is smooth away

from the identity. Let dz denote Haar measure on N and D the homogeneous
dimension of . Thus d(§;x) = tPdx. Let

Y={rxeN:|z|=1}

be the unit sphere relative to the homogeneous norm. For a nonzero z € N,
let
T = 5|$|71 x.



There exists a unique Radon measure dz on X such that for all continuous
functions f on N with compact support

/Nf(x)dx = /0 b /Z f(6,7)dzdr.

Since N is connected and simply connected nilpotent Lie group it may be
identified via the exponential map with its Lie algebra. We shall stick to this
identification throughout the paper and think of N as being a nilpotent Lie
algebra with the Campbell-Hausdorff multiplication. Let us remark that our
convention implies that the origin 0 plays the role of the group identity and
—x is the inverse of € N. Moreover, the dilations §; are also automorphisms
of the Lie algebra structure of A/. For more on homogeneous groups the reader
is referred to Folland-Stein [9].

Let V be a homogeneous (that is invariant under dilations) ideal in the Lie al-
gebra N and S its homogeneous linear complement. There exist homogeneous
polynomial mappings

v:N—=YV, c: N —S

such that every element a € N decomposes uniquely as a = v(a)o(a), while
the multiplication -

roy = o(xy), r,y €N,
makes S into a homogeneous group isomorphic to N'/V with o being the

canonical homomorphism. Dilations on S are simply those of N restricted to
S.

Let w be a linear functional on the vector space V. Then the representation
7V@) = 7% of N induced by the character €%} on V is defined by

my f(w) = Ve f(o(2a)), (6)

where f € S(S). It goes without saying that 7 can be understood as a
uniformly bounded representation of N on the Banach space LP(S) for every
1 <p<oo. If p=2, then 7 is unitary.

A tempered distribution 7' on N is said to be a kernel of order r € R if it
coincides with a Radon measure away from the origin and satisfies

<T7 f o 5t> = tT<T7 f>

for f € C*(N) and ¢t > 0. Note that, by homogeneity, any kernel of order
r > 0 coincides with a bounded measure outside any neighbourhood of the
origin and thus extends to a continuous linear form on the space C°(N) of
bounded smooth functions on A with natural topology. A kernel T' of order



r € R is called regularif it coincides with a C'* function away from the origin.
Any kernel T of order r gives a rise to a convolution operator f — fxT which
will be denoted by the same symbol 7T'. If T" is regular and symmetric, then the
operator T is essentially selfadjoint on L*(N) with S(N) for its core domain.
If T is a kernel of order > 0, then the operator

mr =75 S(S) — L*(S)

is defined by
(mrf,9) = (T, ¢14)s f,9€8(8),
where ¢ (x) = (7, f, g) is in Cg°(N). The operator mp is closable.

A real distribution 7" on N is said to be accretive if
(T, f)>0

for all real f € C°(N) that take on their maximal value at the identity. It
follows directly from the definition that such a 7' coincides with a negative
Radon measure away from the origin which is bounded on the complement of
any neighbourhood of the origin. Thus every accretive T" extends by continuity
to a linear form on Cp°(N).

A distribution T is accretive if and only if there exists a unique continuous
semigroup of subprobability measures {py };~o for which —T" is the generating
functional, that is,

d
T, f)=-2
(T f) = =g, (e T)
for f € C*®(N). If, in addition, T is a kernel of order r > 0, then y, are

probability measures.

Recall that if T is a symmetric accretive kernel of order » > 0 with the
semigroup {y}, then for every 0 < a < 1 the formula

1

(T ) = gy [, 00— e T

where gy stands for the Dirac delta at the origin, defines an accretive kernel T
of order ar. An arbitrary positive power T* of a regular accretive distribution
T is defined by T = T™ » T*~", where n is the integer part of ¢ > 0.

3 Singular Integrals

For ¢ € (1,00) let A, denote the set of all operators T : S(N) — &' (N) of the
form T'f = c¢f + fx K, where K is a principal value distribution that coincides



with a locally L4-function away from the origin, that is,

Ko f) = tim [ )

e=0 J|z|>e ‘ZL’|D

() de, (7)
where 2 is a homogeneous function of degree 0, [, Q(Z)dz =0, Q € LI(X).

Let n € C°(N) be such that n(z) = n(|z|), suppn C {z : 27! < |z| < 2},
Y jez N(0x) = 1for @ # 0. Set kj(x) = n(dy2)Q(x)|2|P. For integers N < M
let Ky () = Zj]\iN k;(x). Obviously,

(K,f)=  lim / K@) f(z)de,  feSWN).

N——o0o,M—o0

Much of our argument relies on the following results of M. Christ.

Theorem 2 Let1 < g <oo. IfT € Ay, then f — f*T extends to a bounded
operator T : LP(N') — LP(N) for every 1 < p < co. Moreover, A, is a Banach
algebra with the norm |T|, = |c| + ||| Lo

This is a compilation of Propositions 1 and 2 of Christ [3].

Theorem 3 Let 1 < ¢ < oo. If T € A, is invertible on L*(N), then its
inverse T' belongs to A, as well.

This is Theorem 3 of Christ [3].

Theorem 4 Let 1 < g < oo and K be of the form (7). For every p € (1,00)
there exists a constant C, such that for every integers N < M,

1f * Knarllioe < Coll fllono: (®)

Moreover, the kernels k; satisfy the assumptions of the Cotlar-Stein lemma,
that is,

1 % kg % kSl + 1 5 > Rillsn < €20 f sy (9)

This is a compilation of Lemma 2.10 of Christ [3] and Lemma 7 of Christ [4].

The purpose of the following considerations is to justify apparently obvious
definitions concerning representations of some unbounded convolution opera-
tors and their seemingly obvious algebra. The reader not interested in tech-
nical details may skip the remaining part of this section provided he accepts
Propositions 8 and 9.

From now on we assume that K is a principal value distribution of the form

(7).



Proposition 5 For every ¢ € S(N) there exists a homogeneous of degree 0
function Q € L1(X), such that

sup | Kocar o(0)] < ¢ a) (10)

L+ |z))P

PROOF.

By the mean value theorem (cf. Folland-Stein [9], page 28), for every m > 0
there exists a constant C, (that depends also on ¢) such that

|o(yz) — ()] < Cnlyl(1+ [x])™™ for |y[ < 2.

Hence for j > 0 one has

e o)) = | [ Ry plya) — ol@) dy
<271+ )

(11)

Set F(z) = Y0 |k;j(x)]. Then F(z) < C|Q(2)|(1+ |z[)~", and, consequently,
F € LY(N). Thus F % |p| is a bounded continuous function. For m > 2D,

Falelie) < [ B 0 bl dy

< + + (12)
ly|<|z|/C |z] /C<|y|<C|z| ly|>C|z|

=1+ I, + I,

where

[y ™)

Ty n W SO0+ kDM, (13)

h+ggca+uwé&

with M standing for the Hardy-Littlewood maximal function, and

[Q(zy )|

W e @ S CAFla) P MO (4)

I < O+ [a) ™2 [

Since M is homogeneous of degree 0 function and belongs to L} .(N), we
get the assertion.

Recall that D is the homogeneous dimension of A. Let D; and D, be those
of V and S, respectively. Of course, D = D; + Ds.



Lemma 6 Let 1/p+1/p' =1, where p,p’ > 1. Let k be a measurable function
on N such that ()
a
k(a)| < W,
where Q € LP(X) is homogeneous of degree 0, and 0 < § < Do/p'. Then, for
every ¢ € LV (S),

(15)

J, Ik@)é(o(@)lda < €] s

PROOF. Let us pick £ such that

D5 <e<p D35 (16)

Let v = v(a), s = o(a). Then

)| ds dv
1_/ ka )\d <C// a2l ,
[ ( a))|da VxS 1+\11]—|—|DD‘S

where |v|, |s| are homogeneous norms in V and S respectively. Therefore, by
a double application of the Hélder inequality,

Q(v,s)Pds 1/p
I< C'0||¢||Lp'(S)/V </s( ut) - > dv

T Jo] + o7
1 Q(v, s)P ds 1/p
< lollvs [, e s e peaes) @

“e dv /v’ Q(v, s)P ds dv 1/p
< Gilléllus) (/v (1+ |U|)Ep/(D_5)/p> (//Vs (1+ o[+ Isl)“’—&)(D“”)
< Cl¢llw s)

since, by (16),

ep'(D —6)/p > Dy, (p—e)(D—-6)>D

Proposition 7 Let p > 1. Let k, | be measurable functions on N such that

Q (a) QQ((Z)

@+ )P’ A+ )P 17)

[k(a)] < ()] <

where ) € LP(X) are homogeneous of degree 0. Let ¢ > 0 be a measurable
function on S such that

/¢ "(1+s]) ds < o0

for some € > Dy/2p'. Then

/ / |k(x o(zy))| dedy < oo.



PROOF. By diminishing ¢, if necessary, we may assume that

D D
o< 2 (18)
2p' P

By using the inequality
1< C(+o(@)) 7 1+ oD+ lo(ay)]),

we get
k()i (y)¢(o(zy))| < Cilki(2)l (y)dr (o (zy))],

where

k() = (I+|o(@)])"k(x),  Lly) = (T+]o(@))U(y),  ¢i(s) = (1+]s])7o(s).
Thus, by (18), [; satisfies (15), while

, 1/p'
(L orot@s)y ds) " =1l < o0, weN.

Recall that o(xo(y)) = o(zy). Applying Lemma 6 we get

I [ k@@ dyds < Colioill ) [ k)l d.

It remains to prove that k; € L'(N). To this end, note that ki (x) = ky(z)da(c(2)),
where

ka(z) = k(z)(1+[o(2)])5,  dals) = (1+[s))7%,
where, by (18), ks and ¢5 also satisfy the assumptions of Lemma 6. Therefore,

J @l dz = [ ka@)a(o(@)] dz < Cilloall s,

which completes the proof.

It follows from (8) and (9) that for every f € LP(N') the limit

lim Cf—i-f*K]\LM (19)

N——o00,M—o0
exists in LP-norm and defines a bounded operator T'f = f « T on LP(N).

Let 7 be an induced unitary representation of N as defined by (6). Since
Kx . are compactly supported L'(N)-functions, the estimates (8) and (9)
combined with the transference principle of Coifman-Weiss [5] imply that for
every p € (1,00) there exists a constant C,, such that

17Ky a || Lo (8)— Lo (5) < O (20)



Moreover, the limit

Nﬂfloior,rlMHOO 7TC50+KN,Mf (21>

exists in the LP(S)-norm for f € LP(S) and defines a bounded operator on
LP(S) denoted by mr.

Proposition 8 Let T = ciy + K, T" = /dg + K’ belong to A,. Then

wrnp f = wpnrf for fe LP(S). (22)

PROOF. There is no loss of generality in assuming that ¢ = ¢/ = 0. Note that
the left and the right-hand side of (22) define bounded operators on LP(S).
Hence, it suffices to prove (22) on a dense set of LP(S). This will be done if
we show that for ¢, ¢ € S(NV) and f, g € S(S) one has

<7TT7TT’7T<pf> 7Tw9> = <7TT'*T7T¢f, 7sz9>- (23)

Set 1"« T = "9y + K". By Theorem 2, 7"« T € A,. Then

<7TT7TT/7T30f’ 7T’l/19> = NafloiollrlMHoo<7T(p*K§V,1M*KNJM*Jf7 ‘g> ’ (24>

<7TT’*T7T<pf7 7T¢g> = lim <7T30*K§\',7M*1Z+C//<P*"Zf’ g>7 (25)

N——o0,M—o0

where ¢)(a) = 1(a~'). Observe that
¢*K§V7M*KN7M*1/~J and ¢*K§Q7M*z/7+c”cp*1z

converge pointwise to o*T"xT *15. Therefore, by applying Propositions 5 and
7, as well as the Lebesgue dominated convergence theorem, we get (23).

Proposition 9 Let R and Q) be kernels of order r > 0. In addition, let R
be reqular and let R=* be a reqular kernel of order —r such that R™' % R =
Rx R =6y. Then Q* R~ is a kernel of order 0, and for every f € S(S) we

have
Tor-1Trf =T f (26)

PROOF. Let ¢ be a compactly supported smooth function on N such that

/Ngo(a) da = 1.

Set ¢;(a) = t7Pp(d;-1a). Then, for f € S(S), the functions m,, f converge in
S(S) to f ast — 0. Hence limy_o mrmy,, f = mpf in LP(S) norm for T' = R, Q.
Moreover,

10



7TQR*177-R7T<,0tf - 71—QR*”T(,DMRJC - W(wt*R)*(QRfl)f
= W@t*Qf = WQW%]['

Taking the limit as ¢ tends to 0, we obtain (26).

4 Maximal Estimates

Denote by 1 =d; < dy < --- < d,, the exponents of homogeneity of dilations
on N. Then .
N =N,
j=1
where

Nj={zeN 6z =tYz t>0}

The subspace N = G};»”:? N is a homogenous linear complement to N,,. It has

been explained in Section 1 that N may be identified with the quotient group
N /Ny, and o : N — N with the corresponding quotient homomorphism.

For A € Ny, let

7 = gWmA)

Then, as is easily seen, the right-regular representation p of NV decomposes as

Paf(x) _ /N* 62ﬂ<y(z)’)\>ﬂ'2f}‘(0($))d/\, (27>

m

where
Plo@) = [ Jo)e e a
for f € C(N). h
If T is a kernel of order r > 0 on A/, then
(T.f)=(T,foo)
defines a kernel T of order 7 on A such that

~__ -0
p'f_ﬂ-T7

where p is the right-regular representation of N,

Lemma 10 Let T be a regular kernel of order 0 on a homogeneous subgroup
M of N'. Then for every unitary representation ™ of N, the operator wr is
bounded.

11



For the proof it is sufficient to remark that any unitary representation of N
restricted to M is also a unitary representation on the same Hilbert space.

Recall that a kernel T of order r > 0 is said to satisfy the Rockland condition,
if for every nontrivial irreducible unitary representation w of A’ the operator
7 is injective on the domain of its closure (cf. Section 1). The pivotal point
of the whole of our consideration here are the following two estimates (see
Theorems 11 and 12 below).

Theorem 11 Let M, and My be homogeneous subgroups of N'. Assume that
M, U M, generates the whole of N'. Let Q1 and Qo be positive reqular kernels
of order £ > 0 on My and M, respectively such that QQ = Q1 + Q2 satisfies
the Rockland condition. Then for every symmetric kernel H of order {, there
exists a constant C such that

IH fll2v) < CIHQ1 + Q2)fllzewy, € CZ(N). (28)

PROOF. As a matter of fact, the proof is implicitly contained in [11] and
[13]. For the convenience of the reader we will indicate how it can be made
more explicit.

Suppose first that NV is Abelian. Then the Fourier transform @ of the tempered
distribution @ is a continuous function on A/* which is homogeneous of degree

¢ and does not vanishes except at the origin. Therefore, there exists a constant
C > 0 such that

Q)| = ClElf,  geN”,

which implies the assertion of the theorem in the Abelian case.

Now we proceed by induction. We assume that our assertion holds true for
N = N/N,,. Once we prove that it holds for N as well, our proof will be
completed.

Let H be a symmetric kernel of order s = r/. By the induction hypothesis,

HW?LIfHLQ(J\N/) < COH7T22f|’L2(j\7)7 f € CSO(N)

The first important step is to extend this initial estimate to

I3l ey < CUmSS ey + 11l ) f € CEN).

To this end one can imitate the proof of Theorem 3.19 of [11], where Lemma
3.18 of [11] is replaced by Lemma 10.

From now on we may follow the course of the proof of Theorem 3.1 of [13],
where we take advantage of the homogeneity of the kernels in question and

12



the Rockland condition, until we reach the final estimate

valid for all A € AV} with the same constant C' > 0. From here our assertion
follows by (27).

Theorem 12 Let R be a symmetric regular kernel of order ¢ > 0 such that
for every nontrivial irreducible unitary representation © of N, the operator g
is injective on the space C>(m). Then for every symmetric kernel H of order
s < l, there exists a constant C' > 0 such that

1H 200 < C(IRS e + o ) F € CZN). (29)
Moreover, if s = { then

1H fllzovy < ClRSfll2vy,  f € CZ(N). (30)

PROOF. The proof is very similar to that of Theorem 11 but slightly simpler.

Corollary 13 Let R be as in Theorem 12. Then R and all its positive integer
powers RN satisfy the Rockland condition.

Let R be as in Theorem 12 and positive definite. Since —R is essentially self-
adjoint, it generates a continuous convolution semigroup of bounded operators
P, on L*(N). By Theorem (12), its corollary, and the argument of the proof of
Theorem 1.13 of [7], P.f = f % ps, where p,(z) = t~P/*p,(6,-1/ex) are smooth
functions satisfying the estimates

[Op1(x)] < Co(1+ Ja])~P P

for every differential operator 0 homogeneous of order |0|. The last estimate
implies that for every 0 < a < 1

1

(R*, f) = M(—a) /Ooo t1 S — i, f) dt

defines a regular kernel of order o/ which also satisfies the Rockland condition.
Similarly, if 0 < £ < D, then

(R ) = [t gy e (31)

is a regular kernel of order —¢ such that Rx R™! = R« R = 6.

13



5 Proof of the main theorem

Let

ox = ("™, 1"y, . T y), x = (21,%2, ..., Tq),
be a family of dilations on R?, where mq, mo, ..., mq are positive integers. Let
P(z) be a homogeneous of degree r polynomial such that

P(iz) >0 for z # 0.

Let V(z) = Y 4<, cgr® > 0. We define a nilpotent Lie algebra g as follows (cf.
8], [6]). As a vector space g is generated by the linearly independent vectors

(X1, Xg, Y0 < B <)

whose nontrivial commutators are

B-erl it 3 _
[Xk,Y[ﬂ]]:{Y[ doiff e 20,

. (32)
0 otherwise,
where e;, is the d-tuple consisting of zeros except for a 1 in the kth position.

The detailed discussion of the form of irreducible unitary representations of
G can be found in [6].

Let {d;};>0 be the one-parameter group of authomorphic dilations on g deter-
mined by
06X =t™X;, oY =¢ybl

If we regard g as a nilpotent Lie group G with multiplication given by the
Campbell-Hausdorff formula, then the dilations d; are also automorphisms of
the group structure on G. The Lie algebra g of the Lie group G is identified
with that of the left-invariant vector fields.

Let S and V denote the spans of X;’s and YBs respectively. Then S = R?
and V are Abelian subgroups of GG invariant under §;, and V is a normal
subgroup of G. Every element a of G can be uniquely written as a = v(a)o(a)
(cf. Section 2), where v(a) € V, o(a) € S are polynomial mappings from G
to V and S respectively. It is not difficult to check that if a; = (vy,21),a2 =
(vg,29) € G =V x S then o(ajas) = 1 + x2.

Let

Q1= P(X1, Xy, ..., Xa), Q2 = ((Y[V])*(Y[ﬂ))l/z, Qs = —iYDl (33)

Of course, )1 and ()3 are regular kernels of order r, whereas (), is accretive.

14



Moreover, (), is regular on the one-dimensional subgroup of G generated by
yhl

By the same argument as in Section 2 of [8], we conclude that there exist a
functional w on V and a regular symmetric kernel R of order r that satisfies
the Rockland condition with the properties that

o, f =PWD)f, w5, f=75,f=VF[. (34)
(f*xR, f)>0 for fecS(Q), (35)
Tl = (P(D)+V)f. (36)

The construction of R presented in [8] is based on ideas of [6] and Theorem 2
of Hebisch [15].

We shall need a lemma.

Lemma 14 The kernel Q = Q' +Q% satisfies the Rockland condition for every
> 0.

PROOQOF. Let 7 be a nontrivial irredicible unitary representation of G' and
To& = 0 for some ¢ in the domain of fé. Then £ sits in the intersection of the

domains of 7 ./» and Ttz and
1 2

szlz/zf =0= ng/zf,

whence

ﬁng =0, ﬁsz = 0.
The latter operator is injective unless it is zero in which case the representation
7 is one-dimensional and corresponds to a character X — X% for some
w # 0. Then, however, mg = g, is just multiplication by P(iw) > 0, which
proves our case.

Proof of Theorem 1. Fix a > 0. There exist a nilpotent Lie group G of
homogeneous dimension D, a functional w, and a regular symmetric kernel R
of order r that satisfies the Rockland condition such that (33) - (36) hold. We
may always construct the group G in such a way that D > ra.

The distribution R is a regular kernel of order ¢ = ra satisfying the Rockland
condition so, by (31), there exists a regular kernel R~ of order —ra such that
R*x R~ = R™“ % R* = ¢y. Note that the kernel R~ is locally in L%(G) for
1<q¢q<D/(D—ra).

15



It follows from (30) that the homogeneous of degree 0 operators
QIR™f =f+rRx0Q7,  QR™f=f+xR"x0Q3, (37)
are bounded on L?*(G). One can check that their convolution kernels
R%Q% and R °%QS

are principal value distributions that coincide with locally Li-functions away
from the origin for every 1 < ¢ < D/(D — ra). Therefore, by Theorem 2, for
every 1 < p < oo there exists a constant C' such that

QTR fllzey + QSR fllzr) < Cll fllr(c)- (38)

Hence, by the transference principle of Coifman-Weiss (see Section 3),
1760 p-a fllLes) < Cllfllzes), 7 =1,2. (39)
Applying (26) we obtain
17Ge flles) < CliTga fllies) for j=1,2, (40)
which, by (34) and (36), gives (4).

We already know that the operator 7' = (Qf + Q)R is bounded on LP(G)
for 1 < p < oo and belongs to A, for some 1 < ¢ < oo. The Theorem 11 implies
that it is also invertible on L?(G). Hence, by Theorems 3 and 2, T is invertible
on LP(G) for every 1 < p < oo, and its inverse T~! belongs to A,. Therefore,
by Proposition 8 and the transference principle, for every 1 < p < oo there
exists a constant C' > 0 such that

||f||LP(S) = ||7T%71W%ngtJng)RfafHLp(S)
w (41)
< Cllmige +ag)r-ofllzes)-

By application of (26), (34), and (36), we obtain (5).
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