INVERTIBILITY OF CONVOLUTION OPERATORS ON HOMOGENEOUS GROUPS

P. GŁOWACKI

Abstract

We say that a tempered distribution A belongs to the class $S^m(\mathfrak{g})$ on a homogeneous Lie algebra \mathfrak{g} if its Abelian Fourier transform $a=\widehat{A}$ is a smooth function on the dual \mathfrak{g}^{\star} and satisfies the estimates

$$|D^{\alpha}a(\xi)| \le C_{\alpha}(1+|\xi|)^{m-|\alpha|}.$$

Let $A \in S^0(\mathfrak{g})$. Then the operator $f \mapsto f \star \widetilde{A}(x)$ is bounded on $L^2(\mathfrak{g})$. Suppose that the operator is invertible and denote by B the convolution kernel of its inverse. We show that B belongs to the class $S^0(\mathfrak{g})$ as well. As a corollary we generalize Melin's theorem on the parametrix construction for Rockland operators.

In a former paper [10] we describe a calculus of a class of convolution operators on a nilpotent homogeneous group G with the Lie algebra \mathfrak{g} . These operators are distinguished by the conditions imposed on the Abelian Fourier transforms of their kernels similar to those required from the L^p -multipliers on \mathbf{R}^n . More specifically, a tempered distribution A belongs to the class $S^m(G) = S^m(\mathfrak{g})$ if its Fourier transform $a = \widehat{A}$ is a smooth function on the dual to the Lie algebra \mathfrak{g}^* and satisfies the estimates

$$|D^{\alpha}a(\xi)| \le C_{\alpha}(1+|\xi|)^{m-|\alpha|}, \qquad \xi \in \mathfrak{g}^{\star}.$$

In [10] we follow and extend to the setting of a general homogeneous group the ideas of Melin [14] who first introduced such a calculus on the subclass of stratified groups. The classes $S^m(\mathfrak{g})$ of convolution operators have the expected properties of composition and boundedness (see Propositions 1.1 and 1.2 below) which is a generalization of the results of Melin [14]. However, a complete calculus should also deal with the problem of invertibility. The aim of the present paper is to fill the gap.

Suppose that $A \in S^0(\mathfrak{g})$. Then, by the boundedness theorem (see Proposition 1.2 below), the operator

$$f \mapsto f \star \widetilde{A}(x) = \int_{\mathfrak{a}} f(xy)A(y) \, dy$$

defined initially on the Schwartz class functions extends uniquely to a bounded operator on $L^2(\mathfrak{g})$. Furthermore, suppose that the operator $f \mapsto f \star \widetilde{A}$ is invertible on $L^2(\mathfrak{g})$ and denote by B the convolution kernel of its inverse. We show here that under these circumstances B belongs to the class $S^0(\mathfrak{g})$ as well. This is done by replacing Melin's techniques of parametrix construction involving the more refined classes $S^{m,s}(\mathfrak{g}) \subset S^m(\mathfrak{g})$ of convolution operators by the calculus of less restrictive classes $S^m_0(\mathfrak{g})$, where no estimates in the central directions are required.

Let us remark that the described result can be also looked upon as a close analogue of the theorem on the inversion of singular integrals, see [9] and Christ-Geller [3].

By using auxiliary convolution operators, namely accretive homogeneous kernels P^m smooth away from the origin, we construct "elliptic" operators V_1^m of order m > 0 and get inversion results for classes $S^m(\mathfrak{g})$ for all m > 0, which enables us to generalize Melin's theorem on the parametrix construction for Rockland operators. At the same time, however, we present a direct parametrix construction for Rockland operators which avoids the machinery of Melin and also that of the present paper and depends only on well-known properties of Rockland operators as derived in Folland-Stein [7] and the calculus of [10].

We believe that the presented symbolic calculus may be a step towards a more comprehensive pseudodifferential calculus on nilpotent Lie groups parallel to that of Christ-Geller-Głowacki-Polin [4].

The author is grateful to M. Christ and F. Ricci for their helpful remarks on the subject of the present paper.

1. Symbolic calculus.

Let \mathfrak{g} be a nilpotent Lie algebra endowed with a family of diltations $\{\delta_t\}_{t>0}$. We identify \mathfrak{g} with the corresponding nilpotent Lie group by means of the exponential map. Let

$$1 = p_1 < p_2 < \cdots < p_d$$

be the exponents of homogeneity of the dilations. Let $|\cdot|$ be a homogeneous norm on V. Let

$$\mathfrak{g}_j = \{x \in \mathfrak{g} : tx = t^{p_j} \cdot x\}, \qquad 1 \leq j \leq d.$$

Denote by $Q = \sum_{k} \dim \mathfrak{g}_{k} \cdot p_{k}$ the homogeneous dimension of \mathfrak{g} .

Let $|\cdot|$ be a homogeneous norm on \mathfrak{g} . Let

$$\rho(x) = 1 + |x|.$$

A similar notation will be applied for the dual space \mathfrak{g}^* . In expressions like D^{α} or x^{α} we shall use multiindices

$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_d),$$

where

$$\alpha_k = (\alpha_{k1}, \alpha_{k1}, \dots, \alpha_{kn_k}),$$

are themselves multiindices with positive integer entries corresponding to the spaces \mathfrak{g}_k or \mathfrak{g}_k^{\star} . The homogeneous length of α is defined by

$$|\alpha| = \sum_{k=1}^{d} |\alpha_k|, \qquad |\alpha_k| = \dim \mathfrak{g}_k \cdot p_k.$$

As usual we denote by $\mathcal{S}(\mathfrak{g})$ or $\mathcal{S}(\mathfrak{g}^{\star})$ the Schwartz classes of smooth and rapidly vanishing functions. The Fourier transform

$$\widehat{f}(\xi) = \int_{\mathfrak{g}} f(x) e^{-i\langle \xi, x \rangle} dx$$

maps $\mathcal{S}(\mathfrak{g})$ onto $\mathcal{S}(\mathfrak{g}^*)$ and extends to tempered distributions on \mathfrak{g} . Let

$$||f||^2 = \int_{\mathfrak{g}} |f(x)|^2 dx, \qquad f \in L^2(\mathfrak{g}).$$

A similar notation will be applied to $f \in L^2(\mathfrak{g}^*)$, where the Lebesgue measure $d\xi$ on \mathfrak{g}^* is normalized so that

$$\int_{\mathfrak{g}} |f(x)|^2 dx = \int_{\mathfrak{g}^*} |\widehat{f}(x)|^2 d\xi.$$

The algebra of bounded linear operators on $L^2(\mathfrak{g})$ will be denoted by $\mathcal{B}(L^2(\mathfrak{g}))$. For a tempered distribution A on \mathfrak{g} , we write

$$\operatorname{Op}(A)f(x) = f \star \widetilde{A}(x) = \int_{\mathfrak{g}} f(xy)A(dy), \qquad f \in \mathcal{S}(\mathfrak{g}).$$

Let $m \in \mathbf{R}$. By $S^m(\mathfrak{g}) = S^m(\mathfrak{g}, \rho)$ we denote the class of all distributions $A \in \mathcal{S}'(\mathfrak{g})$ whose Fourier transforms $a = \widehat{A}$ are smooth and satisfy the estimates

$$|D^{\alpha}a(\xi)| \le C_{\alpha}\rho(\xi)^{m-|\alpha|},\tag{1.1}$$

where $|\alpha|$ stands for the homogeneous length of a multiindex. Let us recall that $S^m(\mathfrak{g})$ is a Fréchet space with the family of norms

$$|a|_{\alpha} = \sup_{\xi \in \mathfrak{g}^{\star}} \rho(\xi)^{-m+|\alpha|} |D^{\alpha}a(\xi)|.$$

It is not hard to see that for every $\varphi \in C_c^{\infty}(\mathfrak{g})$ equal to 1 in a neighbourhood of 0 the distribution $(1-\varphi)A$ is a Schwartz class function. Thus

$$A = A_1 + F, (1.2)$$

where A_1 is compactly supported and $F \in \mathcal{S}(\mathfrak{g})$.

It follows from (1.2) that for every $m \in \mathbf{R}$

$$\operatorname{Op}(A) : \mathcal{S}(\mathfrak{g}) \to \mathcal{S}(\mathfrak{g})$$

is a continuous mapping if $A \in S^m(\mathfrak{g})$. Therefore, it extends to a continuous mapping denoted by the same symbol of $S'(\mathfrak{g})$. It is also clear that for $A \in S^m(\mathfrak{g})$ and $B \in S^n(\mathfrak{g})$ the convolution $A \star B$ makes sense and $\operatorname{Op}(A \star B) = \operatorname{Op}(A)\operatorname{Op}(B)$. The following two propositions have been proved in [10].

PROPOSITION 1.1. If $A \in S^m(\mathfrak{g})$ and $B \in S^n(\mathfrak{g})$, then $A \star B \in S^{m+n}(\mathfrak{g})$ and the mapping

$$S^m(\mathfrak{q}) \times S^n(\mathfrak{q}) \ni (A, B) \mapsto A \star B \in S^{m+n}(\mathfrak{q})$$

is continuous.

Proposition 1.2. If $A \in S^0(\mathfrak{g})$, then $\operatorname{Op}(A)$ is bounded on $L^2(\mathfrak{g})$ and the mapping

$$S^0(\mathfrak{g}) \ni A \mapsto \operatorname{Op}(A) \in \mathcal{B}(L^2(\mathfrak{g}))$$

is continuous.

Let \mathfrak{z} be the central subalgebra corresponding to the largest eigenvalue of the dilations. We may assume that

$$\mathfrak{g} = \mathfrak{g}_0 \times \mathfrak{z}, \qquad \mathfrak{g}^* = \mathfrak{g}_0^* \times \mathfrak{z}^*,$$
 (1.3)

where \mathfrak{g}_0 may be identified with the quotient Lie algebra $\mathfrak{g}/\mathfrak{z}$. The multiplication law in \mathfrak{g} can be expressed by

$$(x,t)(y,s) = (x \circ y, t + s + r(x,y)),$$

where $x \circ y$ is mutiplication in \mathfrak{g}_0 . Here the variable in \mathfrak{g} has been split in accordance with the given decomposition. In a similar way we also split the variable $\xi = (\eta, \lambda)$ in \mathfrak{g}^* .

Let $m \in \mathbf{R}$. By $S_0^m(\mathfrak{g}^*)$ we denote the class of all distributions $A \in \mathcal{S}'(\mathfrak{g})$ whose Fourier transforms $a = \widehat{A}$ are smooth in the variable η and satisfy the estimates

$$|D_{\eta}^{\alpha}a(\eta,\lambda)| \le C_{\alpha}\rho(\eta,\lambda)^{m-|\alpha|}.$$
(1.4)

Again, $S_0^m(\mathfrak{g})$ is a Fréchet space with the family of norms

$$|a|_{\alpha} = \sup_{(\eta,\lambda) \in \mathfrak{g}^{\star}} \rho(\eta,\lambda)^{-m+|\alpha|} |D_{\eta}^{\alpha} a(\eta,\lambda)|.$$

The following result has not been stated explicitely in [10] but follows by the argument given there.

PROPOSITION 1.3. If $A \in S_0^m(\mathfrak{g}^*)$ and $B \in S_0^n(\mathfrak{g}^*)$, then $A \star B \in S_0^{m+n}(\mathfrak{g}^*)$ and the mapping

$$S_0^m(\mathfrak{g}^{\star}) \times S_0^n(\mathfrak{g}^{\star}) \ni (A,B) \mapsto A \star B \in S_0^{m+n}(\mathfrak{g}^{\star})$$

is continuous.

Let us introduce the following notation:

$$\widehat{f} \# \widehat{g}(\xi) = \widehat{f \star g}(\xi), \qquad \xi \in \mathfrak{g}^{\star},$$

for $f, g \in \mathcal{S}(\mathfrak{g})$. Then, for every fixed $\lambda \in \mathfrak{z}^*$,

$$a\#b(\eta,\lambda) = a(\cdot,\lambda)\#_{\lambda}b(\cdot,\lambda)(\eta),\tag{1.5}$$

where

$$\widehat{f} \#_{\lambda} \widehat{g}(\eta) = (f \star_{\lambda} g)^{\widehat{}}(\eta), \qquad f \star_{\lambda} g(x) = \int_{\mathfrak{g}_0} f(x \circ y^{-1}) g(y) \, e^{i\langle r(x, y^{-1}), \lambda \rangle} dy$$

for $f, g \in \mathcal{S}(\mathfrak{g}_0)$. In particular, $f \star_0 g$ is the usual convolution on the quotient group \mathfrak{g}_0 .

Let

$$T_{k_i}F(x) = x_{k_i}F(x), \qquad T_{\alpha}F(x) = x^{\alpha}F(x).$$

For a given multiindex γ , let

$$k(\gamma) = \max_{1 \le k \le d} \{k : \gamma_k \ne 0\},\$$

and

$$\mathcal{P}(\gamma) = \{\alpha : \alpha_k = 0, \ k > k(\gamma)\}.$$

LEMMA 1.4. Let $f, g \in \mathcal{S}(\mathfrak{g})$. Then for every γ ,

$$T_{\gamma}(f\star g) = T_{\gamma}f\star g + f\star T_{\gamma}g + \sum_{\alpha,\beta\in\mathcal{P}(\gamma),|\alpha|+|\beta|=|\gamma|} c_{\alpha\beta}^{\gamma}T_{\alpha}f\star T_{\beta}g.$$

By applying the Fourier transform, we obtain

$$D^{\gamma}(f\#g) = D^{\gamma}f\#g + f\#D^{\gamma}g + \sum_{\alpha,\beta\in\mathcal{P}(\gamma),|\alpha|+|\beta|=|\gamma|} c_{\alpha\beta}^{\gamma} D^{\alpha}f\#D^{\beta}g$$
 (1.6)

for $f, g \in \mathcal{S}(\mathfrak{g}^*)$.

LEMMA 1.5. Let $A \in S^m(\mathfrak{g})$. If $B \in S_0^{-m}(\mathfrak{g})$ is the inverse of A, that is,

$$A \star B = B \star A = \delta_0$$

then $B \in S^m(\mathfrak{g})$.

Proof. Let $a = \widehat{A}$, $b = \widehat{B}$. By (1.6),

$$0 = D^{\gamma_d}(a\#b) = D^{\gamma_d}a\#b + a\#D^{\gamma_d}b + \sum_{\alpha\beta} c^{\gamma}_{\alpha\beta} D^{\alpha}a\#D^{\beta}b,$$

where the summation extends over α, β such that

$$|\alpha| + |\beta| = |\gamma_d|, \ |\alpha_d|, |\beta_d| < |\gamma_d|$$

and every multiindex is split as $\alpha = (\alpha', \alpha_d)$, α_d being the part corresponding to \mathfrak{g}_d^{\star} . Therefore,

$$D^{\gamma_d}b = -b\#D^{\gamma_d}a\#b + \sum c_{\alpha\beta}^{\gamma}b\#D^{\alpha}a\#D^{\beta}b,$$

where the sybol on the right-hand side belongs to $\widehat{S}_0^{-m-|\gamma_d|}$ provided that $b\in\widehat{S}_0^{-m-\kappa}$ for $\kappa<|\gamma_d|$. By induction, $D^{\gamma_d}b\in\widehat{S}_0^{-m-|\gamma_d|}(\mathfrak{g})$, which is our assertion. \square

Let $A_j \in S_0^{m_j}(\mathfrak{g}^*)$, where $m_j \setminus -\infty$. Then there exists a distribution $A \in S_0^{m_1}(\mathfrak{g}^*)$ such that

$$A - \sum_{j=1}^{N} A_j \in S_0^{m_{N+1}}(\mathfrak{g}^*)$$

for every $N \in \mathbb{N}$. The distribution A is unique modulo the class

$$S_0^{-\infty}(\mathfrak{g}^*) = \bigcap_{n < 0} S_0^n(\mathfrak{g}^*).$$

We shall write

$$A \approx \sum_{j=1}^{\infty} A_j, \tag{1.7}$$

and call the distribution A the asymptotic sum of the series $\sum A_j$ (cf., e.g., Hörmander [13], Proposition 18.1.3).

We say that $A \in S^m(\mathfrak{g})$, where $m \geq 0$, has a parametrix $B \in S^{-m}(\mathfrak{g})$ if

$$B \star A - \delta_0 \in \mathcal{S}(\mathfrak{g}), \qquad A \star B - \delta_0 \in \mathcal{S}(\mathfrak{g}),$$

where δ_0 stands for the Dirac delta at 0. If B_1 is a left-parametrix and B_2 a right one, then it is easy to see that $B_1 = B_2$ modulo the Schwartz class functions so both B_1 and B_2 are parametrices. In particular, if A is symmetric, then either of the conditions implies the other one.

2. Sobolev spaces

We shall say that a tempered distribution T is a regular kernel of order $r \in \mathbf{R}$, if it is homogeneous of degree -Q-r and smooth away from the origin. A symmetric distribution T is said to be accretive, if

$$\langle T, f \rangle \ge 0$$

for real $f \in C_c^{\infty}(\mathfrak{g})$ which attain their maximal value at 0. Such a T is an infinitesimal generator of a continuous semigroup of subprobability measures μ_t . By the Hunt theory (see, eg., Duflo [5]), $T = \operatorname{Op}(T)$ is a positive selfadjoint operator on $L^2(\mathfrak{g})$ with $S(\mathfrak{g})$ as its core domain and for every 0 < m < 1

$$\operatorname{Op}(T)^{m} = \operatorname{Op}(T^{m}), \qquad \langle T^{m}, f \rangle = \frac{1}{\Gamma(-m)} \int_{0}^{\infty} t^{-1-m} \langle \delta_{0} - \mu_{t}, f \rangle dt,$$

where the distribution T^m is also accretive.

Let T be a fixed symmetric accretive regular kernel of order $0 < m \le 1$. Then there exists a symmetric nonnegative function $\Omega \in C^{\infty}(\mathfrak{g} \setminus \{0\})$ which is homogeneous of degree 0 such that

$$\langle T, f \rangle = cf(0) + \lim_{\varepsilon \to \int_{|x| > \varepsilon} \left(f(0) - f(x) \right) \frac{\Omega(x) dx}{|x|^{Q+m}},$$

where $c \ge 0$. If c = 0, T is an infinitesimal generator of a continuous semigroup of probability measures with smooth densities. For every 0 < a < 1, T^a is also a symmetric regular kernel of order am.

Let

$$\langle P, f \rangle = \lim_{\varepsilon \to \int_{|x| \ge \varepsilon} \frac{f(0) - f(x) dx}{|x|^{Q+1}}$$

be a fixed symmetric accretive distribution of order 1. Let us warn the reader that the distributions P^m do not belong to any of the classes $S^m(\mathfrak{g})$ as they do not vanish rapidly at infinity which is a certain technical complication. That is why we introduce the truncated kernels

$$V_0 = I$$
, $V_m = \varphi P^m$, $m > 0$,

where φ is a symmetric nonnegative [0,1]-valued smooth function with compact support and equal to 1 on the unit ball. Thus defined $V_m \in S^m(\mathfrak{g})$ is also accretive and it differs from P^m by a finite measure. Therefore, for every $0 < m \le 1$, there exist constants $C_1 > 0$ and $C_2 > 0$ such that

$$C_1 \| (I + \operatorname{Op}(P))^m f \| \le \| (I + \operatorname{Op}(V_m)) f \| \le C_2 \| (I + \operatorname{Op}(P))^m f \|,$$
 (2.1) for $f \in \mathcal{S}(\mathfrak{g})$.

Proposition 2.1. For every $0 < m \le 1$, there exists a constant $C_m > 0$ such that

$$||f \star V_m|| \ge C_m ||f||, \qquad f \in \mathcal{S}(\mathfrak{g}).$$

Proof. In fact, let $f \in \mathcal{S}(\mathfrak{g})$ and $F = \widetilde{f} \star f$. Then

$$\begin{split} \langle f \star V_m, f \rangle &= \langle T, F \rangle \\ &= \lim_{\varepsilon \to \int_{\varepsilon \le |x| \le 1}} \left(F(0) - \varphi(x) F(x) \right) \frac{\Omega_m(x) \, dx}{|x|^{Q+1}} + F(0) \int_{|x| \ge 1} \frac{\Omega_m(x) \, dx}{|x|^{Q+1}} \\ &\ge C_m^2 F(0) = C_m^2 \|f\|^2 \end{split}$$

since the first integral is nonnegative.

It follows from (2.1) and Proposition 2.1 that there exist new constants $C_1 > 0$ and $C_2 > 0$ such that

$$C_1 \| (I + \operatorname{Op}(P))^m f \| \le \| \operatorname{Op}(V_m) f \| \le C_2 \| (I + \operatorname{Op}(P))^m f \|,$$
 (2.2)

for $f \in \mathcal{S}(\mathfrak{g})$ and $0 \leq m \leq 1$.

Recall from [8] that P is maximal, that is, for every regular symmetric kernel T of arbitrary order m > 0 there exists a constant C > 0 such that

$$||f \star \widetilde{T}|| \le C||f \star P^m f||, \qquad f \in \mathcal{S}(\mathfrak{g}).$$
 (2.3)

We introduce a scale of Sobolev spaces. For every $m \in \mathbf{R}$

$$H(m) = \{ f \in L^2(\mathfrak{g}) : (I + \operatorname{Op}(P))^m f \in L^2(\mathfrak{g}) \}$$

with the usual norm $||f||_{(m)} = ||(I + ||\operatorname{Op}(P))^m f||_2$. The dual space to H(m) can be identified with H(-m). By (2.2), the norms defined by V_m for $0 < m \le 1$ are equivalent. It follows that for every $0 \le m \le 1$

$$V_m: H(m) \to H(0)$$

is an isomorphism.

3. Main step

Here comes a preliminary version of our theorem.

PROPOSITION 3.1. Let $0 \le m \le 1$. Let $A = A^* \in S^m(\mathfrak{g})$ and let $\operatorname{Op}(A) : H(m) \to H(0)$ be an isomorphism. If $A \star V_m = V_m \star A$, then there exists $B \in S^{-m}(\mathfrak{g})$ such that

$$A \star B = B \star A = \delta_0$$
.

In particular $Op(B) = Op(A)^{-1}$.

By hypothesis, A is invertible in $\mathcal{B}(L^2(\mathfrak{g}))$. There exists a symmetric distribution B such that

$$\operatorname{Op}(A)^{-1}f = f \star B, \qquad f \in \mathcal{S}(\mathfrak{g}).$$

We have to show that $B \in S^{-m}(\mathfrak{g})$.

Let $S_1(\mathfrak{g})$ denote the subspace of $S(\mathfrak{g})$ consisting of those functions whose Fourier transform is supported where $1 \leq |\lambda| \leq 2$. Note that this subspace is invariant under convolutions.

LEMMA 3.2. Op (B) maps continuously $S(\mathfrak{g})$ into $S(\mathfrak{g})$. The same applies to the invariant space $S_1(\mathfrak{g})$.

Proof. Being a convolution operator bounded on $L^2(\mathfrak{g})$, Op(B) commutes with right-invariant vector fields Y and hence maps $\mathcal{S}(\mathfrak{g})$ into $L^2(\mathfrak{g}) \cap C^{\infty}(\mathfrak{g})$. Therefore, by Lemma 1.4,

$$T_{\gamma}\operatorname{Op}(B) = \operatorname{Op}(B)T_{\gamma} + \operatorname{Op}(B)[T_{\gamma}, \operatorname{Op}(A)]\operatorname{Op}(B)$$

$$= \operatorname{Op}(B)T_{\gamma} + \operatorname{Op}(B)\operatorname{Op}(A_{\gamma})\operatorname{Op}(B)$$

$$+ \sum_{\alpha,\beta\in\mathcal{P}(\gamma),|\alpha|+|\beta|=|\gamma|} c_{\alpha\beta}\cdot\operatorname{Op}(B)\operatorname{Op}(A_{\alpha})T_{\beta}\operatorname{Op}(B),$$
(3.1)

where $A_{\alpha} = T_{\alpha}A$. Note that $A_{\alpha} \in S^{m-|\alpha|} \subset S^0$ so, by Proposition 1.2, $\operatorname{Op}(A_{\alpha})$ is bounded on $L^2(\mathfrak{g})$. By induction it follows that $\operatorname{Op}(B)$ maps $\mathcal{S}(\mathfrak{g})$ into the space of functions vanishing rapidly at infinity. Since $\mathcal{S}(\mathfrak{g})$ is invariant under $\operatorname{Op}(B)$, the operators $\operatorname{Op}(A)$ and $\operatorname{Op}(B) = \operatorname{Op}(A)^{-1}$ are isomorphisms of $\mathcal{S}(\mathfrak{g})$ and $\mathcal{S}_1(\mathfrak{g})$. \square

For $n \in \mathbf{Z}$, let

$$\langle A_n, f \rangle = 2^{-nm} \int_{\mathfrak{g}} f(2^n x) A(dx), \qquad \langle B_n, f \rangle = 2^{nm} \int_{\mathfrak{g}} f(2^n x) B(dx).$$

COROLLARY 3.3. The operators $Op(B_n)$ are equicontinuous on $S_1(\mathfrak{g})$.

Proof. By Proposition 1.2, the mapping

$$S^m(\mathfrak{g}) \ni A \to \operatorname{Op}(B) \in \mathcal{B}(L^2(\mathfrak{g}))$$

is continuous. Since the family $\{A_n\}$ is bounded in $S^m(\mathfrak{g})$ so is $\{\operatorname{Op}(B_n)\}$ in $\mathcal{B}(L^2(\mathfrak{g}))$. Hence our assertion follows by induction using (3.1).

Let $a = \widehat{A}$, and let

$$\widehat{A_{\lambda}}(\eta) = a_{\lambda}(\eta) = a(\eta, \lambda), \qquad \lambda \in \mathfrak{z}^{\star}.$$

LEMMA 3.4. For every $f \in \mathcal{S}(\mathfrak{g}_0^*)$ the function

$$\lambda \to \|f\#_{\lambda}a_{\lambda}\|^2$$

is continuous.

Proof. Let $0 < h \in \mathcal{S}(\mathfrak{z}^*)$ and h(0) = 1. Then $F = (f \otimes h) \# a \in \mathcal{S}(\mathfrak{g}^*)$ and

$$\lambda \to \int_{\mathfrak{q}_{\mathbb{A}}^{\star}} |F(\eta, \lambda)|^2 d\eta = |h(\lambda)|^2 ||f \#_{\lambda} a_{\lambda}||^2$$

is continuous, which implies our claim.

From now on we shall proceed by induction. The assertion is obviously true in the Abelian case. Let us assume that it holds for $\mathfrak{g}_0 = \mathfrak{g}/\mathfrak{z}$.

LEMMA 3.5. The distribution A_0 satisfies the hypothesis of the theorem on \mathfrak{g}_0 .

Proof. Observe that under the remaining assumptions of Proposition 3.1 the condition that $Op(A): H(m) \to H(0)$ is an isomorphism is equivalent to the estimate

$$||f \star A|| \ge C||f \star V_m||, \qquad f \in \mathcal{S}(\mathfrak{g}).$$

Now, since $A \star V_m = V_m \star A$, we also have

$$A_0 \star (V_m)_0 = (V_m)_0 \star A,$$

where $(V_m)_0$ is the counterpart of V_m on \mathfrak{g}_0 . Furthermore, we have

$$||f \star A|| \ge C||f \star V_m||$$

so, by Lemma 3.4,

$$||f_0 \star A_0|| \ge C ||f_0 \star (V_m)_0||, \qquad f \in \mathcal{S}(\mathfrak{g}),$$

which implies

$$||f \star A_0|| \ge C||f \star (V_m)_0||, \qquad f \in \mathcal{S}(\mathfrak{g}_0).$$

Let $b = \widehat{B}$ and $b_n = \widehat{B_n}$. Of course, $b_n \in \mathcal{S}'(\mathfrak{g}^*)$.

LEMMA 3.6. There exist $p \in \widehat{S}_0^{-m}(\mathfrak{g}^*)$ and $q \in \mathcal{S}(\mathfrak{g}^*)$ such that

$$p\#a(\eta,\lambda) = 1 - q(\eta,\lambda), \qquad 1 \le \lambda \le 2. \tag{3.2}$$

Proof. Let $u\in C_c^\infty([0,\infty)$ be equal to 1 in a neighbourhood of [0,1] and supported in [0,2). Then

$$\psi(\eta, \lambda) = u\left(\frac{\rho(0, \lambda)}{\rho(\eta, 0)}\right)$$

is an element of $\widehat{S}^0(\mathfrak{g}^*)$. By Lemma 3.5 and the induction hypothesis, there exists $b_0 \in \widehat{S}^{-m}(\mathfrak{g}^*)$ on a such that

$$b_0 \#_0 a_0 = 1.$$

Let

$$p(\eta, \lambda) = \psi(\eta, \lambda)b_0(\eta).$$

Then $p \in \widehat{S}^{-m}(\mathfrak{g}^*)$ and

$$p\#a(\eta,\lambda) = p\#(a-a_0)(\eta,\lambda) + b_0\#a_0(\eta) + (1-\psi)(\cdot,\lambda)b_0\#a_0(\eta)$$

= 1 - q₀(\eta,\lambda),

where for every $\varphi \in C_c^{\infty}(\mathfrak{z}^*)$, $\varphi(\lambda)q_0(\eta,\lambda)$ is in $\widehat{S}_0^{-1}(\mathfrak{g}^*)$. Therefore we take $\varphi \in C_c^{\infty}(\mathfrak{z}^*)$ which equals 1 where $1 \leq |\lambda| \leq 2$ and modify p_0 and q_0 by letting

$$p_1(\eta, \lambda) = p_0(\eta, \lambda)\varphi(\lambda), \qquad q_1(\eta, \lambda) = q_0(\eta, \lambda)\varphi(\lambda).$$

Now, $p_1 \in \widehat{S}_0^{-m}(\mathfrak{g}^*), q_1 \in \widehat{S}_0^{-1}(\mathfrak{g}^*), \text{ and }$

$$p_1 \# a = 1 - q_1, \qquad 1 \le |\lambda| \le 2.$$

Let

$$p \approx \sum_{k=1}^{\infty} q_1^k \# p_1,$$

where the infinite sum is understood as in (1.7). Then $p \in S_0^{-m}$ and

$$p\#a = 1 - q, \qquad 1 \le \lambda \le 2,$$

where
$$q \in \mathcal{S}(\mathfrak{g}^*)$$
.

Now we are in a position to conclude the proof of Proposition 3.1. By acting with b on the right on both sides of (3.2), we get

$$b = p + q \# b, \qquad 1 \le |\lambda| \le 2.$$

where $q\#b \in \mathcal{S}(\mathfrak{g})$. Consequently,

$$|D_{\eta}^{\alpha}b(\eta,\lambda)| \le C_{\alpha}\rho(\eta,\lambda)^{-m-|\alpha|}, \qquad 1 \le |\lambda| \le 2.$$

However, the same applies to b_n for every $n \in \mathbf{Z}$ with the same constants C_{α} . Therefore, $B \in S_0^{-m}(\mathfrak{g})$. Finally, by Lemma 1.5, we conclude that $B \in S^{-m}(\mathfrak{g})$.

COROLLARY 3.7. Let $A \in S^0(\mathfrak{g})$ and let

$$||f \star A|| \ge C||f||, \qquad f \in \mathcal{S}(\mathfrak{g}).$$

There exists $B \in S^0(\mathfrak{g})$ such that

$$B \star A = \delta_0$$
.

Proof. It is not hard to see that

$$\|\operatorname{Op}(A^* \star A)f\| \ge C\|f\|, \qquad f \in \mathcal{S}(\mathfrak{g}),$$

so Op $(A^* \star A) : L^2(\mathfrak{g}) \to L^2(\mathfrak{g})$ is an isomorphism. By Proposition 3.1 there exists $B_1 \in S^0(\mathfrak{g})$ such that $B_1 \star A^* \star A = \delta_0$. Therefore $B_1 \star A^*$ is the left-inverse for A.

COROLLARY 3.8. For every $0 \le m \le 1$, there exists $V_{-m} \in S^{-m}(\mathfrak{g})$ such that

$$V_m \star V_{-m} = V_{-m} \star V_m = \delta_0.$$

4. The operator $Op(V_1)$

In this section we show that the role of the family of distributions $V_m \in S^m(\mathfrak{g})$ in defining the Sobolev spaces can be taken over by the family of fractional powers of one single distribution V_1 . This will enable the final step towards our theorem.

Recall that if a positive selfadjoint operator $A: L^2(\mathfrak{g}) \to L^2(\mathfrak{g})$ is invertible, then

$$A^{-k}f = \frac{\sin k\pi}{\pi} \int_0^\infty t^{-k} (tI + A)^{-1} f \, dt \tag{4.1}$$

for 0 < k < 1 (see, e.g, Yosida [18], IX.11).

The operator $Op(V_1)$ is positive selfadjoint and invertible. In the proof of the next proposition we follow Beals [2], Theorem 4.9.

PROPOSITION 4.1. For every $m \in \mathbf{R}$, $\operatorname{Op}(V_1)^m = \operatorname{Op}(V_1^m)$, where $V_1^m \in S^m(\mathfrak{g})$.

Proof. It is sufficient to prove the proposition for -1 < m < 0. For $t \ge 0$ let

$$R_t = (V_1 + t\delta_0)^{-1}, \qquad r_t = \widehat{R}_t.$$

The operators $\operatorname{Op}(V_1) + tI$ satisfy the hypothesis of Proposition 3.1 with the exponent m = 1 uniformly so there exist constants C'_{α} independent of t such that

$$|D^{\alpha}r_t| \le C_{\alpha}' \rho^{-1-|\alpha|}.\tag{4.2}$$

On the other hand

$$tR_t = \delta_0 - R_t \star V_1 \in S^0(\mathfrak{g})$$

uniformly in t so that

$$t|D^{\alpha}r_t| \le C_{\alpha}^{"}\rho^{-\alpha}.\tag{4.3}$$

Combining (4.2) with (4.3) we get

$$|D^{\alpha}r_t| \le C_{\alpha}(t+\rho)^{-1}\rho^{-\alpha}$$

with C_{α} independent of $t \geq 0$.

Now, the operator $\operatorname{Op}(V_1)$ is positive and invertible so, by (4.1), $\operatorname{Op}(V_1)^m = \operatorname{Op}(V_1^m)$, where

$$(V_1^m)^{\wedge} = -\frac{\sin m\pi}{\pi} \int_0^\infty t^m r_t \, dt,$$

where -1 < m < 0. Therefore

$$|D^{\alpha}(V_1^m)^{\wedge}| \le \frac{C_{\alpha}}{\pi} \int_0^{\infty} t^m (t+\rho)^{-1} dt \cdot \rho^{-|\alpha|}$$

$$\le C_{\alpha}' \rho^{m-|\alpha|},$$

which proves our case.

LEMMA 4.2. Let K be a distribution on \mathfrak{g} smooth away from the origin and satisfying the estimates

$$|D^{\alpha}K(x)| \le C_{\alpha}|x|^{m-Q-|\alpha|}, \qquad x \ne 0, \tag{4.4}$$

for some m > 0. Then,

$$K = R + \nu$$
,

where $R \in S^{-m}(\mathfrak{g})$ and $\partial \mu \in L^1(\mathfrak{g})$ for every left-invariant differential operator on \mathfrak{g} .

Proof. It is sufficient to observe that (4.4) implies that \widehat{K} is smooth away from the origin and

$$|D^{\alpha}\widehat{K}(\xi)| \le C_{\alpha}|x|^{-m-|\alpha|}, \qquad \xi \ne 0,$$

and let $R = \varphi K$, $\nu = K - R$, where $\varphi \in C_c^{\infty}(\mathfrak{g})$ is equal to 1 in a neighbourhood of 0.

Recall that

$$P^m = V_m + \mu,$$

where $V_m \in S^m(\mathfrak{g})$ and $\partial \mu \in L^1(\mathfrak{g})$ for every invariant differential operator ∂ on \mathfrak{g} .

Proposition 4.3. Let m > 0. Then

$$(P^m + \delta_0)^{-1} = R + \nu,$$

where $R \in S^{-m}(\mathfrak{g})$ and $\partial \nu \in L^1(\mathfrak{g})$ for every invariant differential operator ∂ on \mathfrak{g} .

Proof. Since the kernel P^m is maximal (see (2.3) above), it follows (see Dziubański [6], Theorem 1.13) that the semigroup generated by P^m consists of operators with the convolution kernels

$$h_t(x) = t^{-Q/m} h_1(t^{-1/m}x), \qquad t > 0,$$

which are smooth functions satisfying the estimates

$$|D^{\alpha}h_t(x)| \le \frac{C_{\alpha}t}{(t^{1/m} + |x|)^{Q+m+|\alpha|}}, \qquad x \in \mathfrak{g}.$$

Therefore,

$$(P^m + \delta_0)^{-1}(x) = \int_0^\infty e^{-t} h_t(x) dt,$$

and consequently satisfies the estimates (4.4).

We know that there exists a constant C > 0 such that

$$C^{-1}||f \star V_1|| \le ||f \star P|| + ||f|| \le C||f \star V_1||,$$

whence

$$||f \star V_1^m|| \ge C_m ||f||, \qquad f \in \mathcal{S}(\mathfrak{g}), \tag{4.5}$$

for m > 0.

Now we have much more.

COROLLARY 4.4. For every m > 0 there exists a constant C > 0 such that

$$C^{-1}\|f \star V_1^m\| \le \|f \star P^m\| + \|f\| \le C\|f \star V_1^m\|. \tag{4.6}$$

Proof. In fact, we have

$$V_1^m = V_1^m \star (P^m + \delta_0)^{-1} \star (P^m + \delta_0) = \left(V_1^m \star R + V_1^m \star \nu\right) \star (P^m + \delta_0),$$

where R and ν are as in Proposition 4.3. Then $V_1^m \star R \in S^0(\mathfrak{g})$ and $V_1^m \star \nu \in L^1(\mathfrak{g})$ so

$$||f \star V_1^m|| \le C_1(||f \star P^m|| + ||f||).$$

The proof of the opposite inequality uses the identity

$$f \star P^m = f \star V_m \star V_1^{-m} \star V_1^m + f \star \mu$$

and (4.5).

5. Main theorem

Here comes our main theorem and the conclusion of its proof.

THEOREM 5.1. Let $A \in S^m(\mathfrak{g})$, where $m \geq 0$. If A satisfies the estimate

$$||f \star A|| \ge C(||f \star P^m|| + ||f||), \qquad f \in \mathcal{S}(\mathfrak{g}),$$

then there exists $B \in S^{-m}(\mathfrak{g})$ such that

$$B \star A = \delta_0$$

Proof. Let $A \in S^m(\mathfrak{g})$ satisfy the hypothesis of our theorem. Then $A \star V_1^{-m}$ satisfies the hypothesis of Corollary 3.7 so there exists $B_1 \in S^0(\mathfrak{g})$ such that

$$B_1 \star A \star V_1^{-m} = \delta_0.$$

By acting by convolution with V_1^m on the right and with V_1^{-m} on the left, we see that $B = V_1^{-m} \star B_1$ is the left-inverse for A.

COROLLARY 5.2. Let $A = A^* \in S^m(\mathfrak{g})$ for some $m \geq 0$. The following conditions are equivalent:

- (i) There exists $B \in S^{-m}$ such that $B \star A = A \star B = \delta_0$,
- (ii) For every $k \in \mathbb{R}$, $\operatorname{Op}(A) : H(k+m) \to H(k)$ is an isomorphism,
- (iii) Op $(A): H(m) \to H(0)$ is an isomorphism,
- (iv) There exists C > 0 such that

$$||f \star A|| \ge C(||f \star P^m|| + ||f||), \qquad f \in \mathcal{S}(\mathfrak{g}).$$

COROLLARY 5.3. Let $A \in S^m(\mathfrak{g})$, where m > 0, and let $\operatorname{Op}(A)$ be positive in $L^2(\mathfrak{g})$. Then A has a parametrix if and only if there exists C > 0 such that

$$||f \star A|| + ||f|| \ge C||f \star P^m||.$$
 (5.1)

Proof. Let $B \in S^{-m}(\mathfrak{g})$ be a parametrix for A. Then

$$B \star A = \delta_0 + h$$
,

where $h \in \mathcal{S}(\mathfrak{g})$. Consequently,

$$P^m = V_1^m \star B \star A + g$$

where $g \in L^1(\mathfrak{g})$. Now, $V_1^m \star B \in S^0(\mathfrak{g})$ so it is easy to see that the estimate (5.1) holds.

Suppose now that (5.1) holds true. Then

$$||f \star P^m|| \le C_1 ||f \star (A + \delta_0)||,$$

which, by Corollary 5.2, implies that $A + \delta_0 \in S^m(\mathfrak{g})$ has an inverse $B_1 \in S^{-m}$. Thus

$$B_1 \star A = \delta_0 - B_1,$$

and the parametrix B can be found as an asymptotic series

$$B \approx \sum_{k=1}^{\infty} B_1^k.$$

6. Rockland operators

A left-invariant homogeneous differential operator R is said to be a Rockland operator if for every nontrivial irreducible unitary representation π of \mathfrak{g} , π_R is injective on the space of C^{∞} -vectors of π .

Let R be a left-invariant differential operator homogeneous of degree -Q-m, that is,

$$R(f \circ \delta_t) = t^m R f, \qquad f \in \mathcal{S}(\mathfrak{g}), \quad t > 0.$$

It is well-known that the following conditions are equivalent:

- (1) R is a Rockland operator,
- (2) R is hypoelliptic,
- (3) For every regular kernel T of order m, there exists a constant C > 0 such that

$$\|\operatorname{Op}(T)f\| \le C\|Rf\|, \qquad f \in \mathcal{S}(\mathfrak{g}).$$

That (1) is equivalent to (2) was proved by Helffer-Nourrigat [12] with a contribution from Beals [1] and Rockland [16]. Helffer-Nourrigat [12] also contains the proof of equivalence of (1)-(3) for Op (T) being a differential operator. The remaining part was obtained by the present author in [8] and [11].

It has been proved by Melin [14] that a Rockland operator on a *stratified* homogeneous group has a parametrix. We are going to show that in fact this is so on any homogeneous group.

COROLLARY 6.1. A Rockland operator on g has a parametrix.

Proof. Without any loss of generality we may assume that R is positive. Then the assertion follows from (3) and Corollary 5.3.

Thus we have one more condition equivalent to (1)-(3). However, the techniques of the present paper can be applied directly to Rockland operators rending unnecessary any reference to Theorem 5.1 or Corollary 5.3. What is needed are well-known properties of Rockland operators and the symbolic calculus of Proposition 1.1. Here is a brief sketch of a direct parametrix construction for a Rockland operator R.

We may assume that R is positive. By Folland-Stein [7], Chapter 4.B, R is essentially selfadjoint on $L^2(\mathfrak{g})$ with $S(\mathfrak{g})$ for its core domain. Moreover, the semigroup generated by it consists of convolution operators with kernels

$$p_t(x) = t^{-Q/m} p_1(t^{-1/m}x),$$

where p_1 is a Schwartz class function. Note that $R = \text{Op}(R\delta_0)$. Let $S = (\delta_0 + R\delta_0)^{-1}$. It follows that

$$\widehat{S}(\xi) = \int_0^\infty e^{-t} \widehat{p}_1(t^{1/m}\xi) dt$$

is a smooth function satisfying the estimates which show that $S \in S^{-m}(\mathfrak{g})$. Moreover,

$$S \star R\delta_0 = \delta_0 - S,$$

and by the usual argument the asymptotic series

$$S_1 \approx \sum_{k=1}^{\infty} S^k$$

defines a parametrix for R (cf. Melin [14]).

References

- R. Beals, Opérateurs invariants hypoelliptiques sur un groupe de Lie nilpotent, Seminaire Goulaouic-Schwartz 1976-1977, exposé no XIX, 1-8,
- 2. R. Beals, Weighted distribution spaces and pseudodifferential operators, *Journal d'analyse mathématique*, 39 (1981), 131-187,
- 3. M. Christ and D. Geller, Singular integral characterization of Hardy spaces on homogeneous groups, *Duke Math. J.* 51 (1984), 547-598,
- M. CHRIST and D. GELLER and P. GŁOWACKI and L. POLIN, PSEUDODIFFERENTIAL OPERA-TORS ON GROUPS WITH DILATIONS, Duke. Math. J. 68 (1992), 31-65,
- 5. M. Duflo, Représentations de semi-groupes de mesures sur un groupe localment compact, Ann. Inst. Fourier, Grenoble 28 (1978), 225-249,
- 6. J. Dziubański, A remark on a Marcinkiewicz-Hörmander multipiler theorem for some nondifferential convolution operators, *Collog. Math.* 58 (1989), 77-83.
- 7. G.B. FOLLAND and E.M. STEIN, HARDY SPACES ON HOMOGENEOUS GROUPS, *Princeton University Press*, PRINCETON NJ 1982,
- 8. P. Głowacki, Stable semigroups of measures as commutative approximate identities on non-graded homogeneous groups, *Inventiones Mathematicae* 83 (1986), 557-582,
- 9. P. GŁOWACKI, AN INVERSION PROBLEM FOR SINGULAR INTEGRAL OPERATORS ON HOMOGENEOUS GROUPS, Studia mathematica 87 (1987), 53-69.
- P. GŁOWACKI, THE MELIN CALCULUS FOR GENERAL HOMOGENEOUS GROUPS, Ark. Mat. 45 (2007), 31-48,
- 11. P. GŁOWACKI, THE ROCKLAND CONDITION FOR NONDIFFERENTIAL CONVOLUTION OPERATORS ON HOMOGENEOUS GROUPS II, Studia Math. 98 (1991), 99-114,
- 12. B. Helffer, J. Nourrigat, Caracterisation des opérateurs hypoelliptiques homogenes invariants à gauche sur un groupe de Lie nilpotent gradué, Comm. Partial Differential Equations 4 (1979), 899-958,
- L. HÖRMANDER, THE ANALYSIS OF LINEAR PARTIAL DIFFERENTIAL OPERATORS vol. III, Berlin

 Heidelberg New York Tokyo 1983,
- 14. A. Melin, Parametrix constructions for right-invariant differential operators on Nilpotent Lie groups, Ann. Glob. Anal. Geom. 1 (1983), 79-130,
- **15.** F. Ricci, Calderón-Zygmund kernels on nilpotent Lie groups, *Proceedings of the Harmonic Analysis conference*, University of Minnesota, April 20 May 1, 1981
- 16. C. Rockland, Hypoellipticity on the Heisenberg group: representation theoretic criteria, *Trans. Amer. Math. Soc.* 240 (1978), 1-52,
- 17. E.M. Stein, Harmonic analysis, Princeton University Press, Princeton NJ 1993,
- 18. K. Yosida, Functional analysis, Berlin-Heidelberg-New York 1980.

Pawel Głowacki Institute of Mathematics, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland,

glowacki@math.uni.wroc.pl