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21. APPENDIX ON THE RIESZ REPRESENTATION THEOREM

For any compact space K we write P(K) for the space of all probability Borel measures
on K that are regular (with respect to closed sets). Recall that, unlike in the metrizable
case, regularity is no longer automatic. The Riesz theorem says the following:

Theorem 21.1. Given a compact space K, if p € C(K)* is a positive functional on C(K)
such that o(xk) = 1 then there is a unique pu € P(K) that represents ¢ by integration.

As before P(K) is given the weak*-topology, the one generated by all the mappings
p— [ gdu, g€ C(K).

Theorem 21.2. The space P(K) is compact.

Below we comment on possible proofs of these results. Recall that K is zero-dimensional
if the family clop(K), of all closed and open sets, is a topological base.

21.1. Thm. implies Thm. The Banach-Alaoglu theorem says that for any
Banach space X, the dual unit ball Bx- is compact in the weak™ topology. This is fairly
standard: the mapping Bx~ 3 z* + (2*(x))zeny is an embedding into the Tikhonov cube
[—1,1]5% and remains to note that the image is closed. In turn, P(K) is a closed subset of
Bexy+ so it is compact as well.

21.2. Thm. implies Thm. 21.1} Once we know that P(K) is compact, it is enough
to check that P(K) is weak* dense in the set of functionals as in [21.1]

Consider a norm-one positive functional ¢ on C'(K) and a finite collection of nonnegative
functions f; € C(K), i < n. We claim that there is a measure u € P(K) supported by
a finite set such that o(f;) = [, fi du for every i < n. Exercise:-) (Hint: think of
Hahn-Banach in finite dimensional spaces.)

21.3. Proof of Thm. in the zero-dimensional case. We define pu(A) = ¢(xa)
for A € clop(K). Then pu is a finitely additive measure on the algebra clop(K) and we
can apply the procedure of regular extensions for the lattice L = clop(K) and £ equal to
the lattice of all closed subsets of K. Hence p extends to a regular Borel measure on K.

The uniqueness follows from the fact that for every closed F' and open U O F' there is
A € clop(K) such that F C ACU.

Ihow of a political flavour



21.4. Proof of Thm. [21.2] in the zero-dimensional case. First note that
P(K) 2 p— (u(A))

Aéeclop(K)’

is an injective continuous mapping so it is a homeomorphism onto its image (consisting of
all finitely additive probability measures on clop((K). In turn, it is not difficult to check
that such a space is closed subset of [0, 1]¢°P(),

21.5. General topological fact: Fvery compact space K is a continuous image of a com-
pact zero-dimensional space K.

Indeed, we may assume that K C [0, 1)* for some . Since there is a continuous surjection
g : 2% — [0, 1], there is a continuous surjection 6 : (2)" — [0,1]*. Now K, = 07'[K] is as
required.
Exercise: Why there are compact spaces that are not a continuous image of Cantor cubes
of the form 27

21.6. Theorem: Suppose that 0 : K — L is a continuous surjection between compact
spaces. Then

P(K) > p— 6[u] € P(L)

15 a continuous surjection too.
The continuity of such a mapping follows from the formula

/Lng[u]z/KgoMu-

Take any v € P(L); then we can define 14 on the o-algebra ¥ = {#~!(B) : B € Bor(L)}
by the formula po(0~'[B] = v(B). It remains to check that ug extends to u € P(K).

For this we apply the regular extension procedure: pg is inner-regular with respect to
the lattice K = {§7'[F]: F = F C L} so it extends to a regular Borel measure.

21.7. Proof of Thm. Apply [21.6], [21.5] and [22.4]

21.8. Proof of Thm. Apply and and the Hahn-Banach theorem.
In fact, here we need to know that a positive linear functional on a subspace of a Banach
lattice admits a positive extension to. a linear functional on the whole space.

22. THE HAAR MEASURE ON A COMPACT GROUP

We reproduce here a clever construction due to von Neumann. This is discussed in
a monograph by Diestel and Spalsburyﬂ However, the argument given there requires
some nontrivial ingredients, in particular the Arzela-Ascoli theorem. Here we follow the
approach from this lecture note and thus, paraphrasing Joe Diestel’s WordsEL we should
blame Manjunath Krishnapur for its simplicity.

Diestel, Joe; Spalsbury, Angela. The joys of Haar measure. Graduate Studies in Mathematics, 150.
American Mathematical Society, Providence, RI, 2014

3page 7 in Diestel, Joseph, Sequences and series in Banach spaces, Graduate Texts in Mathematics, 92.
Springer-Verlag, New York, 1984


https://math.iisc.ac.in/~manju/TA/4-haarmeasure.pdf
https://math.iisc.ac.in/~manju/

Consider a compact group (G, -) with the neutral element e € G.Given any open V 3 e,
we write

HV = {33Vy -,y € G}7

for the family of all its translates. We say that a,b € G are V-adjacent if they belong to
the same element of Hy. A set B C G is blocking if it meets every set from Hy .

Lemma 22.1. For every open V the family Hy admits a finite blocking set.

Proof. Find open U > e such that U - U C V, Next pick finite By, By C G such that
G =Uep, #U P and G=J U~'y. Then check that the set B; - By is blocking. d

Given f € C(G), we set
wr(V) =sup{|f(z) — f(y)| : =,y are V-adjacent}.

The next general fact follows from the uniform continuity of f € C(G):

yEBy

Lemma 22.2. For every f € C(G) and € > 0 there is open V' 3 e such that wp(V) < e.

For any finite nonempty set (sometimes multiset) B C G we set
1
vp ==Y 0 € P(G).
|B| beB
Below we write vg(f) rather than fG f dvg. The following is crucial:

Theorem 22.3. Given V > e and two blocking sets A, B for Hy of the same minimal
cardinality, we have

wa(f) = ve(f)] < wp(V),
for every f € C(G).
Proof. Let A = {ay,...,a,} and B = {by,...,b,}. First note that if there is a bijection
¢ : A — B such that a; and ¢(a;) are V-adjacent then we get the desired inequality.
To prove that such ¢ exists consider a bipartite graph (A, B, F') where the edge {a,b} € F
exists iff a,b are V-adjacent. Then use the classical fact from finite combinatorics: In a

bipartite graph the maximal matching has the same size as the minimal cardinality of a
blocking set. This is the Konig-Egevary theorem, see e.g. here or this text in Polish O

Theorem 22.4. Suppose that we are given open sets V2O W 3 e, and two minimal sets
A, B that are blocking for Hyw and Hy, respectively. Then

va(f) —ve(f)| < 2wp (V)
for every f € C(G).

Proof. Consider C' = A - B (as a multiset). Then, for instance,

1 1
ve(f) = TA[B] > flab) = szaB(f)'

ac€AbeB acA


https://mathworld.wolfram.com/Koenig-EgevaryTheorem.html
https://www.math.uni.wroc.pl/~grzes/dydaktyka21_22/wyklad12a.pdf

Note that Ab blocks Hy, for every b € B and, conversely, aB blocks Hy for every a € A.
By Theorem [22.3]

va(f) —velf Z wa(f) — van(f)] < wp(V),
vs(f) —ve(f)] < T Z|VB — van(f)] £ wp(V),
acA
and hence |v4(f) —va(f)| < 2we(V). O

Now for every open V' 3 e we pick a minimal blocking set B(V') for Hy and simply write

Vy = VBWv)-
Then (vy)yse is a net of measures (indexed by all open neighbourhoods of e and ordered

by inverse inclusion). We conclude that such a net converges and its limit is a probability
measure v which is left- and right- invariant at the same time.

23. UNIQUENESS OF THE HAAR MEASURE

Recall here a popular argument that left invariance of a measure on a compact proup
automatically implies its right-invariance; actually, the same argument gives uniqueness.

Theorem 23.1. If v is a left-invariant reqular Borel measure on a compact group G then
v(U™Y) = v(U) for every open set U C G.

Consequently, v is also right-invariant and v' = v for every left-invariant reqular proba-
bility measure v/’

Proof. Consider any open U C GG and
I ={(r,y) €eGxG:y'xecU}

Recall that the product measure v ® v (defined on Bor(G) ® Bor(G)) extends to a Borel
measure f on Bor(G x G) so that p satisifes the usual Fubini formula

W(T) = / v(G,) dv(z) = /G V(GY) duy),

see P11/19 (note that checking the formula for open I' C G x G is simpler).
Every horizontal section I'Y is equal to yU so it satisfies v(I'V) = v(U) by left-invariance.
For a vertical section I',, we have

1

yel, «<— y'lelUsr! < yecalU',

so v(T';) = v(U™!) and Fubini says v(U) = v(U™1).

By outer regularity we have v(B™!) = v(B) for every Borel B C G. Note that, formally
speaking, B+ v(B™!) defines a right-invariant measure which is equal to v.

For uniqueness, apply the above Fubini-like argument to v ® /. U

Remark 23.2. (1) There is a nontrivial theorem stating that every Haar measure satisfies
the assertion of Theorem 18.2, that Bor(G) is contained in the completion of Baire(G)
with respect to the Haar measure.



(2) If G is infinite discrete group then the existence of an invariant finitely additive prob-
ability on (the power set of) G is another interesting story. A group is said to be
amenable if it admits such a function. We have already seen (L7/P2) that (Z,+) is
amenable (actually, every abelian group is amenable).

(3) The classical non-amenable group is Fy, the free group of two generators. If you cannot
find a reason why F, does not admit an invariant probability (and you cannot fall
asleep for that reason) then check it in WIKIPEDIA or look into this introductory text
by Alejandra Garrido


http://reh.math.uni-duesseldorf.de/~garrido/amenable.pdf
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