The Cantor set

The Cantor set is 2 = {0, 1}V, the space of all infinite sequences
of zeros and ones.

Facts.

(1) 2V is a compact space in the product topology.

(2) 2V is metrizable, for instance d(z,y) = 1/k, where k =
min{n : x(n # y(n)} for x # y is a compatible metric.

(3) 2V is zerodimensional, i.e. it has a base of clopen sets.

(4) h: 2N — O C [0,1], h(z) = £%°, 22(n)/3" is a homeomor-
phism with the usual ternary Cantor set C'.

(5) f: 2N = [0,1], f(z) = £°°, x(n)/2" is a continuous surjec-
tion.

(6) Every compact metric space is a continuous image of 2N,
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The Cantor set

Notation. If I C N and ¢ : [ — {0,1} then we write
o] = {z € 2V a|l = ¢}

Remark. Sets of the form [¢], where the domain of ¢ is finite,
form a base of the topology on 2N, axd Al Led i d—"r%
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Definition. Given 7 C N and A C 2N, we say that A is deter-
mined by coordinates in I and write 4_~ [ if

(Vo € A)(Vy € 2) if 2|T = y|I then y € A.
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Equivalently, A ~ I means that 8
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is the projection.

Lemma. C C 2V s clopen if and only if C depends on

Jinitely many COOTdinates.(_:\Q?i”" Cnr I ).
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2N as a topological group

{0,1} is a group with the operation a ® b = a +b mod 2. So
is 2N with the coordinatewise addition mod 2:

z@y=(z(1) ®yl),z(2) &y2),...)
— X=X

Definition. A topological group G is a group equipped with
some topology for which

GxG3(x,y—~z-yeECG, Goz—z'cqG

are continuous.

Fact. (2V,®) is a compact topological group.
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The measure on 2V

Definition. If C' ~ {1,2,... n} then we can write C' = C’ X

10,1} x {0,1}.... Put
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Theorem. v is properly defined finitely additive set-function on
the algebra Clop(2Y) of clopen sets.

Such v is continuous from above and therefore has a unique exten-
sion to a measure on Bor(2Y) = o(Clop(2Y)).

&d | For every B € Bor(2Y) and € > 0 there is C' € Clop(2Y) such
that v(B A C) < e.
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The Haar measure

Theorem. The measure v is the Haar measure of the com-
pact group 2V, i.e. v is the unique probability measure which is
translation invariant, v(xz @ B) = v(B) for every x € 2" and
B € Bor(2Y).
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Basic probability in 2"

Definition. A set A C 2V is called a tail set (zbior resztowy ) if
A~ {k: k> n} for every n. In other words, A does not depend
on finite number of coordinates, that isif a € A and z(n) = a(n)
for almost all n then z € A.

Example. There are natural example of tail sets, for instance

A(B) = {a: c N | e z(1) +z(2) +...2(n) _ 5}7

n

is a tail set since changing finite number of coordinates does affect
the limit.




Kolmogorov’s 0-1 law

Theorem. If A € Bor(2Y) is a Borel tail set then v(A)
or v(A) =1.
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Proof. Consider a finite I C N and ¢ : [ — 2. Take n such that
I C {1,2,...,n}; then |[p] depends on first n coordinates while
Adependson {n+1,n+2,...}. Hence v([p|NA) = v(|p])-v(A),
see L2/P3!.

Every C € clop(2V) is a finite disjoint union of such sets [¢p]; it
follows easily that v(C'N A) = v(C) - v(A) for any clopen set C'.

Suppose that v(A4) > 0; we shall check that v(A) = 1. Take
e > 0 and choose C' € clop(2Y) such that v(A A C) < e - v(A).
Then

v(A)-v(C)

N

(AﬂC) (A>_€.V<A)7

which gives v(C') > 1 — . Hence
= —e 21— 2¢;
LVf(A) >v(C)—e>1-2¢

as € may be arbitrarily small, we gef,#(A) = 1
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Normal numbers

Ala) = {x . 2N:7}Lrgox(1)—|—x(2)—|—...x(n) :&}

We have v(A(a)) € {0,1}. Note that v(A(«a)) = v(A(l — «))
which may suggest that v(A(1/2)) =1...

Theorem of Borel on normal numbers.

[(A(1/2) = 1}
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Proof. Fix a < 1/2 and set

Ba:{xEZN:x(l)—i—”w(n)

CLAIM. There is 8 < 1 such that v(BY) < 6" for every n.
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By Claim, if| B® = o, U2, Bﬂ then v(B") = 0 for every

o < 1/2. This means that the set of those € 2" for which

(1) +...z(n)
n

lim inf © <1/2-34,

has measure zero for every 4 > 0. Finally, the same holds for

0 =0.



It follows, by a symmetric argument, that the set of those x € 2N
for which

lim sup z(1)+...x(n)

n—0o0 n

> 1/2,
has also measure zero, and we are done.

Using L2/P 10, we can conclude from that for Ad-almost all x €
0,1], = has a uniform distribution of ‘0" and ‘1’ in its binary
expansion. This is the simplest form of Borel’s theorem, see e.g.

https://en.wikipedia.org/wiki/Normal_number

https://www.emis.de/journals/AUSM/C2-1/math21-8.pdf
for further discussion.
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Claim

Bo‘z{x€2N:x(1>+”'x<n)

- <al, a<l/2

CLAIM. There is # < 1 such that v(B?) < 6" for every n.

Note that v(BY) = ¢, /2", where

= o)+ (1) ++ )

We are to prove that there is # < 1 such that ¢, /2" < 6" for
every n.
Note that for any ¢ € (0,1) we have

oo < [ (e T e < (1)
0 1 [an] ’

1+ t\"
cn<(ta ) .

It remains to find ¢ such that (14 ¢)/t* < 2. For this consider
f(t) =2t —t —1: we have f(1) =0and f'(1) =2a —1 < 050
there is t < 1 such that f(¢) > 0, as required.
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