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21. Appendix on the Riesz representation theorem

For any compact space K we write P (K) for the space of all probability Borel measures

on K that are regular (with respect to closed sets). Recall that, unlike in the metrizable

case, regularity is no longer automatic. The Riesz theorem says the following:

Theorem 21.1. Given a compact space K, if φ ∈ C(K)∗ is a positive functional on C(K)

such that φ(χK) = 1 then there is a unique µ ∈ P (K) that represents φ by integration.

As before P (K) is given the weak∗-topology, the one generated by all the mappings

µ 7→
∫
K
g dµ, g ∈ C(K).

Theorem 21.2. The space P (K) is compact.

Below we comment on possible proofs of these results. Recall that K is zero-dimensional

if the family clop(K), of all closed and open sets, is a topological base.

21.1. Thm. 21.1 implies Thm. 21.2. The Banach-Alaoglu theorem says that for any

Banach space X, the dual unit ball BX∗ is compact in the weak∗ topology. This is fairly

standard: the mapping BX∗ ∋ x∗ 7→ (x∗(x))x∈BX
is an embedding into the Tikhonov cube

[−1, 1]BX and remains to note that the image is closed. In turn, P (K) is a closed subset of

BC(K)∗ so it is compact as well.

21.2. Thm. 21.2 implies Thm. 21.1. Once we know that P (K) is compact, it is enough

to check that P (K) is weak∗ dense in the set of functionals as in 21.1.

Consider a norm-one positive functional φ on C(K) and a finite collection of nonnegative

functions fi ∈ C(K), i ≤ n. We claim that there is a measure µ ∈ P (K) supported by

a finite set such that φ(fi) =
∫
K
fi dµ for every i ≤ n. Exercise:-) (Hint: think of

Hahn-Banach in finite dimensional spaces.)

21.3. Proof of Thm. 21.1 in the zero-dimensional case. We define µ(A) = φ(χA)

for A ∈ clop(K). Then µ is a finitely additive measure on the algebra clop(K) and we

can apply the procedure of regular extensions for the lattice K = clop(K) and L equal to

the lattice of all closed subsets of K. Hence µ extends to a regular Borel measure on K.

The uniqueness follows from the fact that for every closed F and open U ⊇ F there is

A ∈ clop(K) such that F ⊆ A ⊆ U .
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21.4. Proof of Thm. 21.2 in the zero-dimensional case. First note that

P (K) ∋ µ 7→
(
µ(A)

)
A∈clop(K)

,

is an injective continuous mapping so it is a homeomorphism onto its image (consisting of

all finitely additive probability measures on clop((K). In turn, it is not difficult to check

that such a space is closed subset of [0, 1]clop(K).

21.5. General topological fact: Every compact space K is a continuous image of a com-

pact zero-dimensional space K0.

Indeed, we may assume thatK ⊆ [0, 1]κ for some κ. Since there is a continuous surjection

g : 2ω → [0, 1], there is a continuous surjection θ :
(
2ω
)κ → [0, 1]κ. Now K0 = θ−1[K] is as

required.

Exercise: Why there are compact spaces that are not a continuous image of Cantor cubes

of the form 2κ?

21.6. Theorem: Suppose that θ : K → L is a continuous surjection between compact

spaces. Then

P (K) ∋ µ 7→ θ[µ] ∈ P (L)

is a continuous surjection too.

The continuity of such a mapping follows from the formula∫
L

g dθ[µ] =

∫
K

g ◦ θ dµ.

Take any ν ∈ P (L); then we can define µ0 on the σ-algebra Σ = {θ−1(B) : B ∈ Bor(L)}
by the formula µ0(θ

−1[B] = ν(B). It remains to check that µ0 extends to µ ∈ P (K).

For this we apply the regular extension procedure: µ0 is inner-regular with respect to

the lattice K = {θ−1[F ] : F = F ⊆ L} so it extends to a regular Borel measure.

21.7. Proof of Thm. 21.2: Apply 21.6 , 21.5 and 22.4.

21.8. Proof of Thm. 21.1: Apply 21.5 and 22.3 and the Hahn-Banach theorem.

In fact, here we need to know that a positive linear functional on a subspace of a Banach

lattice admits a positive extension to. a linear functional on the whole space.

22. The Haar measure on a compact group

We reproduce here a clever construction due to von Neumann. This is discussed in

a monograph by Diestel and Spalsbury2. However, the argument given there requires

some nontrivial ingredients, in particular the Arzelá-Ascoli theorem. Here we follow the

approach from this lecture note and thus, paraphrasing Joe Diestel’s words3, we should

blame Manjunath Krishnapur for its simplicity.

2Diestel, Joe; Spalsbury, Angela. The joys of Haar measure. Graduate Studies in Mathematics, 150.

American Mathematical Society, Providence, RI, 2014
3page 7 in Diestel, Joseph, Sequences and series in Banach spaces, Graduate Texts in Mathematics, 92.

Springer-Verlag, New York, 1984

https://math.iisc.ac.in/~manju/TA/4-haarmeasure.pdf
https://math.iisc.ac.in/~manju/
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Consider a compact group (G, ·) with the neutral element e ∈ G.Given any open V ∋ e,

we write

HV = {xV y : x, y ∈ G},

for the family of all its translates. We say that a, b ∈ G are V -adjacent if they belong to

the same element of HV . A set B ⊆ G is blocking if it meets every set from HV .

Lemma 22.1. For every open V the family HV admits a finite blocking set.

Proof. Find open U ∋ e such that U · U ⊆ V , Next pick finite B1, B2 ⊆ G such that

G =
⋃

x∈B1
xU−1 and G =

⋃
y∈B2

U−1y. Then check that the set B1 ·B2 is blocking. □

Given f ∈ C(G), we set

ωf (V ) = sup{|f(x)− f(y)| : x, y are V -adjacent}.

The next general fact follows from the uniform continuity of f ∈ C(G):

Lemma 22.2. For every f ∈ C(G) and ε > 0 there is open V ∋ e such that ωf (V ) ≤ ε.

For any finite nonempty set (sometimes multiset) B ⊆ G we set

νB =
1

|B|
∑
b∈B

δb ∈ P (G).

Below we write νB(f) rather than
∫
G
f dνB. The following is crucial:

Theorem 22.3. Given V ∋ e and two blocking sets A,B for HV of the same minimal

cardinality, we have

|νA(f)− νB(f)| ≤ ωf (V ),

for every f ∈ C(G).

Proof. Let A = {a1, . . . , an} and B = {b1, . . . , bn}. First note that if there is a bijection

φ : A → B such that ai and φ(ai) are V -adjacent then we get the desired inequality.

To prove that such φ exists consider a bipartite graph (A,B,E) where the edge {a, b} ∈ E

exists iff a, b are V -adjacent. Then use the classical fact from finite combinatorics: In a

bipartite graph the maximal matching has the same size as the minimal cardinality of a

blocking set. This is the König-Egeváry theorem, see e.g. here or this text in Polish □

Theorem 22.4. Suppose that we are given open sets V ⊇ W ∋ e, and two minimal sets

A,B that are blocking for HW and HV , respectively. Then

|νA(f)− νB(f)| ≤ 2ωf (V )

for every f ∈ C(G).

Proof. Consider C = A ·B (as a multiset). Then, for instance,

νC(f) =
1

|A||B|
∑

a∈A,b∈B

f(ab) =
1

|A|
∑
a∈A

νaB(f).

https://mathworld.wolfram.com/Koenig-EgevaryTheorem.html
https://www.math.uni.wroc.pl/~grzes/dydaktyka21_22/wyklad12a.pdf


4

Note that Ab blocks HW for every b ∈ B and, conversely, aB blocks HV for every a ∈ A.

By Theorem 22.3,

|νA(f)− νC(f)| ≤
1

|B|
∑
b∈B

|νA(f)− νAb(f)| ≤ ωf (V ),

|νB(f)− νC(f)| ≤
1

|A|
∑
a∈A

|νB(f)− νaB(f)| ≤ ωf (V ),

and hence |νA(f)− νB(f)| ≤ 2ωf (V ). □

Now for every open V ∋ e we pick a minimal blocking set B(V ) for HV and simply write

νV = νB(V ).

Then (νV )V ∋e is a net of measures (indexed by all open neighbourhoods of e and ordered

by inverse inclusion). We conclude that such a net converges and its limit is a probability

measure ν which is left- and right- invariant at the same time.

23. Uniqueness of the Haar measure

Recall here a popular argument that left invariance of a measure on a compact proup

automatically implies its right-invariance; actually, the same argument gives uniqueness.

Theorem 23.1. If ν is a left-invariant regular Borel measure on a compact group G then

ν(U−1) = ν(U) for every open set U ⊆ G.

Consequently, ν is also right-invariant and ν ′ = ν for every left-invariant regular proba-

bility measure ν ′

Proof. Consider any open U ⊆ G and

Γ = {(x, y) ∈ G×G : y−1x ∈ U}.

Recall that the product measure ν⊗ν (defined on Bor(G)⊗Bor(G)) extends to a Borel

measure µ on Bor(G×G) so that µ satisifes the usual Fubini formula

µ(Γ) =

∫
G

ν(Gx) dν(x) =

∫
G

ν(Gy) dν(y),

see P11/L9 (note that checking the formula for open Γ ⊆ G×G is simpler).

Every horizontal section Γy is equal to yU so it satisfies ν(Γy) = ν(U) by left-invariance.

For a vertical section Γx we have

y ∈ Γx ⇐⇒ y−1 ∈ Ux−1 ⇐⇒ y ∈ xU−1,

so ν(Γx) = ν(U−1) and Fubini says ν(U) = ν(U−1).

By outer regularity we have ν(B−1) = ν(B) for every Borel B ⊆ G. Note that, formally

speaking, B 7→ ν(B−1) defines a right-invariant measure which is equal to ν.

For uniqueness, apply the above Fubini-like argument to ν ⊗ ν ′. □

Remark 23.2. (1) There is a nontrivial theorem stating that every Haar measure satisfies

the assertion of Theorem 18.2, that Bor(G) is contained in the completion of Baire(G)

with respect to the Haar measure.
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(2) If G is infinite discrete group then the existence of an invariant finitely additive prob-

ability on (the power set of) G is another interesting story. A group is said to be

amenable if it admits such a function. We have already seen (L7/P2) that (Z,+) is

amenable (actually, every abelian group is amenable).

(3) The classical non-amenable group is F2, the free group of two generators. If you cannot

find a reason why F2 does not admit an invariant probability (and you cannot fall

asleep for that reason) then check it in Wikipedia or look into this introductory text

by Alejandra Garrido

http://reh.math.uni-duesseldorf.de/~garrido/amenable.pdf
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