INVERTIBILITY OF CONVOLUTION OPERATORS ON HOMOGENEOUS GROUPS

P. GもOWACKI

Abstract

We say that a tempered distribution A belongs to the class $S^{m}(\mathfrak{g})$ on a homogeneous Lie algebra \mathfrak{g} if its Abelian Fourier transform $a=\widehat{A}$ is a smooth function on the dual \mathfrak{g}^{\star} and satisfies the estimates $$
\left|D^{\alpha} a(\xi)\right| \leq C_{\alpha}(1+|\xi|)^{m-|\alpha|}
$$

Let $A \in S^{0}(\mathfrak{g})$. Then the operator $f \mapsto f \star \widetilde{A}(x)$ is bounded on $L^{2}(\mathfrak{g})$. Suppose that the operator is invertible and denote by B the convolution kernel of its inverse. We show that B belongs to the class $S^{0}(\mathfrak{g})$ as well. As a corollary we generalize Melin's theorem on the parametrix construction for Rockland operators.

In a former paper [10] we describe a calculus of a class of convolution operators on a nilpotent homogeneous group G with the Lie algebra \mathfrak{g}. These operators are distinguished by the conditions imposed on the Abelian Fourier transforms of their kernels similar to those required from the L^{p}-multipliers on \mathbf{R}^{n}. More specifically, a tempered distribution A belongs to the class $S^{m}(G)=S^{m}(\mathfrak{g})$ if its Fourier transform $a=\widehat{A}$ is a smooth function on the dual to the Lie algebra \mathfrak{g}^{\star} and satisfies the estimates

$$
\left|D^{\alpha} a(\xi)\right| \leq C_{\alpha}(1+|\xi|)^{m-|\alpha|}, \quad \xi \in \mathfrak{g}^{\star} .
$$

In $[\mathbf{1 0}]$ we follow and extend to the setting of a general homogeneous group the ideas of Melin [14] who first introduced such a calculus on the subclass of stratified groups. The classes $S^{m}(\mathfrak{g})$ of convolution operators have the expected properties of composition and boundedness (see Propositions 1.1 and 1.2 below) which is a generalization of the results of Melin [14]. However, a complete calculus should also deal with the problem of invertibility. The aim of the present paper is to fill the gap.

Suppose that $A \in S^{0}(\mathfrak{g})$. Then, by the boundedness theorem (see Proposition 1.2 below), the operator

$$
f \mapsto f \star \widetilde{A}(x)=\int_{\mathfrak{g}} f(x y) A(y) d y
$$

defined initially on the Schwartz class functions extends uniquely to a bounded operator on $L^{2}(\mathfrak{g})$. Furthermore, suppose that the operator $f \mapsto f \star \widetilde{A}$ is invertible on $L^{2}(\mathfrak{g})$ and denote by B the convolution kernel of its inverse. We show here that under these circumstances B belongs to the class $S^{0}(\mathfrak{g})$ as well. This is done by replacing Melin's techniques of parametrix construction involving the more refined classes $S^{m, s}(\mathfrak{g}) \subset S^{m}(\mathfrak{g})$ of convolution operators by the calculus of less restrictive classes $S_{0}^{m}(\mathfrak{g})$, where no estimates in the central directions are required.

Let us remark that the described result can be also looked upon as a close analogue of the theorem on the inversion of singular integrals, see [9] and ChristGeller [3].

By using auxiliary convolution operators, namely accretive homogeneous kernels P^{m} smooth away from the origin, we construct "elliptic" operators V_{1}^{m} of order $m>0$ and get inversion results for classes $S^{m}(\mathfrak{g})$ for all $m>0$, which enables us to generalize Melin's theorem on the parametrix construction for Rockland operators. At the same time, however, we present a direct parametrix construction for Rockland operators which avoids the machinery of Melin and also that of the present paper and depends only on well-known properties of Rockland operators as derived in Folland-Stein [7] and the calculus of [10].

We believe that the presented symbolic calculus may be a step towards a more comprehensive pseudodifferential calculus on nilpotent Lie groups parallel to that of Christ-Geller-Głowacki-Polin [4].

The author is grateful to M. Christ and F. Ricci for their helpful remarks on the subject of the present paper.

1. Symbolic calculus.

Let \mathfrak{g} be a nilpotent Lie algebra endowed with a family of diltations $\left\{\delta_{t}\right\}_{t>0}$. We identify \mathfrak{g} with the corresponding nilpotent Lie group by means of the exponential map. Let

$$
1=p_{1}<p_{2}<\cdots<p_{d}
$$

be the exponents of homogeneity of the dilations. Let $|\cdot|$ be a homogenous norm on V. Let

$$
\mathfrak{g}_{j}=\left\{x \in \mathfrak{g}: t x=t^{p_{j}} \cdot x\right\}, \quad 1 \leq j \leq d
$$

Denote by $Q=\sum_{k} \operatorname{dim} \mathfrak{g}_{k} \cdot p_{k}$ the homogeneous dimension of \mathfrak{g}.
Let $|\cdot|$ be a homogeneous norm on \mathfrak{g}. Let

$$
\rho(x)=1+|x| .
$$

A similar notation will be applied for the dual space \mathfrak{g}^{\star}.
In expressions like D^{α} or x^{α} we shall use multiindices

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right)
$$

where

$$
\alpha_{k}=\left(\alpha_{k 1}, \alpha_{k 1}, \ldots, \alpha_{k n_{k}}\right)
$$

are themselves multiindices with positive integer entries corresponding to the spaces \mathfrak{g}_{k} or \mathfrak{g}_{k}^{\star}. The homogeneous length of α is defined by

$$
|\alpha|=\sum_{k=1}^{d}\left|\alpha_{k}\right|, \quad\left|\alpha_{k}\right|=\operatorname{dim} \mathfrak{g}_{k} \cdot p_{k} .
$$

As usual we denote by $\mathcal{S}(\mathfrak{g})$ or $\mathcal{S}\left(\mathfrak{g}^{\star}\right)$ the Schwartz classes of smooth and rapidly vanishing functions. The Fourier transform

$$
\widehat{f}(\xi)=\int_{\mathfrak{g}} f(x) e^{-i\langle\xi, x\rangle} d x
$$

maps $\mathcal{S}(\mathfrak{g})$ onto $\mathcal{S}\left(\mathfrak{g}^{\star}\right)$ and extends to tempered distributions on \mathfrak{g}. Let

$$
\|f\|^{2}=\int_{\mathfrak{g}}|f(x)|^{2} d x, \quad f \in L^{2}(\mathfrak{g})
$$

A similar notation will be applied to $f \in L^{2}\left(\mathfrak{g}^{\star}\right)$, where the Lebesgue measure $d \xi$ on \mathfrak{g}^{\star} is normalized so that

$$
\int_{\mathfrak{g}}|f(x)|^{2} d x=\int_{\mathfrak{g}^{\star}}|\widehat{f}(x)|^{2} d \xi
$$

The algebra of bounded linear operators on $L^{2}(\mathfrak{g})$ will be denoted by $\mathcal{B}\left(L^{2}(\mathfrak{g})\right)$.
For a tempered distribution A on \mathfrak{g}, we write

$$
\mathrm{Op}(A) f(x)=f \star \widetilde{A}(x)=\int_{\mathfrak{g}} f(x y) A(d y), \quad f \in \mathcal{S}(\mathfrak{g})
$$

Let $m \in \mathbf{R}$. By $S^{m}(\mathfrak{g})=S^{m}(\mathfrak{g}, \rho)$ we denote the class of all distributions $A \in$ $\mathcal{S}^{\prime}(\mathfrak{g})$ whose Fourier transforms $a=\widehat{A}$ are smooth and satisfy the estimates

$$
\begin{equation*}
\left|D^{\alpha} a(\xi)\right| \leq C_{\alpha} \rho(\xi)^{m-|\alpha|}, \tag{1.1}
\end{equation*}
$$

where $|\alpha|$ stands for the homogeneous length of a multiindex. Let us recall that $S^{m}(\mathfrak{g})$ is a Fréchet space with the family of norms

$$
|a|_{\alpha}=\sup _{\xi \in \mathfrak{g}^{\star}} \rho(\xi)^{-m+|\alpha|}\left|D^{\alpha} a(\xi)\right| .
$$

It is not hard to see that for every $\varphi \in C_{c}^{\infty}(\mathfrak{g})$ equal to 1 in a neighbourhood of 0 the distribution $(1-\varphi) A$ is a Schwartz class function. Thus

$$
\begin{equation*}
A=A_{1}+F \tag{1.2}
\end{equation*}
$$

where A_{1} is compactly supported and $F \in \mathcal{S}(\mathfrak{g})$.
It follows from (1.2) that for every $m \in \mathbf{R}$

$$
\operatorname{Op}(A): \mathcal{S}(\mathfrak{g}) \rightarrow \mathcal{S}(\mathfrak{g})
$$

is a continuous mapping if $A \in S^{m}(\mathfrak{g})$. Therefore, it extends to a continuous mapping denoted by the same symbol of $\mathcal{S}^{\prime}(\mathfrak{g})$. It is also clear that for $A \in S^{m}(\mathfrak{g})$ and $B \in S^{n}(\mathfrak{g})$ the convolution $A \star B$ makes sense and $\mathrm{Op}(A \star B)=\mathrm{Op}(A) \mathrm{Op}(B)$.

The following two propositions have been proved in [10].
Proposition 1.1. If $A \in S^{m}(\mathfrak{g})$ and $B \in S^{n}(\mathfrak{g})$, then $A \star B \in S^{m+n}(\mathfrak{g})$ and the mapping

$$
S^{m}(\mathfrak{g}) \times S^{n}(\mathfrak{g}) \ni(A, B) \mapsto A \star B \in S^{m+n}(\mathfrak{g})
$$

is continuous.
Proposition 1.2. If $A \in S^{0}(\mathfrak{g})$, then $\operatorname{Op}(A)$ is bounded on $L^{2}(\mathfrak{g})$ and the mapping

$$
S^{0}(\mathfrak{g}) \ni A \mapsto \operatorname{Op}(A) \in \mathcal{B}\left(L^{2}(\mathfrak{g})\right)
$$

is continuous.
Let \mathfrak{z} be the central subalgebra corresponding to the largest eigenvalue of the dilations. We may assume that

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{g}_{0} \times \mathfrak{z}, \quad \mathfrak{g}^{\star}=\mathfrak{g}_{0}^{\star} \times \mathfrak{z}^{\star}, \tag{1.3}
\end{equation*}
$$

where \mathfrak{g}_{0} may be identified with the quotient Lie algebra $\mathfrak{g} / \mathfrak{z}$. The multiplication law in \mathfrak{g} can be expressed by

$$
(x, t)(y, s)=(x \circ y, t+s+r(x, y))
$$

where $x \circ y$ is mutiplication in \mathfrak{g}_{0}. Here the variable in \mathfrak{g} has been split in accordance with the given decomposition. In a similar way we also split the variable $\xi=(\eta, \lambda)$ in \mathfrak{g}^{\star}.

Let $m \in \mathbf{R}$. By $S_{0}^{m}\left(\mathfrak{g}^{\star}\right)$ we denote the class of all distributions $A \in \mathcal{S}^{\prime}(\mathfrak{g})$ whose Fourier transforms $a=\widehat{A}$ are smooth in the variable η and satisfy the estimates

$$
\begin{equation*}
\left|D_{\eta}^{\alpha} a(\eta, \lambda)\right| \leq C_{\alpha} \rho(\eta, \lambda)^{m-|\alpha|} \tag{1.4}
\end{equation*}
$$

Again, $S_{0}^{m}(\mathfrak{g})$ is a Fréchet space with the family of norms

$$
|a|_{\alpha}=\sup _{(\eta, \lambda) \in \mathfrak{g}^{\star}} \rho(\eta, \lambda)^{-m+|\alpha|}\left|D_{\eta}^{\alpha} a(\eta, \lambda)\right| .
$$

The following result has not been stated explicitely in [10] but follows by the argument given there.

Proposition 1.3. If $A \in S_{0}^{m}\left(\mathfrak{g}^{\star}\right)$ and $B \in S_{0}^{n}\left(\mathfrak{g}^{\star}\right)$, then $A \star B \in S_{0}^{m+n}\left(\mathfrak{g}^{\star}\right)$ and the mapping

$$
S_{0}^{m}\left(\mathfrak{g}^{\star}\right) \times S_{0}^{n}\left(\mathfrak{g}^{\star}\right) \ni(A, B) \mapsto A \star B \in S_{0}^{m+n}\left(\mathfrak{g}^{\star}\right)
$$

is continuous.
Let us introduce the following notation:

$$
\widehat{f} \# \widehat{g}(\xi)=\widehat{f \star g}(\xi), \quad \xi \in \mathfrak{g}^{\star}
$$

for $f, g \in \mathcal{S}(\mathfrak{g})$. Then, for every fixed $\lambda \in \mathfrak{z}^{\star}$,

$$
\begin{equation*}
a \# b(\eta, \lambda)=a(\cdot, \lambda) \#{ }_{\lambda} b(\cdot, \lambda)(\eta) \tag{1.5}
\end{equation*}
$$

where

$$
\widehat{f} \#_{\lambda} \widehat{g}(\eta)=\left(f \star_{\lambda} g\right)^{\wedge}(\eta), \quad f \star_{\lambda} g(x)=\int_{\mathfrak{g}_{0}} f\left(x \circ y^{-1}\right) g(y) e^{i\left\langle r\left(x, y^{-1}\right), \lambda\right\rangle} d y
$$

for $f, g \in \mathcal{S}\left(\mathfrak{g}_{0}\right)$. In particular, $f \star_{0} g$ is the usual convolution on the quotient group \mathfrak{g}_{0}.

Let

$$
T_{k_{i}} F(x)=x_{k_{i}} F(x), \quad T_{\alpha} F(x)=x^{\alpha} F(x)
$$

For a given multiindex γ, let

$$
k(\gamma)=\max _{1 \leq k \leq d}\left\{k: \gamma_{k} \neq 0\right\}
$$

and

$$
\mathcal{P}(\gamma)=\left\{\alpha: \alpha_{k}=0, k \geq k(\gamma)\right\} .
$$

Lemma 1.4. Let $f, g \in \mathcal{S}(\mathfrak{g})$. Then for every γ,

$$
T_{\gamma}(f \star g)=T_{\gamma} f \star g+f \star T_{\gamma} g+\sum_{\alpha, \beta \in \mathcal{P}(\gamma),|\alpha|+|\beta|=|\gamma|} c_{\alpha \beta}^{\gamma} T_{\alpha} f \star T_{\beta} g
$$

By applying the Fourier transform, we obtain

$$
\begin{equation*}
D^{\gamma}(f \# g)=D^{\gamma} f \# g+f \# D^{\gamma} g+\sum_{\alpha, \beta \in \mathcal{P}(\gamma),|\alpha|+|\beta|=|\gamma|} c_{\alpha \beta}^{\gamma} D^{\alpha} f \# D^{\beta} g \tag{1.6}
\end{equation*}
$$

for $f, g \in \mathcal{S}\left(\mathfrak{g}^{\star}\right)$.
Lemma 1.5. Let $A \in S^{m}(\mathfrak{g})$. If $B \in S_{0}^{-m}(\mathfrak{g})$ is the inverse of A, that is,

$$
A \star B=B \star A=\delta_{0},
$$

then $B \in S^{m}(\mathfrak{g})$.
Proof. Let $a=\widehat{A}, b=\widehat{B}$. By (1.6),

$$
0=D^{\gamma_{d}}(a \# b)=D^{\gamma_{d}} a \# b+a \# D^{\gamma_{d}} b+\sum c_{\alpha \beta}^{\gamma} D^{\alpha} a \# D^{\beta} b,
$$

where the summation extends over α, β such that

$$
|\alpha|+|\beta|=\left|\gamma_{d}\right|,\left|\alpha_{d}\right|,\left|\beta_{d}\right|<\left|\gamma_{d}\right|
$$

and every multiindex is split as $\alpha=\left(\alpha^{\prime}, \alpha_{d}\right), \alpha_{d}$ being the part correspodning to \mathfrak{g}_{d}^{\star}. Therefore,

$$
D^{\gamma_{d}} b=-b \# D^{\gamma_{d}} a \# b+\sum c_{\alpha \beta}^{\gamma} b \# D^{\alpha} a \# D^{\beta} b
$$

where the sybol on the right-hand side belongs to $\widehat{S}_{0}^{-m-\left|\gamma_{d}\right|}$ provided that $b \in$ $\widehat{S}_{0}^{-m-\kappa}$ for $\kappa<\left|\gamma_{d}\right|$. By induction, $D^{\gamma_{d}} b \in \widehat{S}_{0}^{-m-\left|\gamma_{d}\right|}(\mathfrak{g})$, which is our assertion.

Let $A_{j} \in S_{0}^{m_{j}}\left(\mathfrak{g}^{\star}\right)$, where $m_{j} \searrow-\infty$. Then there exists a distribution $A \in$ $S_{0}^{m_{1}}\left(\mathfrak{g}^{\star}\right)$ such that

$$
A-\sum_{j=1}^{N} A_{j} \in S_{0}^{m_{N+1}}\left(\mathfrak{g}^{\star}\right)
$$

for every $N \in \mathbf{N}$. The distribution A is unique modulo the class

$$
S_{0}^{-\infty}\left(\mathfrak{g}^{\star}\right)=\bigcap_{n<0} S_{0}^{n}\left(\mathfrak{g}^{\star}\right)
$$

We shall write

$$
\begin{equation*}
A \approx \sum_{j=1}^{\infty} A_{j} \tag{1.7}
\end{equation*}
$$

and call the distribution A the asymptotic sum of the series $\sum A_{j}$ (cf., e.g., Hörmander [13], Proposition 18.1.3).

We say that $A \in S^{m}(\mathfrak{g})$, where $m \geq 0$, has a parametrix $B \in S^{-m}(\mathfrak{g})$ if

$$
B \star A-\delta_{0} \in \mathcal{S}(\mathfrak{g}), \quad A \star B-\delta_{0} \in \mathcal{S}(\mathfrak{g})
$$

where δ_{0} stands for the Dirac delta at 0 . If B_{1} is a left-parametrix and B_{2} a right one, then it is easy to see that $B_{1}=B_{2}$ modulo the Schwartz class functions so both B_{1} and B_{2} are parametrices. In particular, if A is symmetric, then either of the conditions implies the other one.

2. Sobolev spaces

We shall say that a tempered distribution T is a regular kernel of order $r \in \mathbf{R}$, if it is homogeneous of degree $-Q-r$ and smooth away from the origin. A symmetric distribution T is said to be accretive, if

$$
\langle T, f\rangle \geq 0
$$

for real $f \in C_{c}^{\infty}(\mathfrak{g})$ which attain their maximal value at 0 . Such a T is an infinitesimal generator of a continuous semigroup of subprobability measures μ_{t}. By the Hunt theory (see, eg., Duflo [5]), $T=\mathrm{Op}(T)$ is a positive selfadjoint operator on $L^{2}(\mathfrak{g})$ with $\mathcal{S}(\mathfrak{g})$ as its core domain and for every $0<m<1$

$$
\mathrm{Op}(T)^{m}=\mathrm{Op}\left(T^{m}\right), \quad\left\langle T^{m}, f\right\rangle=\frac{1}{\Gamma(-m)} \int_{0}^{\infty} t^{-1-m}\left\langle\delta_{0}-\mu_{t}, f\right\rangle d t
$$

where the distribution T^{m} is also accretive.
Let T be a fixed symmetric accretive regular kernel of order $0<m \leq 1$. Then there exists a symmetric nonnegative function $\Omega \in C^{\infty}(\mathfrak{g} \backslash\{0\})$ which is homogeneous of degree 0 such that

$$
\langle T, f\rangle=c f(0)+\lim _{\varepsilon \rightarrow} \int_{|x| \geq \varepsilon}(f(0)-f(x)) \frac{\Omega(x) d x}{|x|^{Q+m}}
$$

where $c \geq 0$. If $c=0, T$ is an infinitesimal generator of a continuous semigroup of probability measures with smooth densities. For every $0<a<1, T^{a}$ is also a symmetric regular kernel of order $a m$.

Let

$$
\langle P, f\rangle=\lim _{\varepsilon \rightarrow} \int_{|x| \geq \varepsilon} \frac{f(0)-f(x)) d x}{|x|^{Q+1}}
$$

be a fixed symmetric accretive distribution of order 1 . Let us warn the reader that the distributions P^{m} do not belong to any of the classes $S^{m}(\mathfrak{g})$ as they do not vanish rapidly at infinity which is a certain technical complication. That is why we introduce the truncated kernels

$$
V_{0}=I, \quad V_{m}=\varphi P^{m}, \quad m>0
$$

where φ is a symmetric nonnegative $[0,1]$-valued smooth function with compact support and equal to 1 on the unit ball. Thus defined $V_{m} \in S^{m}(\mathfrak{g})$ is also accretive and it differs from P^{m} by a finite measure. Therefore, for every $0<m \leq 1$, there exist constants $C_{1}>0$ and $C_{2}>0$ such that

$$
\begin{equation*}
C_{1}\left\|(I+\operatorname{Op}(P))^{m} f\right\| \leq\left\|\left(I+\operatorname{Op}\left(V_{m}\right)\right) f\right\| \leq C_{2}\left\|(I+\operatorname{Op}(P))^{m} f\right\| \tag{2.1}
\end{equation*}
$$

for $f \in \mathcal{S}(\mathfrak{g})$.

Proposition 2.1. For every $0<m \leq 1$, there exists a constant $C_{m}>0$ such that

$$
\left\|f \star V_{m}\right\| \geq C_{m}\|f\|, \quad f \in \mathcal{S}(\mathfrak{g})
$$

Proof. In fact, let $f \in \mathcal{S}(\mathfrak{g})$ and $F=\widetilde{f} \star f$. Then

$$
\begin{aligned}
\left\langle f \star V_{m}, f\right\rangle & =\langle T, F\rangle \\
& =\lim _{\varepsilon \rightarrow} \int_{\varepsilon \leq|x| \leq 1}(F(0)-\varphi(x) F(x)) \frac{\Omega_{m}(x) d x}{|x|^{Q+1}}+F(0) \int_{|x| \geq 1} \frac{\Omega_{m}(x) d x}{|x|^{Q+1}} \\
& \geq C_{m}^{2} F(0)=C_{m}^{2}\|f\|^{2}
\end{aligned}
$$

since the first integral is nonnegative.
It follows from (2.1) and Proposition 2.1 that there exist new constants $C_{1}>0$ and $C_{2}>0$ such that

$$
\begin{equation*}
C_{1}\left\|(I+\mathrm{Op}(P))^{m} f\right\| \leq\left\|\mathrm{Op}\left(V_{m}\right) f\right\| \leq C_{2}\left\|(I+\mathrm{Op}(P))^{m} f\right\| \text {, } \tag{2.2}
\end{equation*}
$$

for $f \in \mathcal{S}(\mathfrak{g})$ and $0 \leq m \leq 1$.
Recall from [8] that P is maximal, that is, for every regular symmetric kernel T of arbitrary order $m>0$ there exists a constant $C>0$ such that

$$
\begin{equation*}
\|f \star \widetilde{T}\| \leq C\left\|f \star P^{m} f\right\|, \quad f \in \mathcal{S}(\mathfrak{g}) \tag{2.3}
\end{equation*}
$$

We introduce a scale of Sobolev spaces. For every $m \in \mathbf{R}$

$$
H(m)=\left\{f \in L^{2}(\mathfrak{g}):(I+\mathrm{Op}(P))^{m} f \in L^{2}(\mathfrak{g})\right\}
$$

with the usual norm $\|f\|_{(m)}=\left\|(I+\| \operatorname{Op}(P))^{m} f\right\|_{2}$. The dual space to $H(m)$ can be identified with $H(-m)$. By (2.2), the norms defined by V_{m} for $0<m \leq 1$ are equivalent. It follows that for every $0 \leq m \leq 1$

$$
V_{m}: H(m) \rightarrow H(0)
$$

is an isomorphism.

3. Main step

Here comes a preliminary version of our theorem.
Proposition 3.1. Let $0 \leq m \leq 1$. Let $A=A^{\star} \in S^{m}(\mathfrak{g})$ and let $\mathrm{Op}(A)$: $H(m) \rightarrow H(0)$ be an isomorphism. If $A \star V_{m}=V_{m} \star A$, then there exists $B \in S^{-m}(\mathfrak{g})$ such that

$$
A \star B=B \star A=\delta_{0} .
$$

In particular $\mathrm{Op}(B)=\mathrm{Op}(A)^{-1}$.
By hypothesis, A is invertible in $\mathcal{B}\left(L^{2}(\mathfrak{g})\right)$. There exists a symmetric distribution B such that

$$
\mathrm{Op}(A)^{-1} f=f \star B, \quad f \in \mathcal{S}(\mathfrak{g})
$$

We have to show that $B \in S^{-m}(\mathfrak{g})$.
Let $\mathcal{S}_{1}(\mathfrak{g})$ denote the subspace of $\mathcal{S}(\mathfrak{g})$ consisting of those functions whose Fourier transform is supported where $1 \leq|\lambda| \leq 2$. Note that this subspace is invariant under convolutions.

Lemma 3.2. $\quad \operatorname{Op}(B)$ maps continuously $\mathcal{S}(\mathfrak{g})$ into $\mathcal{S}(\mathfrak{g})$. The same applies to the invariant space $\mathcal{S}_{1}(\mathfrak{g})$.

Proof. Being a convolution operator bounded on $L^{2}(\mathfrak{g}), \mathrm{Op}(B)$ commutes with right-invariant vector fields Y and hence maps $\mathcal{S}(\mathfrak{g})$ into $L^{2}(\mathfrak{g}) \cap C^{\infty}(\mathfrak{g})$. Therefore, by Lemma 1.4,

$$
\begin{align*}
T_{\gamma} \mathrm{Op}(B) & =\mathrm{Op}(B) T_{\gamma}+\mathrm{Op}(B)\left[T_{\gamma}, \operatorname{Op}(A)\right] \operatorname{Op}(B) \\
& =\operatorname{Op}(B) T_{\gamma}+\operatorname{Op}(B) \operatorname{Op}\left(A_{\gamma}\right) \operatorname{Op}(B) \tag{3.1}\\
& +\sum_{\alpha, \beta \in \mathcal{P}(\gamma),|\alpha|+|\beta|=|\gamma|} c_{\alpha \beta} \cdot \operatorname{Op}(B) \operatorname{Op}\left(A_{\alpha}\right) T_{\beta} \operatorname{Op}(B),
\end{align*}
$$

where $A_{\alpha}=T_{\alpha} A$. Note that $A_{\alpha} \in S^{m-|\alpha|} \subset S^{0}$ so, by Proposition 1.2, $\operatorname{Op}\left(A_{\alpha}\right)$ is bounded on $L^{2}(\mathfrak{g})$. By induction it follows that $\mathrm{Op}(B)$ maps $\mathcal{S}(\mathfrak{g})$ into the space of functions vanishing rapidly at infinity. Since $\mathcal{S}(\mathfrak{g})$ is invariant under $\operatorname{Op}(B)$, the operators $\mathrm{Op}(A)$ and $\mathrm{Op}(B)=\mathrm{Op}(A)^{-1}$ are isomorphisms of $\mathcal{S}(\mathfrak{g})$ and $\mathcal{S}_{1}(\mathfrak{g})$.

For $n \in \mathbf{Z}$, let

$$
\left\langle A_{n}, f\right\rangle=2^{-n m} \int_{\mathfrak{g}} f\left(2^{n} x\right) A(d x), \quad\left\langle B_{n}, f\right\rangle=2^{n m} \int_{\mathfrak{g}} f\left(2^{n} x\right) B(d x)
$$

Corollary 3.3. The operators $\operatorname{Op}\left(B_{n}\right)$ are equicontinuous on $\mathcal{S}_{1}(\mathfrak{g})$.
Proof. By Proposition 1.2, the mapping

$$
S^{m}(\mathfrak{g}) \ni A \rightarrow \mathrm{Op}(B) \in \mathcal{B}\left(L^{2}(\mathfrak{g})\right)
$$

is continuous. Since the family $\left\{A_{n}\right\}$ is bounded in $S^{m}(\mathfrak{g})$ so is $\left\{\operatorname{Op}\left(B_{n}\right)\right\}$ in $\mathcal{B}\left(L^{2}(\mathfrak{g})\right)$. Hence our assertion follows by induction using (3.1).

Let $a=\widehat{A}$, and let

$$
\widehat{A_{\lambda}}(\eta)=a_{\lambda}(\eta)=a(\eta, \lambda), \quad \lambda \in \mathfrak{z}^{\star}
$$

Lemma 3.4. For every $f \in \mathcal{S}\left(\mathfrak{g}_{0}^{\star}\right)$ the function

$$
\lambda \rightarrow\left\|f \#_{\lambda} a_{\lambda}\right\|^{2}
$$

is continuous.
Proof. Let $0<h \in \mathcal{S}\left(\mathfrak{z}^{\star}\right)$ and $h(0)=1$. Then $F=(f \otimes h) \# a \in \mathcal{S}\left(\mathfrak{g}^{\star}\right)$ and

$$
\lambda \rightarrow \int_{\mathfrak{g}_{0}^{\star}}|F(\eta, \lambda)|^{2} d \eta=|h(\lambda)|^{2}\left\|f \#_{\lambda} a_{\lambda}\right\|^{2}
$$

is continuous, which implies our claim.
From now on we shall proceed by induction. The assertion is obviously true in the Abelian case. Let us assume that it holds for $\mathfrak{g}_{0}=\mathfrak{g} / \mathfrak{z}$.

Lemma 3.5. The distribution A_{0} satisfies the hypothesis of the theorem on \mathfrak{g}_{0}.
Proof. Observe that under the remaining assumptions of Proposition 3.1 the condition that $\mathrm{Op}(A): H(m) \rightarrow H(0)$ is an isomorphism is equivalent to the estimate

$$
\|f \star A\| \geq C\left\|f \star V_{m}\right\|, \quad f \in \mathcal{S}(\mathfrak{g})
$$

Now, since $A \star V_{m}=V_{m} \star A$, we also have

$$
A_{0} \star\left(V_{m}\right)_{0}=\left(V_{m}\right)_{0} \star A
$$

where $\left(V_{m}\right)_{0}$ is the counterpart of V_{m} on \mathfrak{g}_{0}. Furthermore, we have

$$
\|f \star A\| \geq C\left\|f \star V_{m}\right\|
$$

so, by Lemma 3.4,

$$
\left\|f_{0} \star A_{0}\right\| \geq C\left\|f_{0} \star\left(V_{m}\right)_{0}\right\|, \quad f \in \mathcal{S}(\mathfrak{g})
$$

which implies

$$
\left\|f \star A_{0}\right\| \geq C\left\|f \star\left(V_{m}\right)_{0}\right\|, \quad f \in \mathcal{S}\left(\mathfrak{g}_{0}\right)
$$

Let $b=\widehat{B}$ and $b_{n}=\widehat{B_{n}}$. Of course, $b_{n} \in \mathcal{S}^{\prime}\left(\mathfrak{g}^{\star}\right)$.
Lemma 3.6. There exist $p \in \widehat{S}_{0}^{-m}\left(\mathfrak{g}^{\star}\right)$ and $q \in \mathcal{S}\left(\mathfrak{g}^{\star}\right)$ such that

$$
\begin{equation*}
p \# a(\eta, \lambda)=1-q(\eta, \lambda), \quad 1 \leq \lambda \leq 2 . \tag{3.2}
\end{equation*}
$$

Proof. Let $u \in C_{c}^{\infty}([0, \infty)$ be equal to 1 in a neighbourhood of $[0,1]$ and supported in $[0,2)$. Then

$$
\psi(\eta, \lambda)=u\left(\frac{\rho(0, \lambda)}{\rho(\eta, 0)}\right)
$$

is an element of $\widehat{S}^{0}\left(\mathfrak{g}^{\star}\right)$. By Lemma 3.5 and the induction hypothesis, there exists $b_{0} \in \widehat{S}^{-m}\left(\mathfrak{g}^{\star}\right)$ on a such that

$$
b_{0} \#_{0} a_{0}=1
$$

Let

$$
p(\eta, \lambda)=\psi(\eta, \lambda) b_{0}(\eta)
$$

Then $p \in \widehat{S}^{-m}\left(\mathfrak{g}^{\star}\right)$ and

$$
\begin{aligned}
p \# a(\eta, \lambda) & =p \#\left(a-a_{0}\right)(\eta, \lambda)+b_{0} \#_{0} a_{0}(\eta)+(1-\psi)(\cdot, \lambda) b_{0} \#_{0} a_{0}(\eta) \\
& =1-q_{0}(\eta, \lambda)
\end{aligned}
$$

where for every $\varphi \in C_{c}^{\infty}\left(\mathfrak{z}^{\star}\right), \varphi(\lambda) q_{0}(\eta, \lambda)$ is in $\widehat{S}_{0}^{-1}\left(\mathfrak{g}^{\star}\right)$. Therefore we take $\varphi \in$ $C_{c}^{\infty}\left(\mathfrak{z}^{\star}\right)$ which equals 1 where $1 \leq|\lambda| \leq 2$ and modify p_{0} and q_{0} by letting

$$
p_{1}(\eta, \lambda)=p_{0}(\eta, \lambda) \varphi(\lambda), \quad q_{1}(\eta, \lambda)=q_{0}(\eta, \lambda) \varphi(\lambda)
$$

Now, $p_{1} \in \widehat{S}_{0}^{-m}\left(\mathfrak{g}^{\star}\right), q_{1} \in \widehat{S}_{0}^{-1}\left(\mathfrak{g}^{\star}\right)$, and

$$
p_{1} \# a=1-q_{1}, \quad 1 \leq|\lambda| \leq 2 .
$$

Let

$$
p \approx \sum_{k=1}^{\infty} q_{1}^{k} \# p_{1}
$$

where the infinite sum is understood as in (1.7). Then $p \in S_{0}^{-m}$ and

$$
p \# a=1-q, \quad 1 \leq \lambda \leq 2
$$

where $q \in \mathcal{S}\left(\mathfrak{g}^{\star}\right)$.

Now we are in a position to conclude the proof of Proposition 3.1. By acting with b on the right on both sides of (3.2), we get

$$
b=p+q \# b, \quad 1 \leq|\lambda| \leq 2,
$$

where $q \# b \in \mathcal{S}(\mathfrak{g})$. Consequently,

$$
\left|D_{\eta}^{\alpha} b(\eta, \lambda)\right| \leq C_{\alpha} \rho(\eta, \lambda)^{-m-|\alpha|}, \quad 1 \leq|\lambda| \leq 2 .
$$

However, the same applies to b_{n} for every $n \in \mathbf{Z}$ with the same constants C_{α}. Therefore, $B \in S_{0}^{-m}(\mathfrak{g})$. Finally, by Lemma 1.5, we conclude that $B \in S^{-m}(\mathfrak{g})$.

Corollary 3.7. Let $A \in S^{0}(\mathfrak{g})$ and let

$$
\|f \star A\| \geq C\|f\|, \quad f \in \mathcal{S}(\mathfrak{g})
$$

There exists $B \in S^{0}(\mathfrak{g})$ such that

$$
B \star A=\delta_{0} .
$$

Proof. It is not hard to see that

$$
\left\|\mathrm{Op}\left(A^{\star} \star A\right) f\right\| \geq C\|f\|, \quad f \in \mathcal{S}(\mathfrak{g})
$$

so $\mathrm{Op}\left(A^{\star} \star A\right): L^{2}(\mathfrak{g}) \rightarrow L^{2}(\mathfrak{g})$ is an isomorphism. By Proposition 3.1 there exists $B_{1} \in S^{0}(\mathfrak{g})$ such that $B_{1} \star A^{\star} \star A=\delta_{0}$. Therefore $B_{1} \star A^{\star}$ is the left-inverse for A.

Corollary 3.8. For every $0 \leq m \leq 1$, there exists $V_{-m} \in S^{-m}(\mathfrak{g})$ such that

$$
V_{m} \star V_{-m}=V_{-m} \star V_{m}=\delta_{0} .
$$

4. The operator $\mathrm{Op}\left(V_{1}\right)$

In this section we show that the role of the family of distributions $V_{m} \in S^{m}(\mathfrak{g})$ in defining the Sobolev spaces can be taken over by the family of fractional powers of one single distribution V_{1}. This will enable the final step towards our theorem.

Recall that if a positive selfadjoint operator $A: L^{2}(\mathfrak{g}) \rightarrow L^{2}(\mathfrak{g})$ is invertible, then

$$
\begin{equation*}
A^{-k} f=\frac{\sin k \pi}{\pi} \int_{0}^{\infty} t^{-k}(t I+A)^{-1} f d t \tag{4.1}
\end{equation*}
$$

for $0<k<1$ (see, e.g, Yosida [18], IX.11).
The operator $\mathrm{Op}\left(V_{1}\right)$ is positive selfadjoint and invertible. In the proof of the next proposition we follow Beals [2], Theorem 4.9.

Proposition 4.1. For every $m \in \mathbf{R}, \mathrm{Op}\left(V_{1}\right)^{m}=\mathrm{Op}\left(V_{1}^{m}\right)$, where $V_{1}^{m} \in$ $S^{m}(\mathfrak{g})$.

Proof. It is sufficient to prove the proposition for $-1<m<0$. For $t \geq 0$ let

$$
R_{t}=\left(V_{1}+t \delta_{0}\right)^{-1}, \quad r_{t}=\widehat{R}_{t} .
$$

The operators $\operatorname{Op}\left(V_{1}\right)+t I$ satisfy the hypothesis of Proposition 3.1 with the exponent $m=1$ uniformly so there exist constants C_{α}^{\prime} independent of t such that

$$
\begin{equation*}
\left|D^{\alpha} r_{t}\right| \leq C_{\alpha}^{\prime} \rho^{-1-|\alpha|} \tag{4.2}
\end{equation*}
$$

On the other hand

$$
t R_{t}=\delta_{0}-R_{t} \star V_{1} \in S^{0}(\mathfrak{g})
$$

uniformly in t so that

$$
\begin{equation*}
t\left|D^{\alpha} r_{t}\right| \leq C_{\alpha}^{\prime \prime} \rho^{-\alpha} . \tag{4.3}
\end{equation*}
$$

Combining (4.2) with (4.3) we get

$$
\left|D^{\alpha} r_{t}\right| \leq C_{\alpha}(t+\rho)^{-1} \rho^{-\alpha}
$$

with C_{α} independent of $t \geq 0$.
Now, the operator $\mathrm{Op}\left(V_{1}\right)$ is positive and invertible so, by (4.1), $\mathrm{Op}\left(V_{1}\right)^{m}=$ $\mathrm{Op}\left(V_{1}^{m}\right)$, where

$$
\left(V_{1}^{m}\right)^{\wedge}=-\frac{\sin m \pi}{\pi} \int_{0}^{\infty} t^{m} r_{t} d t
$$

where $-1<m<0$. Therefore

$$
\begin{aligned}
\left|D^{\alpha}\left(V_{1}^{m}\right)^{\wedge}\right| & \leq \frac{C_{\alpha}}{\pi} \int_{0}^{\infty} t^{m}(t+\rho)^{-1} d t \cdot \rho^{-|\alpha|} \\
& \leq C_{\alpha}^{\prime} \rho^{m-|\alpha|}
\end{aligned}
$$

which proves our case.
Lemma 4.2. Let K be a distribution on \mathfrak{g} smooth away from the origin and satisfying the estimates

$$
\begin{equation*}
\left|D^{\alpha} K(x)\right| \leq C_{\alpha}|x|^{m-Q-|\alpha|}, \quad x \neq 0 \tag{4.4}
\end{equation*}
$$

for some $m>0$. Then,

$$
K=R+\nu,
$$

where $R \in S^{-m}(\mathfrak{g})$ and $\partial \mu \in L^{1}(\mathfrak{g})$ for every left-invariant differential operator on \mathfrak{g}.

Proof. It is sufficient to observe that (4.4) implies that \widehat{K} is smooth away from the origin and

$$
\left|D^{\alpha} \widehat{K}(\xi)\right| \leq C_{\alpha}|x|^{-m-|\alpha|}, \quad \xi \neq 0
$$

and let $R=\varphi K, \nu=K-R$, where $\varphi \in C_{c}^{\infty}(\mathfrak{g})$ is equal to 1 in a neighbourhood of 0.

Recall that

$$
P^{m}=V_{m}+\mu,
$$

where $V_{m} \in S^{m}(\mathfrak{g})$ and $\partial \mu \in L^{1}(\mathfrak{g})$ for every invariant differential operator ∂ on \mathfrak{g}.

Proposition 4.3. Let $m>0$. Then

$$
\left(P^{m}+\delta_{0}\right)^{-1}=R+\nu,
$$

where $R \in S^{-m}(\mathfrak{g})$ and $\partial \nu \in L^{1}(\mathfrak{g})$ for every invariant differential operator ∂ on \mathfrak{g}.
Proof. Since the kernel P^{m} is maximal (see (2.3) above), it follows (see Dziubański [6], Theorem 1.13) that the semigroup generated by P^{m} consists of operators with the convolution kernels

$$
h_{t}(x)=t^{-Q / m} h_{1}\left(t^{-1 / m} x\right), \quad t>0,
$$

which are smooth functions satisfying the estimates

$$
\left|D^{\alpha} h_{t}(x)\right| \leq \frac{C_{\alpha} t}{\left(t^{1 / m}+|x|\right)^{Q+m+|\alpha|}}, \quad x \in \mathfrak{g} .
$$

Therefore,

$$
\left(P^{m}+\delta_{0}\right)^{-1}(x)=\int_{0}^{\infty} e^{-t} h_{t}(x) d t
$$

and consequently satisfies the estimates (4.4).
We know that there exists a constant $C>0$ such that

$$
C^{-1}\left\|f \star V_{1}\right\| \leq\|f \star P\|+\|f\| \leq C\left\|f \star V_{1}\right\|
$$

whence

$$
\begin{equation*}
\left\|f \star V_{1}^{m}\right\| \geq C_{m}\|f\|, \quad f \in \mathcal{S}(\mathfrak{g}) \tag{4.5}
\end{equation*}
$$

for $m>0$.
Now we have much more.
Corollary 4.4. For every $m>0$ there exists a constant $C>0$ such that

$$
\begin{equation*}
C^{-1}\left\|f \star V_{1}^{m}\right\| \leq\left\|f \star P^{m}\right\|+\|f\| \leq C\left\|f \star V_{1}^{m}\right\| . \tag{4.6}
\end{equation*}
$$

Proof. In fact, we have

$$
V_{1}^{m}=V_{1}^{m} \star\left(P^{m}+\delta_{0}\right)^{-1} \star\left(P^{m}+\delta_{0}\right)=\left(V_{1}^{m} \star R+V_{1}^{m} \star \nu\right) \star\left(P^{m}+\delta_{0}\right)
$$

where R and ν are as in Proposition 4.3. Then $V_{1}^{m} \star R \in S^{0}(\mathfrak{g})$ and $V_{1}^{m} \star \nu \in L^{1}(\mathfrak{g})$ so

$$
\left\|f \star V_{1}^{m}\right\| \leq C_{1}\left(\left\|f \star P^{m}\right\|+\|f\|\right)
$$

The proof of the opposite inequality uses the identity

$$
f \star P^{m}=f \star V_{m} \star V_{1}^{-m} \star V_{1}^{m}+f \star \mu
$$

and (4.5).

5. Main theorem

Here comes our main theorem and the conclusion of its proof.
Theorem 5.1. Let $A \in S^{m}(\mathfrak{g})$, where $m \geq 0$. If A satisfies the estimate

$$
\|f \star A\| \geq C\left(\left\|f \star P^{m}\right\|+\|f\|\right), \quad f \in \mathcal{S}(\mathfrak{g})
$$

then there exists $B \in S^{-m}(\mathfrak{g})$ such that

$$
B \star A=\delta_{0}
$$

Proof. Let $A \in S^{m}(\mathfrak{g})$ satisfy the hypothesis of our theorem. Then $A \star V_{1}^{-m}$ satisfies the hypothesis of Corollary 3.7 so there exists $B_{1} \in S^{0}(\mathfrak{g})$ such that

$$
B_{1} \star A \star V_{1}^{-m}=\delta_{0} .
$$

By acting by convolution with V_{1}^{m} on the right and with V_{1}^{-m} on the left, we see that $B=V_{1}^{-m} \star B_{1}$ is the left-inverse for A.

Corollary 5.2. Let $A=A^{\star} \in S^{m}(\mathfrak{g})$ for some $m \geq 0$. The following conditions are equivalent:
(i) There exists $B \in S^{-m}$ such that $B \star A=A \star B=\delta_{0}$,
(ii) For every $k \in \mathbf{R}, \operatorname{Op}(A): H(k+m) \rightarrow H(k)$ is an isomorphism,
(iii) $\mathrm{Op}(A): H(m) \rightarrow H(0)$ is an isomorphism,
(iv) There exists $C>0$ such that

$$
\|f \star A\| \geq C\left(\left\|f \star P^{m}\right\|+\|f\|\right), \quad f \in \mathcal{S}(\mathfrak{g})
$$

Corollary 5.3. Let $A \in S^{m}(\mathfrak{g})$, where $m>0$, and let $\mathrm{Op}(A)$ be positive in $L^{2}(\mathfrak{g})$. Then A has a parametrix if and only if there exists $C>0$ such that

$$
\begin{equation*}
\|f \star A\|+\|f\| \geq C\left\|f \star P^{m}\right\| \tag{5.1}
\end{equation*}
$$

Proof. Let $B \in S^{-m}(\mathfrak{g})$ be a parametrix for A. Then

$$
B \star A=\delta_{0}+h,
$$

where $h \in \mathcal{S}(\mathfrak{g})$. Consequently,

$$
P^{m}=V_{1}^{m} \star B \star A+g
$$

where $g \in L^{1}(\mathfrak{g})$. Now, $V_{1}^{m} \star B \in S^{0}(\mathfrak{g})$ so it is easy to see that the estimate (5.1) holds.

Suppose now that (5.1) holds true. Then

$$
\left\|f \star P^{m}\right\| \leq C_{1}\left\|f \star\left(A+\delta_{0}\right)\right\|,
$$

which, by Corollary 5.2, implies that $A+\delta_{0} \in S^{m}(\mathfrak{g})$ has an inverse $B_{1} \in S^{-m}$. Thus

$$
B_{1} \star A=\delta_{0}-B_{1},
$$

and the parametrix B can be found as an asymptotic series

$$
B \approx \sum_{k=1}^{\infty} B_{1}^{k}
$$

6. Rockland operators

A left-invariant homogeneous differential operator R is said to be a Rockland operator if for every nontrivial irreducible unitary representation π of \mathfrak{g}, π_{R} is injective on the space of C^{∞}-vectors of π.

Let R be a left-invariant differential operator homogeneous of degree $-Q-m$, that is,

$$
R\left(f \circ \delta_{t}\right)=t^{m} R f, \quad f \in \mathcal{S}(\mathfrak{g}), \quad t>0
$$

It is well-known that the following conditions are equivalent:
(1) R is a Rockland operator,
(2) R is hypoelliptic,
(3) For every regular kernel T of order m, there exists a constant $C>0$ such that

$$
\|\mathrm{Op}(T) f\| \leq C\|R f\|, \quad f \in \mathcal{S}(\mathfrak{g})
$$

That (1) is equivalent to (2) was proved by Helffer-Nourrigat [12] with a contribution from Beals [1] and Rockland [16]. Helffer-Nourrigat [12] also contains the proof of equivalence of (1)-(3) for $\mathrm{Op}(T)$ being a differential operator. The remaining part was obtained by the present author in $[8]$ and $[\mathbf{1 1}]$.

It has been proved by Melin [14] that a Rockland operator on a stratified homogenenous group has a parametrix. We are going to show that in fact this is so on any homogeneous group.

Corollary 6.1. A Rockland operator on \mathfrak{g} has a parametrix.
Proof. Without any loss of generality we may assume that R is positive. Then the assertion follows from (3) and Corollary 5.3.

Thus we have one more condition equivalent to (1)-(3). However, the techniques of the present paper can be applied directly to Rockland operators rending unnecessary any reference to Theorem 5.1 or Corollary 5.3. What is needed are well-known properties of Rockland operators and the symbolic calculus of Proposition 1.1. Here is a brief sketch of a direct parametrix construction for a Rockland operator R.

We may assume that R is positive. By Folland-Stein [7], Chapter 4.B, R is essentially selfadjoint on $L^{2}(\mathfrak{g})$ with $\mathcal{S}(\mathfrak{g})$ for its core domain. Moreover, the semigroup generated by it consists of convolution operators with kernels

$$
p_{t}(x)=t^{-Q / m} p_{1}\left(t^{-1 / m} x\right)
$$

where p_{1} is a Schwartz class function. Note that $R=\operatorname{Op}\left(R \delta_{0}\right)$. Let $S=\left(\delta_{0}+\right.$ $\left.R \delta_{0}\right)^{-1}$. It follows that

$$
\widehat{S}(\xi)=\int_{0}^{\infty} e^{-t} \widehat{p}_{1}\left(t^{1 / m} \xi\right) d t
$$

is a smooth function satisfying the estimates which show that $S \in S^{-m}(\mathfrak{g})$. Moreover,

$$
S \star R \delta_{0}=\delta_{0}-S,
$$

and by the usual argument the asymptotic series

$$
S_{1} \approx \sum_{k=1}^{\infty} S^{k}
$$

defines a parametrix for R (cf. Melin [14]).

References

1. R. Beals, Opérateurs invariants hypoelliptiques sur un groupe de Lie nilpotent, Seminaire Goulaouic-Schwartz 1976-1977, EXPOSÉ no XIX, 1-8,
2. R. Beals, Weighted distribution spaces and pseudodifferential operators, Journal d'analyse mathématique, 39 (1981), 131-187,
3. M. Christ and D. Geller, Singular integral characterization of Hardy spaces on homogeneous groups, Duke Math. J. 51 (1984), 547-598,
4. M. Christ and D. Geller and P. Geowacki and L. Polin, Pseudodifferential operators on groups with dilations, Duke. Math. J. 68 (1992), 31-65,
5. M. Duflo, Représentations de semi-groupes de mesures sur un groupe localment compact, Ann. Inst. Fourier, Grenoble 28 (1978), 225-249,
6. J. Dziubański, A remark on a Marcinkiewicz-Hörmander multipiler theorem for SOME NONDIFFERENTIAL CONVOLUTION OPERATORS, Colloq. Math. 58 (1989), 77-83.
7. G.B. Folland and E.M. Stein, Hardy spaces on homogeneous groups, Princeton University Press, Princeton NJ 1982,
8. P. GŁowacki, Stable semigroups of measures as commutative approximate identities on non-Graded homogeneous groups, Inventiones Mathematicae 83 (1986), 557-582,
9. P. GŁowacki, An inversion problem for singular integral operators on homogeneous groups, Studia mathematica 87 (1987), 53-69,
10. P. Geowacki, The Melin calculus for general homogeneous groups, Ark. Mat. 45 (2007), 31-48,
11. P. GŁowacki, The Rockland condition for nondifferential convolution operators On homogeneous groups II, Studia Math. 98 (1991), 99-114,
12. B. Helffer, J. Nourrigat, Caracterisation des opérateurs hypoelliptiques homogenes invariants À gauche sur un groupe de Lie nilpotent gradué, Comm. Partial Differential Equations 4 (1979), 899-958,
13. L. Hörmander, The analysis of linear partial differential operators vol. III, Berlin - Heidelberg - New York - Tokyo 1983,
14. A. Melin, Parametrix constructions for right-invariant differential operators on nilpotent Lie groups, Ann. Glob. Anal. Geom. 1 (1983), 79-130,
15. F. Ricci, Calderón-Zygmund kernels on nilpotent Lie groups, Proceedings of the Harmonic Analysis conference, University of Minnesota, April 20 - May 1, 1981
16. C. Rockland, Hypoellipticity on the Heisenberg group: representation theoretic Criteria, Trans. Amer. Math. Soc. 240 (1978), 1-52,
17. E.M. Stein, Harmonic analysis, Princeton University Press, Princeton NJ 1993,
18. K. Yosida, Functional analysis, Berlin-Heidelberg-New York 1980.

Paweł Głowacki
Institute of Mathematics,
University of Wrocław, pl. Grunwaldzki 2/4,
50-384 Wrocław, Poland,
glowacki@math.uni.wroc.pl

