G. PLEBANEK *Measures on topological spaces* NO. 4

- 1. For completeness, two general useful facts. Let (X, Σ, μ) be any probability space.
 - (a) Every family $\mathcal{A} \subseteq \Sigma$ of pairwise disjoint sets of positive measure is countable.
 - (b) If $g: X \longrightarrow Y$ is $\Sigma \Theta$ measurable or some σ -algebra θ in Y then the image measure $\nu = f[\mu]$ defined on Θ satisfies $\int_Y h \, d\nu = \int_X h \circ f \, d\mu$, whenever the integrals make sense.
- **2.** The support of a measure $\mu \in P(X)$ is the smallest closed set $F \subseteq X$ of measure 1. Prove that for separable metrizable X such a support exists for every μ ; such F satisfies $\mu(F \cap V) > 0$ whenever V is open and $V \cap F \neq \emptyset$.
- **3.** A measure $\mu \in P(X)$ is **discrete** if $\mu(A) = 1$ for some countable $A \subseteq X$. Note that a discrete measure is of the form $\mu = \sum_n c_n \delta_{x_n}$. A measure $\mu \in P(X)$ is continuous if $\mu(\{x\}) = 0$ for every $x \in X$. Note that every measure $\mu \in X$ is a sum of a discrete measure and a continuous one.
- 4. Prove that for a (as always, separable metrizable) X, a measure $\mu \in P(X)$ is continuous if and only if μ is nonatomic i.e. for $B \in Bor(X)$, $\mu(B) > 0$ there is a Borel set $A \subseteq B$ such that $0 < \mu(A) < \mu(B)$.
- 5. Prove, using L2/A, that on every uncountable Polish space there is a continuous probability measure. We shall later see that this need not hold without Polishness.
- **6. Limits along ultrafilters**. Let \mathcal{U} be a nonprincipial ultafilter on \mathbb{N} . For a sequence of points x_n in a topological space X, we say that $x = \lim_{n \to \mathcal{U}} x_n$ if $\{n \in \mathbb{N} : x_n \in V\} \in \mathcal{U}$ for every open neighbourhood $V \ni x$.

Prove that if \mathcal{U} is a nonprincipial ultrafilter on \mathbb{N} and $(a_n)_n$ is a bounded sequence of reals then $\lim_{n\to\mathcal{U}} a_n$ exists and is uniquely defined for every \mathcal{U} . Actually, the same holds for any sequence of a_n in a compact topological space.

- 7. Define $\varphi : C_b(\mathbb{R}) \to \mathbb{R}$ as $\varphi(g) = \lim_{n \to \mathcal{U}} g(n)$ (see above). Check that φ is a positive normone functional which is **not** represented by any measure on \mathbb{R} (so the Riesz representation theorem fails in this case). If you know the number of ultrafilters on \mathbb{N} you can see that the space of functionals on $C_b(\mathbb{R})$ is really huge, it has 2^c elements; note that there are only **c** functionals on C([0, 1]).
- 8. Try to prove directly the Riesz theorem for C([0, 1]). For instance, check if the following works:

Given φ a positive norm-one functional, define D(t) to be the supremum of $\varphi(g)$ for continuous g satisfying $0 \leq g \leq \chi_{(0,t)}$. Then D is the distribution function of some measure.

9. Check the following facts on convergence of measures in P[0, 1]:

(a)
$$\mu_n \longrightarrow \lambda$$
 iff $\mu_n([0,t]) \to t$ for every $t \in [0,1]$.

(b) $\mu_n \longrightarrow \mu$ iff $\int_0^1 x^k d\mu_n \longrightarrow \int_0^1 x^k d\mu$ for every $k \ge 1$.

Does (b) hold also for measures on (0, 1)?