
G. Plebanek Measures on topological spaces (en los tiempos del cólera)

18. Measures on uncountable products

The status of ‘the usual product measure’ on [0, 1]T is clarified by Kakutani’s theorem

below. The main conclusion here, given in the final section, is that, though generally, the

Baire σ-algebra Baire(X) in a topological space X is much smaller that the Borel one,

‘nice’ Baire measures extends uniquely to ‘nice’ Borel measures. This, in particular, applies

to product measures on arbitrary products of separable metrizable spaces.

Recall first the concept of completion of a measure space. If (X,Σ, µ) is any measure

space then by (Σ)µ we denote the completion of Σ with respect to µ, that is (Σ)µ is

generated by Σ and all the subsets of sets from Σ of measure zero. Every E ∈ (Σ)µ can

be written as E = A4 N , where A ∈ Σ, N ⊆ B ∈ Σ, µ(B) = 0. The measure µ can be

extended to that completion, simply by µ̃(A4N) = µ(A).

Definition 18.1. A subset V of a topological space X is called a cozero set if X \ V is a

zero set. Equivalently, V = {x ∈ X : g(x) 6= 0} for some continuous function g : X → R.

This is an exercise (on the problem list) to check that the family of cozero sets is closed

under finite intersections and countable unions.

Theorem 18.2 (Kakutani). Let {Kt : t ∈ T} be any family of compact metrizable spaces

and let µt ∈ P (Kt) be a strictly positive probability measure on Kt for every t ∈ T . Write

K =
∏

t∈T Kt.

If µ is the product measure defined on Baire(K) =
⊗

tBorel(Kt) then

Bor(K) ⊆ (Baire(K))µ ,

so µ becomes a Borel measure when considered on the completion of its domain.

Proof. Note that it is enough to prove that U ∈ (Baire(K))µ for every open set U ⊆ K.

For such a set U we shall find two cozero sets V1, V2 (here open sets depending on countably

many coordinates) such that V1 ⊆ U ⊆ V2 and µ(V2 \ V1) = 0. Then V1, V2 ∈ Baire(K) so

this will imply that U lies in the completion of the Baire σ-algebra.

Let r be the supremum of the values of µ(V ) where V ⊆ U is a cozero set. It is easy to

check that the supremum is attained so there is a cozero set V1 ⊆ U with µ(V1) = r. Say

that V1 depends on coordinates in a countable set I ⊆ T . We define

V2 = π−1I [πI [U ]] .

Then V1 ⊆ U ⊆ V2, V2 is an open set depending on I so it remains to check that µ(V2\V1) =

0.

Suppose that µ(V2 \ V1) > 0. Write V ′1 = πi[V1] and V ′2 = πI [V2]. Then V ′1 , V
′
2 are open

subets of the countable product K ′ =
∏

t∈I Kt, and if we write µ′ for the corresponding

product measure
∏

t∈I µt then µ′(V ′2 \ V ′1) = µ(V2 \ V1) > 0.

By the properties of measures on metrizable spaces, such as K ′, there is a closed set

F ⊆ V ′2 \ V ′1 such that µ′(F ) > 0 and µ′(F ∩W ) = 0 implies W ∩ F = ∅ for every open
1



2

W ⊆ K ′ (just remove from F all relatively open sets of measure zero). Take now any

x′ ∈ F ; then there is x′′ ∈
∏

t∈T\I Kt such that x = (x′, x′′) ∈ U (by the definition of V2).

By openess of U , there is an open basic set G ⊆ K such that x ∈ G ⊆ U . Using our

prime-and-double prime convention we can write G = G′ × G′′ where G′ ⊆ K ′. We have

µ(G) > 0 but also

µ(G \ V1) ≥ µ((F ∩G′)×G′′)) = µ′(F ∩G) · µ′′(G′′) > 0,

and this is a contradiction with maximality of the value of r defined above. �

In particular, the usual product measure on [0, 1]T is a Borel measure when completed.

We have noted that the product measure on (0, 1)T need not be tight. However, it must

have some good property as the underlying space looks canonical; it is singled out below.

Definition 18.3. A probability measure on Baire(X) is said to be τ -additive if for every

cover V of X by cozero sets we have µ(
⋃
V0) = 1 for some countable V0 ⊆ V .

This definition may be rephrased as follows. Say that V us directed if for every V1, V2 ∈ V
there is V ∈ V such that V1 ∪ V2 ⊆ V . The τ -additivity of µ is equivalent to saying that

for every directed family V of cozero sets, if
⋃
V = X then supV ∈V µ(V ) = 1.

Theorem 18.4. Let {Xt : t ∈ T} be any family of metrizable separable spaces and let

µt ∈ P (Kt) be a probability measure on Xt for every t ∈ T . Write X =
∏

t∈T Xt.

If µ is the product measure defined on Baire(X) =
⊗

tBorel(Xt) then µ is τ -additive.

Proof. The argument is similar to that from 18.2 (so the proof will be sketchy). Take a

directed cover V of X by cozero sets and consider r = supV ∈V µ(V ). Note that there is

W =
⋃
n Vn for some Vn ∈ V such that µ(Vn) → r = µ(W ); moreover W depends on

countably many coordinates I ⊆ T .

Decompose everything to parts from X ′ =
∏

t∈I Xt and X ′′ =
∏

t∈T\I Xt: W = W ′×W ′′,

µ(W ) = µ′(W ′) · 1 = r. Then define ν on X ′ \W ′ by ν(B) = µ(B ×X ′′) to conclude that

for every x′ ∈ X ′, ν vanishes on some neighbourhood of x′ so ν = 0, that is r = 1. �

19. Regular extensions of finitely additive measures

We need some tool to extend Baire measures to Borel ones. We consider here an algebra

A of subsets of some space X (no topology is involved at the beginning). Write simply

P (A) for the collections of all finitely additive probabilities on A.

We shall call a family L of subsets of X a lattice if ∅, X ∈ L and L is closed under finite

unions and intersections.

Definition 19.1. Given µ ∈ P (A) and a lattice L ⊆ A, we say that µ is L-regular if

µ(A) = sup{µ(L) : L ∈ L, L ⊆ A} for every A ∈ A.

We have seen examples of regularity: every σ-additive measure on a separable metrizable

space X is regular with respect to the lattice of closed subsets of X.
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Theorem 19.2. Let A be an algebra of subsets of X, K ⊆ A be a lattice contained in

another lattice L.

Then every K-regular µ ∈ P (A) can be extended to an L-regular finitely additive measure

on the algebra generated by A ∪ L.

Proof. As in L7/P7 we write

µ∗(Y ) = inf{µ(A) : Y ⊆ A ∈ A}, µ∗(Y ) = sup{µ(A) : Y ⊇ A ∈ A},

for any Y ⊆ X.

Note that if L ⊆ A then there is nothing to prove. Suppose now that L is a lattice

generated by K and an additional set L0 /∈ A. Then every L ∈ L is of the form

L = (K1 ∩ L0) ∪K2 for some K1, K2 ∈ K.

Write A1 for the algebra generated by A∪ {L0}. We can extend µ to an additive measure

µ1 on A1 by the formula (as in L7/P7)

µ1((A ∩ L0) ∪ (B ∩ Lc0)) = µ∗(A ∩ L)) + µ∗(B ∩ Lc0).

We check that µ1 is L-regular. Note that X \ L0 was given the least possible measure

and thanks to that

µ1(X \ L0) = sup{µ(K) : K ∈ K, K ⊆ X \ L0}.

Then we use the usual trick: The family of those sets B for which µ1 satisfies the regularity

condition on both B and X \B form an algebra of sets.

The general case follows from the Kuratowski-Zorn lemma; in other words, we extend

µ to an L-regular measure on the algebra generated by A ∪ L, adding new sets one by

one. �

The main use of the regularity condition is that it may give countable additivity.

Lemma 19.3. Let µ ∈ P (A) be an L-regular for some lattice L ⊆ A. Suppose that

limn µ(Ln) = 0 for every decreasing sequence of Ln ∈ L with empty intersection. Then µ

is continuous at ∅ (and so extends to a countably additive measure on σ(A)).

Proof. We need to check that limn µ(An) = 0 whenever An ∈ A form a decreasing sequence

with empty intersection. Fix any ε > 0; using regurality choose Ln ∈ L such that Ln ⊆ An
and µ(Ln) > µ(An)−ε/2n. Then Kn = L1∩ . . . Ln ∈ L is a decreasing sequence with empty

intersection so µ(Kn) → 0. But it is routine to check that µ(An \Kn) < ε so µ(An) < 2ε

for large n. �

20. Borel extensions of Baire measures

We can present some topological consequences of the results from the previous section.

In a topological space X we have two natural lattices: the lattice FX of all closed subsets

of X and ZX — the lattice of zero sets (see the problem list).

For some results we need separation axioms for topological spaces. Recall that a topo-

logical space X is regular if whenever x ∈ U ⊆ X, where U is open, there is open V such
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that x ∈ V ⊆ V ⊆ U . The axiom of complete regularity requires the existence (in such

a case) of a continuous function g : X → [0, 1] such that g(x) = 1 and g|(X \ U) ≡ 0 (or

vice versa). It follows that in a completely regular topological space the family of cozero

sets is a base for the topology – note that the set V = {x ∈ X : g(x) > 1/2} is cozero.

Recall finally, that complete regularity is productive; in particular, an arbitrary product of

metrizable spaces is completely regular (but does not have to be normal).

Lemma 20.1. Every Baire measure on X is ZX-regular.

Proof. We have seen the proof — it is almost the same as the argument showing that every

Borel measure on a metrizable space is regular. One has to note that metrizability was used

only to check that every closed set is Gδ. Here we deal with closed Gδ sets from ZX . �

Definition 20.2. We say that a Borel measure ν on a space X is τ -additive if µ(
⋃
U) =

supU∈U µ(U) for every directed family of open sets U .

Lemma 20.3. Every τ -additive Borel measure on a regular topological space X is FX-

regular.

Every Borel measure on a compact space is τ -additive.

Proof. For the first statement take open U ⊆ X. By the separation axiom, for every x ∈ U
there is open Vx such that x ∈ Vx ⊆ Vx ⊆ U . By τ -additivity of µ, for ε > 0 there is a finite

collection x1, . . . , xn ∈ U such that for putting W =
⋃
i≤n Vxi we have µ(W ) > µ(U) − ε.

Then W ⊆ U and µ(W ) ≥ µ(W ) > µ(U) − ε. This shows that µ is closed-regular on U .

The rest is as always: check that the family of those A for which µ is regular on A and

X \ A is a σ-algebra.

The second statement is obvious (by compactness). �

Theorem 20.4. Let X be a completely regular space X. Every τ -additive probability Baire

measure on X can be uniquely extended to a (closed-regular) τ -additive Borel measure.

Proof. First uniqueness. Let µ be a Baire measure on X and let ν be some extension of µ

to a closed-regular Borel measure. Take a closed set F ⊆ X. For every x ∈ X \ F there

is a continuous function g : X → [0, 1] such that g(x) = 0 and g|F ≡ 1 (this is the axiom

of completely regular topological space). Set Vx = g−1[[0, 1/2)]; then Vx is a cozero set and

Vx ∩ F = ∅. We have X \ F =
⋃
x∈X\F Vx so by τ -additivity of ν, given ε > 0, there is

a finite union W of such Vx’s such that µ(W ) = ν(W ) > ν(X \ F ) − ε. This shows that

ν(F ) = µ∗(F ) so µ(F ) is uniquely determined. By regularity, ν is uniquely determined on

all Borel sets.

Then existence. We start from µ defined on Baire(X) and use Theorem 19.2 to extend

µ to a finitely additive closed-regular measure on an algebra B generated by Baire(X) and

all closed sets.

We now check that ν satisfies the condition that if the closed Fn form a decreasing

sequence with empty intersection then limn ν(Fn) = 0.

Fix ε > 0; for every x ∈ X we have x /∈ Fn for some n and, as above, conclude that

there is a cozero set Vx 3 x such that Vx ∩ Fn = ∅. This defines a cover of X by sets
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Vx. Since the Baire measure µ is τ -additive, there is k and x1, . . . , xk, such that, writing

V = Vx1 ∪ . . . Vxk we have µ(V ) > 1 − ε. Each Vxi is disjoint from some Fn and therefore

V ∩ Fn = ∅ if n is large enough. Consequently, ν(Fn) < ε for large n.

By Lemma 18.4, ν is continuous at ∅ and extends to a Borel measure. �

Corollary 20.5. Every product measure on a product
∏

tXt of separable metrizable spaces

extends uniquely to a τ -additive Borel measure.

Proof. Such a product measure is τ -additive Baire measure by Theorem 18.4 so we can

apply Theorem 20.4. �

Corollary 20.6. Every Baire measure on a compact topological space extends uniquely to

a closed-regular Borel measure.

Proof. If K is compact then automatically every µ on Baire(K) is τ -additive. �

The last corollary explains the following puzzle. The general form of the Riesz repre-

sentation theorem is that every continuous functional on the Banach space C(K) with K

compact is represented by integration with respect to the unique Borel measure. However,

to integrate continuous functions we need only the measure to be defined on Baire(K).
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