
Arkiv för matematik, 45 (2007), 31-48
Revised March 16, 2013

MELIN CALCULUS
FOR GENERAL HOMOGENEOUS GROUPS

PAWE L G LOWACKI (WROC LAW)

Abstract. The purpose of this note is to give an extension of
the symbolic calculus of Melin for convolution operators on nilpo-
tent Lie groups with dilations. Whereas the calculus of Melin is
restricted to stratified nilpotent groups, the extension offered here
is valid for general homogeneous groups. Another improvement
concerns the L2-boundedness theorem, where our assumptions on
the symbol are relaxed. The zero-class conditions that we require
are of the type

|Dαa(ξ)| ≤ Cα
R∏
j=1

ρj(ξ)
−|αj |,

where ρj are ”partial homogeneous norms” depending on the vari-
ables ξk for k > j in the natural grading of the Lie algebra (and
its dual) determined by dilations. Finally, the class of admissible
weights for our calculus is substantially broader. Let us also em-
phasize the relative simplicity of our argument if compared to that
of Melin.

Introduction

The purpose of this note is to give an extension of the symbolic calcu-
lus of Melin [7] for convolution operators on nilpotent Lie groups with
dilations. The calculus can be viewed as a higher order generalization
of the Weyl calculus for pseudodifferential operators of Hörmander [3].
In fact, the idea of such a calculus is very similar. It consists in de-
scribing the product

a#b = (a∨ ? b∨)∧, a, b ∈ C∞c (g?),

on a homogeneous Lie group G, where f∧ and f∨ denote the Abelian
Fourier transforms on the Lie algebra g and its dual g?, and its con-
tinuity in terms of suitable norms similar to those used in the theory
of pseudodifferential operators. An integral part of the calculus is a
L2-boundedness theorem of the Calderón-Vaillancourt type.

This has been done by Melin whose starting point was the following
formula

a#b(ξ) = U(a⊗ b)F (ξ, ξ),
1
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where

U(F )∨(x, y) = F∨(
x− y + xy

2
,
y − x+ xy

2
), x, y ∈ g.

Melin shows that the unitary operator U can be imbedded in a one-
parameter unitary group Ut with the infinitesimal generator Γ which
is a differential operator on g? × g? with polynomial coefficients, and
he thoroughly investigates the properties of Γ under the assumption
that G is a homogeneous stratified group. From the continuity of U
he derives a composition formula for classes of symbols satisfying the
estimates

(0.1) |Dαa(ξ)| ≤ Cα(1 + |ξ|)m−|α|,
where | · | is the homogeneous norm on g? and |α| is a homogeneous
length of a multiindex α. He also proves an L2-boundedness theorem
for symbols satisfying (0.1) with m = 0.

Our extension goes in various directions. First of all the calculus of
Melin is restricted to stratified nilpotent groups, whereas the extension
offered here is valid for general homogeneous groups. Another improve-
ment concerns the L2-boundedness theorem, where our assumptions on
the symbol are less restrictive. The zero-class conditions that we re-
quire are

|Dαa(ξ)| ≤ Cα

R∏
j=1

ρj(ξ)
−|αj |,

where ρj are ”partial homogeneous norms” depending on the variables
ξk for k > j in the natural grading of the Lie algebra (and its dual)
determined by dilations, and α = (α1, α2, . . . , αR) is the corresponding
representation of the multiindex α relative to the grading. This direc-
tion of generalization of the boundedness theorem had been suggested
by Howe [5] even before the Melin calculus was created. Finally, the
class of admissible weights for our calculus is substantially broader. Let
us also emphasize the relative simplicity of our argument if compared
to that of Melin.

Most of the techniques applied here have been already developed in
a very similar context of [2]. They heavily rely on the methods of the
Weyl calculus of Hörmander [3]. We take this opportunity to clarify
some technical points which remained somewhat obscure in [2]. One
major mistake is also corrected. Some repetition is therefore unavoid-
able. In [2] the reader will also find more on the background and history
of various symbolic calculi on nilpotent Lie groups.

1. Preliminaries

Let X be a finite dimensional Euclidean space. Denote by < ·, · >
and ‖ · ‖ the scalar product and the corresponding Euclidean norm.
These are fixed throughout the paper. Whenever we identify X? with
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X, it is by means of the duality determined by the scalar product.
Let X =

⊕R
k=1Xk be an orthogonal sum. Fix an orthonormal basis

{ekj}nkj=1 in Xk, where nk = dimXk. Thus the variable x ∈ X splits
into x = (x1, x2, . . . , xR), where

xk = (xk1, xk2, . . . , xknk) ∈ Xk.

The length of a multiindex

α = (αk)
R
k=1 = (αkj) ∈ NdimX .

is defined by

|α| =
R∑
k=1

|αk|, |αk| =
nk∑
j=1

αkj.

Let

Dkjf(x) = f ′(x)ekj,

and

Dα = Dα1
1 . . . DαR

R , Dαk
k = Dαk1

k1 . . . D
αknk
knk

.

We assume that X is endowed with a family of dilations

δtxk = tdk , xj ∈ Xk,

with eigenvalues D = {dk}, where

1 ≤ d1 ≤ d2 ≤ · · · ≤ dR.

The homogeneous length of a multiindex α is defined by

d(α) =
R∑
k=1

dk|αk|.

Let

|x| =
R∑
k=1

‖xk‖1/dk

be the corresponding homogeneous norm. For 0 ≤ k ≤ R let |x|R+1 = 0
and

|x|k =
R∑
j=k

‖xj‖1/dj , 1 ≤ k ≤ R.

Let

qx(z)2 =
R∑
k=1

‖zk‖2

qk(x)2dk
x ∈ X,

where qk(x) = 1 + |x|k+1, be a family of norms (a Riemannian metric)
on X. More generally, let G(X) denote the set of all metrics g of the
form

gx(z)2 =
R∑
k=1

‖zk‖2

gk(x)2dk
,
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where

gk(x) = δ + |x|k+1, δ > 0, 0 ≤ k ≤ R.

Lemma 1.1. Let g ∈ G(X). For every 0 ≤ k ≤ R,

1

2
≤ gk(x)

gk(y)
≤ 2 if gx(x− y) <

1

2R
.

Proof. Observe that gx(x− y) < 1
2R

yields

‖xj − yj‖1/dj ≤
gk(x)

2R
, k < j ≤ R,

so

R∑
j=k+1

‖xj − yj‖ ≤
1

2
gk(x),

and consequently

gk(x) ≤ gk(y) +
R∑

j=k+1

‖xj − yj‖ ≤ gk(y) +
1

2
gk(x),

gk(y) ≤ gk(x) +
R∑

j=k+1

‖xj − yj‖ ≤
3

2
gk(x),

which implies

1

2
≤ gk(x)

gk(y)
≤ 2.

�

Lemma 1.2. Let g ∈ G(X). There exist constants C,M > 0 indepen-
dent of g such that, for every 0 ≤ k ≤ R,

(1.3) gk(x) ≤ Cgk(y)
(

1 + gy(x− y)
)

and

(1.4) gk(x) ≤ Cgk(y)
(

1 + gx(x− y)
)M

.
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Proof. We start with inequality (1.3). We have

gk(x) ≤ gk(y) +
R∑

j=k+1

‖xj − yj‖1/dj

≤ gk(y)

(
1 +

∑R
j=k+1 ‖xj − yj‖1/dj

gk(y)

)

≤ gk(y)

(
1 +

R∑
j=k+1

‖xj − yj‖1/dj
gj(y)

)

≤ gk(y)

(
R +

R∑
j=k+1

‖xj − yj‖
gj(y)dj

)
≤ Cgk(y)

(
1 + gy(x− y)

)
.

The second inequality is proved by induction. In fact, if k = R, there
is nothing to prove. Assume (1.4) holds for k + 1 with some constants
C,M > 0. Then

gk(x) ≤ gk(y) +
R∑

j=k+1

‖xj − yj‖1/dj

≤ gk(y)
(

1 +

∑R
j=k+1 ‖xj − yj‖1/dj

gk(y)

)
≤ gk(y)

(
1 +

gk+1(x)

gk+1(y)

R∑
j=k+1

‖xj − yj‖1/dj
gk+1(x)

)
.

By induction hypothesis,

gk(x) ≤ Cgk(y)(1 + gx(x− y))M

(
1 +

R∑
j=k+1

‖xj − yj‖1/dj
gk+1(x)

)

≤ Cgk(y)(1 + gx(x− y))M

(
R +

R∑
j=k+1

‖xj − yj‖
gj(y)dj

)
≤ C1gk(y)(1 + gx(x− y))M+1,

which shows that (1.4) holds also for k with new constants C1 and
M1 = M + 1. �

A family of Euclidean norms (a metric) g = {gx}x∈X on X is called
slowly varying if there exists 0 < γ ≤ 1 such that

(1.5) γ ≤ gy
gx
≤ 1

γ
, if gx(x− y) < γ.
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Two metrics g1 and g2 are said to be equivalent if there exists a constant
C > 0 such that

(1.6) C−1g1 ≤ g2 ≤ Cg1.

A metric g on X is called tempered with respect to another metric G,
or briefly G-tempered, if there exist C,M > 0 such that

(1.7)
{gx
gy

}±1
≤ C

(
1 + Gx(x− y)

)M
, gx ≤ Gx.

Note that a self-tempered metric is automaticly slowly varying.

Corollary 1.8. All metrics g ∈ G(g) are slowly varying and uniformly
self-tempered.

Proof. That all metrics in G(X) are uniformly self-tempered and there-
fore slowly varying follows immediately from Lemma 1.2. Alternatively,
one can invoke Lemma 1.1 to show that they are slowly varying. �

Lemma 1.9. If g is a self-tempered family of norms with constants
C,M , then for every x, y, z ∈ X

1 + gx(x− y) ≤ C
(

(1 + gy(x− y)
)M+1

,(1.10)

1 + gx(x− y) ≤ C(1 + gz(x− z))M(1 + gz(z − y)),(1.11)

1 + gx(x− y) ≤ C2
(

1 + gx(x− z)
)M(

1 + gy(z − y)
)M+1

,(1.12)

Proof. In fact,

1 + gx(x− y) ≤ 1 + Cgy(x− y)
(

1 + gy(x− y)
)M

≤ C
(

1 + gy(x− y)
)M+1

,

as required in (1.10). Moreover, by (1.10),

1+gx(x− y) ≤ 1 + gx(x− z) + gx(z − y)

≤ 1 + gx(x− z) + Cgz(z − y)
(

1 + gx(x− z)
)M

≤
(

1 + gx(x− z)
)M(

1 + Cgz(z − y)
)

which gives (1.11). Finally, (1.10) and (1.11) imply (1.12). �

A strictly positive function m on X is a G-tempered weight on X
with respect to the G-tempered metric g, if it satisfies the conditions

(1.13)
{m(x)

m(y)

}±1
≤ C if gx(x− y) ≤ γ

and

(1.14)
{m(x)

m(y)

}±1
≤ C

(
1 + Gx(x− y)

)M
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for some C,M > 0. The weights form a group under multiplication.
A typical example of a weight for g ∈ G(g) is m(x) = 1 + |x|k. A
universal example is

(1.15) m(x) = 1 + gx(x− x0),

where x0 is fixed. Note also that the constant function 1(x) = 1 is a
weight for every metric g.

Let m be a weight with respect to a metric g. For f ∈ C∞(X) let

|f |m(k)(g) = sup
x∈X

gx(D
kf(x))

m(x)
,

and

|f |mk (g) = max
0≤j≤k

|f |m(j)(g),

where D stands for the Fréchet derivative, and

gx(D
kf(x)) = sup

gx(yj)≤1
|Dkf(x)(y1, y2, . . . , yk)|.

Let

Sm(X,g) = {a ∈ C∞(X) : |a|mk (g) <∞, all k ∈ N}.

Sm(X,g) is a Fréchet space with the family of seminorms | · |mk (g).
Thus f ∈ C∞(X) belongs to Sm(X,g) if and only if it satisfies the
estimates

|Dαf(x)| ≤ Cαm(x)
R∏
k=1

gk(x)−dk|αk|,

where α = (α1, . . . , αR). Arbitrary seminorms in Sm(X,g) will be
denoted by | · |mg .

Apart from the Fréchet topology in the spaces Sm(X,g) it is conve-
nient to introduce a weak topology of the C∞-convergence on Fréchet
bounded subsets. By the Ascoli theorem, this is equivalent to the
pointwise convergence of bounded sequences in Sm. Following Man-
chon [6] we call a mapping T : Sm1 → Sm2 double-continuous, if it
is both Fréchet continuous and weakly continuous. Moreover, C∞c (X)
is weakly dense in Sm(X,g). The last assertion is a consequence of
Proposition 2.1 b) below.

2. The method of Hörmander

The following construction of a partition of unity is due to Hörman-
der [3]. Also the lemma that follows is an important principle of the
Hörmander theory. For the convenience of the reader we include the
proofs here.
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Proposition 2.1. Let g be a slowly varying metric on X.
a) For every 0 < r < γ there exists a sequence xν ∈ X such that X

is the union of the balls

Bν = Bν(r) = {x ∈ X : gxν (x− xν) < r}
and no point x ∈ X belongs to more than N balls, where N does not
depend on x.

b) There exists a family of functions φν ∈ C∞c (Bν) bounded in
S1(X,g) and such that∑

ν

φν(x) = 1, x ∈ X.

c) For x ∈ X let
dν(x) = gxν (x− xν).

If the metric g is self-tempered, then there exist constants M,C0 > 0
such that ∑

ν

(
1 + dν(x)

)−M
≤ C0, x ∈ X.

All the estimates in the construction depend just on the constant γ in
(1.5), constants C,M in (1.7), and the choice of r.

Proof. a) Let 0 < r < γ. Let {xν} be a maximal sequence of points in
X such that

gxν (xµ − xν ≥ γr, µ 6= ν.

Let x ∈ X. Note that

gx(x− xν) < γr implies gxν (x− xν) < r.

Therefore, either gxν (x− xν) < r for some ν, or

gx(x− xν) ≥ γr and gxν (x− xν) ≥ r ≥ γr.

The latter contradicts the maximality of our sequence. The former
implies that X ⊂

⋃
ν Bν .

To show that the covering is uniformly locally finite suppose that
x ∈ Bν . Then gxν (x − xν) < r, which implies gx(x − xν) < rγ < 1.
On the other hand gx(xµ − xν) ≥ γr for µ 6= ν. The number of points
from a uniformly discrete set in a unit ball is bounded independently
of the given norm gx so we are done.

b) Let 0 < r < r1 < γ. Let ψ ∈ C∞c (−r21, r21) be equal to 1 on the
smaller interval [−r2, r2]. If

ψν(x) = ψ(gxν (x− xν)2),
then, by part a),

∑
µ ψµ(x) ≥ 1 for every x ∈ X, and it is not hard to

see that

φν(x) =
ψν(x)∑
µ ψµ

has all the required properties.
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c) Let r < γ. Let x ∈ X. For k ∈ N let

Mk = {ν : dν(x) < k}.
It is sufficient to show that the number |Mk| of the elements in Mk is
bounded by a polynomial in k. Let ν ∈Mk and let

Vν = {z ∈ X : gx(z − xν) < rk},
where

rk =
r

C(1 + k)M
.

Observe that Vν is contained both in Bν (see part a)) and in the ball

V = {z ∈ X : gx(z − x) < Rk},
where Rk = rk + C(1 + k)M+1. In fact, if gx(z − xν) < rk, then

gxν (z − xν) ≤ Cgx(z − xν)(1 + k)M < r,

and

gx(z − x) ≤ gx(z − xν) + gx(xν − x)

< rk + Cgxν (xν − x)
(

1 + gxν (xν − x)
)M

< rk + C
(

1 + 1 + gxν (xν − x)
)M+1

< rk + C(1 + k)M+1

Hence

C1|Mk|rdimX
k ≤

∑
ν∈Mk

|Vν | ≤ N |
⋃
ν∈Mk

Vν | ≤ N |V | ≤ C1NR
dimX
k ,

which immediately implies the desired estimate

|Mk| ≤ N
(

1 +
Rk

rk

)dimX

.

�

Lemma 2.2. Let X be a finite dimensional vector space with a Eu-
clidean norm ‖ · ‖. Let r1 > r > 0. Let L be an affine function such
that L(x) 6= 0 for x ∈ B(x0, r1). Then for every k ∈ N,

‖Dk 1

L
(x)‖ ≤ k!r1

(r1 − r)k+1|L(x0)|
, x ∈ B(x0, r).

The estimate does not depend on the choice the norm.

Proof. We may assume that x0 = 0 and L(0) = 1. Let ξ be a linear
functional on X such that L(x) = 〈ξ, x〉+ 1. Since

L(x) = 〈ξ, x〉+ 1 > 0, ‖x‖ < r1,

it follows that ‖ξ‖ ≤ 1
r1

and

L(x) ≥ 1− r

r1
, x ∈ B(0, r).
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Consequently,

∥∥∥Dk 1

L
(x)
∥∥∥ ≤ k!‖ξ‖k

|L(x)|k+1
≤

k!
(

1
r1

)k
(
r1−r
r1

)k+1

≤ k!r1
(r1 − r)k+1

for x in B(0, r). �

For the general theory of slowly varying metrics and its applications
to the theory of pseudodifferential calculus the reader is referred to
Hörmander [4], vol. I and III.

3. Homogeneous groups

Let g be a nilpotent Lie algebra with a fixed scalar product. The
dual vector space g? will be identified with g by means of the scalar
product. We shall also regard g as a Lie group with the Campbell-
Hausdorff multiplication

x1 ◦ x2 = x1 + x2 + r(x1, x2),

where

r(x1, x2) =
1

2
[x1, x2] +

1

12
([x1, [x1, x2]] + [x2, [x2, x1]])

+
1

24
[x2, [x1, [x2, x1]]] + . . .

is the (finite) sum of terms of order at least 2 in the Campbell-Hausdorff
series for g.

The Lebesue measure dx is a biinvariant Haar measure for the group
g. The formula for convolution reads

f ? g(x) =

∫
G

f(x ◦ y−1)g(y) dy, f, g ∈ L1(g).

Let {δt}t>0, be a family of group dilations on g and let

gk = {x ∈ g : δtx = tdkx}, 1 ≤ k ≤ R,

where 1 ≤ d1 ≤ d2 ≤ · · · ≤ dR. Then

(3.1) g = g1 ⊕ g2 ⊕ · · · ⊕ gR

and

[gi, gj] ⊂
{

gk, if di + dj = dk,
{0}, if di + dj /∈ D,

where D = {dj : 1 ≤ j ≤ R}. Let x → |x| be the homogeneous norm
on g as defined in Section 1. All remaining notation of Section 1 holds
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as well. Observe that g is a Euclidean space so we can define the usual
Fourier transforms

f̂(y) =

∫
g

e−i<x,y> dx, f∨(x) =

∫
g

ei<x,y>f(y) dx,

and adjust the Lebesgue measure so that∫
g

|f(x)|2 dx =

∫
g

|f̂(y)|2 dy, f ∈ S(g).

For f, g ∈ S(g), we define

f#g(y) = (f∨ ? g∨)∧(y), y ∈ g.

4. The Melin operator

For a function f ∈ C∞c (g× g) let

Uf(y) =

∫∫
g×g

e−i<x,y>f∨(x)e−i<r(x),ỹ>dx,

where x = (x1, x2), y = (y1, y2) ∈ g × g, and ỹ =
y1 + y2

2
. We shall

refer to U as the Melin operator on g. The importance of U consists
in

(4.1) f̂ ? g (y) = U(f̂ ⊗ ĝ)(y, y), y ∈ g,

which is checked directly. By an easy induction, we get

Lemma 4.2. For every f ∈ C∞c (g× g),

Dα
1D

β
2Uf(y1, y2) =

∑
d(γ)+d(δ)=d(α)+d(β)

cγδU(Dγ
1D

δ
2f)(y1, y2),

where cγδ ∈ C.

Let

(4.3) g′ = g1 ⊕ g2 ⊕ · · · ⊕ gR−1

The commutator

g′ × g′ 3 (x1, x2)→ [x1, x2]
′ ∈ g′,

where ′ stands for the orthogonal projection onto g′, makes g′ into a
Lie algebra isomorphic to g/gR with x → x′ playing the role of the
canonical quotient homomorphism. The group multiplication in g′ is

x1 ◦′ x2 = x1 + x2 + r(x1, x2)
′.

Proposition 4.4. For f ∈ C∞c (g× g),

(4.5) Uf(y, λ) = U′
(
Pλf(·, λ)

)
(y), y ∈ g′, λ ∈ gR,

where

Pλg(y) =

∫∫
g′×g′

e−i<x,y>g∨(x)e−i<r(x),λ̃>dx, g ∈ C∞c (g′ × g′),
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is an integral operator on C∞c (g′) invariant under Abelian translations,
and U′ stands for the Melin operator on g′.

Proof. In fact,

Uf(y, λ) =

∫∫
g×g

e−i<x,y>e−i<t,λ>f∨(x, t)e−i<r
′(x),ỹ>e−i<r(x),λ̃>dxdt

=

∫∫
g′×g′

e−i<x,y>
(
f(x∨, λ)e−i<r(x),λ̃>

)
e−i<r

′(x),ỹ>dx

=

∫∫
g′×g′

e−<x,y>(Pλf(·, λ))∨(x)e−i<r
′(x),ỹ>dx

= U′
(
Pλf(·, λ)

)
(y)

for all f ∈ C∞c (g× g), y ∈ g′ × g′, λ ∈ gR × gR. �

For the background on homogeneous groups we recommend Folland-
Stein [1].

5. The inductive step

In what follows we apply the notation of Section 1 among others to
X = g and X = g× g. In the latter case we employ the product norm
‖x‖2 = ‖x1‖2 + ‖x2‖2, the product dilations δtx = δtx1 + δtx2, and the
product homogeneous norm |x| = |x1|+ |x2|.

From now on we focus on the self-tempered metric q. This metric is
in a way maximal for other q-tempered metrics we are going to consider
in Theorem 6.4 below. However, the induction we are going to make
requires that we consider metrics

qλx(y) = q(x,λ)(y, 0)

on g′ which are different from q′ = q0, the counterpart of q on g′.
Therefore, for the sake of flexibility, we begin with a metric g ∈ G(g).
Then

Gx(z)2 = (g ⊕ g)x(z)2 = gx1(z1)
2 + gx2(z2)

2

=
R∑
j=1

‖z1j‖2

gj(x1)2dj
+

R∑
j=1

‖z2j‖2

gj(x2)2dj
,

where
z = (z1, z2) = (z11, . . . , z1R | z21, . . . , z2R),

is a metric in G(g× g).
Let λ ∈ gR×gR (see (3.1) and (4.3)). It is easily seen that the family

of metrics
Gλ

x(y) = G(x,λ)(y, 0), x,y ∈ g′ × g′,

is uniformly slowly varying and uniformly self-tempered. One just has
to observe that each of the metrics Gλ is equivalent to a metric in G(g)
(see (1.6)) with a constant C independent of λ. Let γ be a joint constant
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for all the metrics Gλ. Let gλj (x) = gj(x, λ). Let Bλ
ν = Bλ

ν (xλν , r) ⊂
g′× g′ be the covering of Proposition 2.1 for Gλ. (To simplify notation
we shall write Bν for Bλ

ν and xν for xλν .) Let

dλν(y) = Gλ
xν (y − xν)

(cf. Proposition 2.1).
Here comes the crucial step in our argument.

Lemma 5.1. Let g ∈ G(g) and G = g ⊕ g. For every N , there exist
C and k such that

(5.2) |Pλf(y)| ≤ C|f |1k(Gλ)
(

1 + dλν(y)
)−N

for f ∈ C∞c (Bλ
ν ) uniformly in λ ∈ gR × gR and ν ∈ N.

Proof. Let f ∈ C∞c (g′ × g′) be supported in Bν . There exist C and k
such that

|Pλf(y)| ≤
∫∫

g′×g′
|f∨(x)|dx = ‖f‖A(g′×g′)

= ‖fλ‖A(g′×g′) ≤ C|f |1k(Gλ),

(5.3)

where

fλ(y) = f
(
gλ1 (xν)

d1y1, . . . g
λ
R−1(xν)

dR−1yR−1

)
,

and ‖·‖A(g′×g′) stands for the Fourier algebra norm. The last inequality
is achieved by the Sobolev inequality

‖f‖A(g′×g′) ≤ C(s)
∑
|α|≤s

‖Dαf‖2

applied to fλ which is supported in a ball of radius 1 with respect to
the norm ‖ · ‖.

Assume now that (5.2) is true for some N . Let dλν(y) = a > 1. Note
that otherwise the estimate is a matter of course. Therefore there exists
ξ ∈ (g′× g′)? of unit length with respect to the norm dual to Gλ

xν such
that ξ(y − x) ≥ ca for x ∈ B(xν , r1), where 0 < r < r1 < γ and c > 0.
The norm one condition reads

1 = (Gλ
xν )

?(ξ)2 =
∑

1≤j≤R−1

(gj)
λ(xν)

2dj ‖ξj‖2

≥
∑

1≤j≤R−1

(1 + ‖λ‖
1
dR )2dj ‖ξj‖2.

Then L(x) = 〈x−y, ξ〉 does not vanish on B(xν , r1) so, by Lemma 2.2,

Gλ
xν

(
DkL−1(x)

)
≤ Ck

a
, x ∈ B(xν , r).
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Note that L(y) = 0. Therefore,

Pλ(Lf)(y) = [Pλ, L]f(y) =
R−1∑
j=1

ξj(1 + ‖λ‖1/dR)djPλ(fλ,j)(y),

where

fλ,j(z) =
1

i
(1 + ‖λ‖1/dR)dR−dj〈rj(iD),

λ̃

(1 + ‖λ‖1/dR)dR
〉f(z),

and

rj(x, λ) = D(x1)jr(x, λ) +D(x2)jr(x, λ)

is a homogeneous polynomial of degree dR−dj. Thus fλ,j are uniformly
bounded in S1(g′ × g′,Gλ). It follows that

|Pλ(f)(y)| ≤
( R−1∑
j=1

|Pλ
(

(L−1f)λ,j

)
(y)|2

)1/2
,

and consequently, by Lemma 2.2 and induction hypothesis,

|Pλf(y)| ≤ Ck
a
|f |1k(Gλ)

(
1 + dλν(y)

)−N
≤ C ′k|f |1k(Gλ)

(
1 + dλν(y)

)−N−1
,

which completes the proof of (5.2). �

We continue with metrics g ∈ G(g) and G = g ⊕ g ∈ G(g × g).
Let m be a G-weight. Then mλ(x) = m(x, λ) is a weight on g′ × g′

with respect to Gλ (which is self-tempered), and the family of weights is
uniform in λ. Let φλν ∈ C∞c (Bν) be the partition of unity of Proposition
2.1 on g′ × g′ for Gλ. By Proposition 2.1, φλν are bounded in S1(g′ ×
g′,Gλ) uniformly in ν and λ.

Observe that

mλ(y) ≤ C1mλ(xν)
(

1 + Gλ
xν (y − xν)

)M
≤ C1mλ(xν)

(
1 + dλν(y)

)M
.

(5.4)

Proposition 5.5. For every λ, there exists a unique double-continuous
extension of Pλ to a mapping

Pλ : Smλ(g′ × g′,Gλ)→ Smλ(g′ × g′,Gλ).

All the estimates hold uniformly in λ.

Proof. Note that

nλ(y) = mλ(y)−1
R−1∏
j=1

gj(y1)
dj |αj |gj(y2)

dj |βj |
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is a product of weights so a weight itself. Pλ commutes with translations
so, by (5.4) and Lemma 5.1,

nλ(y)−1|Dα
y1
Dβ
y2
Pλ(φ

λ
νf)(y)|

≤ C1nλ(xν)
−1
(

1 + dλν(y)
)M
|Pλ
(
DαDβ(φλνf)

)
(y)|

≤ C2|f |mλ

k+|α|+|β|

(
1 + dλν(y)

)−N+M

.

Let N be so large that∑
ν

(
1 + dλν(y)

)−N+M

<∞,

see Proposition 2.1, c). Then our estimate which remains valid for
f in a bounded subset of Smλ(g′ × g′,Gλ) without any restriction on
support implies that for every y ∈ g′

f →
∑
ν

Pλ(φ
λ
νf)(y)

defines a weakly continuous linear form on Sm(g′ × g′,Gλ). Conse-
quently, Pλ admits an extension to the whole of Sm(g′ × g′,Gλ), and

|Dα
y1
Dβ
y2
Pλ(f)(y)| = |

∑
ν

Pλ(φ
λ
νf)(y)|

≤ C|f |mλ

k+|α|+|β|mλ(y)
R−1∏
j=1

gj(y1)
−djαjgj(y2)

−djβj ,

for f ∈ Sm(g′×g′,Gλ), which shows that Pλ is both Fréchet and weakly
continuous.

�

6. Symbolic calculus

Recall from Section 4 that the Melin operator U has been defined
for f ∈ C∞c (g× g).

Theorem 6.1. Let g ∈ G(g). Let G = g ⊕ g and let m be a G-
weight on g × g. There exists a double-continuous extension of the
Melin operator to

U : Sm(g× g,G)→ Sm(g× g,G).

Proof. Suppose that g is as in (3.1) and proceed by induction. If R = 1,
g is Abelian and U = I so the assertion is obvious. Assume that
our theorem is true for g′ as in (4.3) and U = U′. For λ ∈ gR and
f ∈ Sm(g × g,q) let fλ(y) = f(y, λ), qλj (y) = qj(y, λ), and mλ(y) =
m(y, λ).
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By hypothesis, fλ = f(·, λ) ∈ Smλ(g′×g′,qλ) uniformly in λ (cf. the
previous section). Now Proposition 5.5 yields

Pλfλ ∈ Smλ(g′ × g′,qλ)

uniformly in λ so, by the induction hypothesis,

U′Pλfλ ∈ Smλ(g′ × g′,qλ)

uniformly in λ. The same holds true for the derivatives(
qR(λs)

∂

∂λs

)j
U′Pλfλ,

where λ = (λ1, λ2) and s = 1, 2, which is checked directly. Thus,
by (4.5), we get the desired estimate: For every k1 ∈ N, there exists
k2 ∈ N such that

|Uf |mk1(G) ≤ C|f |mk2(G), f ∈ Sm(g× g,G).

Finally, by induction hypothesis and Proposition 5.5, U is also weakly
continuous. This completes the proof. �

Corollary 6.2. Let m1, m2 be q-weights on g. Then

C∞c (g)× C∞c (g) 3 (a, b)→ a#b ∈ S(g)

extends uniquely to a double-continuous mapping

Sm1(g,q)× Sm2(g,q)→ Sm1m2(g,q).

Proof. This is a straightforward consequence of (4.1) and Theorem 6.1
applied to the metric Q = q⊕ q on g× g. �

We are ready now to deal with general q-tempered metrics. Let g be
a q-tempered slowly varying metric on g. If g ≤ q, every q-tempered
g-weight m is also a q-weight and Sm(g) ⊂ Sm(q). The identity
mapping I : Sm(g)→ Sm(q) is double-continuous. Let

nα(x) =
R∏
j=1

gj(x)dj |αj |.

Then nα is a q-tempered g-weight.
One more remark is in order. By Lemma 4.2,

(6.3) Dγ(f#g) =
∑

d(α)+d(β)=d(γ)

cαβD
αf#Dβg,

for f, g ∈ S(g). By Corollary 6.2, the formula extends to f, g in the
symbol classes governed by the metric q.

Theorem 6.4. Let g be a q-tempered slowly varying metric on g such
that g ≤ q. Let m1,m2 be q-tempered g-weights. Then, for every
a ∈ Sm1(g,g) and every b ∈ Sm2(g,g), a#b ∈ Sm1m2(g,g) and the
mapping

Sm1(g,g)× Sm2(g,g) 3 (a, b)→ a#b ∈ Sm1m2(g,g)
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is double-continuous.

Proof. It is sufficient to show that for every multiindex α, there exist
seminorms | · |m1

g and | · |m2
g such that

nα(x)m−11 (x)m−12 (x)|Dα(a#b)(x)| ≤ |a|m1
g · |b|m2

g .

Let us start with α = 0. By Corollary 6.2, there exist seminorms | · |m1
q

and | · |m2
q , hence also seminorms | · |m1

g and | · |m2
g such that

m−11 m−12 |a#b| ≤ C|a|m1
q · |b|m2

q ≤ C1|a|m1
g · |b|m2

g .

Since Dαa ∈ Sm1n
−1
α (g,g), Dβb ∈ Sm2n

−1
β (g,g), the above gives

nαnβm
−1
1 m−12 |Dαa#Dβb| ≤ C1|Dαa|m1n

−1
α

g · |Dβb|m2n
−1
β

g .

Note that the expression on the right is a product of two seminorms,
denoted by |a|m1

g and |b|m2
g , in Sm1(g) and Sm2(g) respectively. Thus,

(6.5) nαnβm
−1
1 m−12 |Dαa#Dβb| ≤ C2|a|m1

g · |b|m2
g ,

and, by (6.3),

nγm
−1
1 m−12 |Dγ(a#b)| ≤ max

|α|+|β|=|γ
nαnβm

−1
1 m−12 |Dγ(a#b)|

≤ C max
|α|+|β|=|γ|

nαnβm
−1
1 m−12 |Dαa#Dβb|,

which combined with (6.5) completes the proof. �

Here are two important examples of metrics whose symbol spaces
enjoy the above symbolic calculus. The first one is

gx(z)2 =
R∑
j=1

‖zj‖2

(1 + |x|)2dj
.

Another one is

gx(z)2 =
R∑
j=1

‖zj‖2

(1 + |x|j)2dj
.

By Lemma 1.1 and Lemma 1.2 both metrics are slowly varying and
q-tempered. It is also clear that in both cases g ≤ q.

7. L2-boundedness

Let φν the standard partition of unity for the metric q on g. Let
Φµν(x) = φµ(x1)φν(x2), where x = (x1, x2) ∈ g × g. Let Q = q ⊕ q.
Note that, by (1.11),

(7.1) 1 + qxν (xµ − xν) ≤ C
(

1 + qy(xµ − y)
)M(

1 + qy(xν − y)
)
.
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Corollary 7.2. Let f ∈ S1(g× g,Q). Let

fµν(y) = U(Φµνf)(y, y)

be a function on g. Then, for every N, there exists a seminorm | · |Q
in S1(g× g,Q) such that for every µ, ν,

‖fµν‖A(g) ≤ |f |Q
(

1 + qxν (xµ − xν)
)−N

.

Proof. The function

mµν(y) =
(

1 + qy1(xµ − y1)
)−NM(

1 + qy2(xν − y2)
)−N

,

where y = (y1, y2) and M is as in (7.1), is a Q-tempered Q-weight (see
(1.15)). If y1 ∈ Bν and y2 ∈ Bµ, then

qxµ(y1 − xµ) < γ qxν (y2 − xν) < γ

so, by (1.5),

qy1(y1 − xµ) ≤ 1, qy2(y2 − xν) ≤ 1,

which implies that m−1µν is uniformly bounded on the support of Φµν .
This implies that

|Φµνf |mµν

Q ≤ C|Φµνf |1Q
with the same constant C > 0, for all µ and ν. Consequently, since
Φµν is supported in Bµ ×Bν , we have a trivial uniform estimate

Φµνf ∈ Smµν (g× g,Q).

By Proposition 6.1,

(7.3) U(Φµνf) ∈ Smµν (g× g,Q)

uniformly in µ, ν. Now, by (7.1),

mµν(y, y) ≤ C
(

1 + qxν (xµ − xν)
)−N

,

and, by (7.3), for every k, there exists k1 such that

|Dα
y fµν(y)| ≤ C1|Φµνf |mµν

k1
mµν(y, y) ≤ C2|f |1k1

(
1 + qxν (xµ − xν)

)−N
for |α| ≤ k. If k is large enough, our assertion follows by the Sobolev
inequality. �

Theorem 7.4. Let a ∈ S1(g,q). The linear operator f → Af = f ?a∨

defined initially on the dense subspace C∞c (g) of L2(g) extends to a
bounded mapping of L2(g). To be more specific, there exists a seminorm
| · |1q in S1(g,q) such that

‖Af‖L2(g) ≤ |a|1q‖f‖L2(g), f ∈ C∞c (g).
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Proof. Let
Aνf = f ? (φνa)∨, f ∈ L2(g).

Since φν ∈ C∞c (g), the operators Aν are bounded. Moreover, by (4.1)
with the notation of Corollary 7.2,

A?µAνf(y) = (a⊗ a)∨µν ? f(y), AµA
?
νf(y) = (a⊗ a)∨µν ? f,

so that, by Corollary (7.2),

‖A?µAν‖+ ‖AµA?ν‖ ≤
(
|a|1q
)2(

1 + gxν (xν − xµ)
)−N

,

where N can be taken as large, as we wish, and | · |1q is a seminorm in

S1(g,q) depending only on N .
On the other hand,

a =
∑
u

φua,

where the the series is weakly convergent in S1(g,q) so that, by Corol-
lary 6.2,

Af =
∑
µ

Aµf, f ∈ C∞c (g)

in the sense of weak convergence in S1(g,q) of the Fourier transforms.
Thus, the sequence of operators Aµ satisfies the hypothesis of Cotlar’s
Lemma (see e.g. Stein [8]) , and therefore the series

∑
µAµ is strongly

convergent to the extension of our operator A whose norm is bounded
by C|a|1q (see Proposition 2.1). �
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