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ROZDZIAŁ 0

Wiadomości wstępne

Young man, in mathematics you don’t un-
derstand things. You just get used to them.
John von Neumann

1. O czym i dla kogo jest ten tekst?

Niniejszy skrypt zawiera podstawowy wykład z teorii miary i całki i obejmuje materiał,
który w Instytucie Matematycznym UWr jest treścią semestralnego wykładu, noszącego
obecnie taką nazwę, jak tytuł skryptu (poprzednio obowiązywała tradycyjna nazwa Funk-
cje rzeczywiste). Skrypt winien być dostępny dla każdego studenta II roku matematyki
bądź informatyki — do zrozumienia większości zagadnień wystarcza dobra znajomość ra-
chunku różniczkowego i całkowego funkcji jednej zmiennej oraz teorii mnogości w zakresie
podstawowym. W miejscach, gdzie potrzebna jest głębsza znajomość zagadnień teoriom-
nogościowych, czytelnik zostanie każdorazowo ostrzeżony. Skrypt pisany jest z myślą o
studentach, którzy nie słuchali jeszcze wykładu z topologii — niezbędne elementy topologii
przestrzeni euklidesowych będą wprowadzane w miarę potrzeb.
Jest wiele książek w języku angielskim i kilka po polsku, traktujących o podstawach

teorii miary i całki; poniżej wymieniam jedynie te, do których zaglądałem w trakcie pisania
skryptu:

[1] P. Billingsley, Prawdopodobieństwo i miara, PWN, Warszawa (1987).
[2] P. Halmos, Measure theory, Springer, New York (1974).
[3] D.H. Fremlin, Measure theory vol. 1: The Irreducible minimum, Torres Fremlin, Col-
chester (2000).

[4] D.H. Fremlin, Measure theory vol. 2: Broad foundations, Torres Fremlin, Colchester
(2000).

[5] S. Łojasiewicz, Wstęp do teorii funkcji rzeczywistych, PWN, Warszawa (1976).

Prezentowane w skrypcie podejście do wprowadzenia miary i całki jest jak najbardziej
standardowe i unika eksperymentów formalnych. Dlatego wiele koncepcji zostało wprost
zaczerpniętych z klasycznej książki Halmosa, a wiele dowodów korzysta z eleganckiego po-
dejścia, zaprezentowanego przez podręcznik Billingsleya. Mam jednak nadzieję, że poniższy
wykład, dzięki stosownemu wyborowi zagadnień i sposobowi prezentacji, będzie przydatny
i, do pewnego stopnia, oryginalny. W moim przeświadczeniu skrypt zawiera zagadnienia,
które winien dobrze opanować każdy dobry student matematyki, niezależnie od tego, jaka
będzie droga jego specjalizacji na wyższych latach studiów.
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Każdy rozdział kończy lista zadań oraz lista problemów. Zadania mają stanowić inte-
gralną część wykładu, komentować twierdzenia, dostarczać przykładów, zachęcać do prze-
prowadzania samodzielnych rozumowań. Problemy to zagadnienia, które albo (tylko chwilo-
wym) stopniem trudności, albo też tematyką wykraczają poza poziom podstawowy wykła-
du; w każdym razie problemy można pominąć przy pierwszej lekturze. Niektóre problemy
wymagają znajomości indukcji pozaskończonej; w innych przypadkach rozróżnienie pomię-
dzy problemem a zadaniem jest czysto umowne. Wiele zadań należy do klasyki tematu i
można je znaleźć w cytowanych podręcznikach. Inne powstały w wyniku moich własnych
doświadczeń z uczeniem studentów matematyki we Wrocławiu bądź zostały zaczerpnięte z
internetu, w szczególności z forum dyskusyjnego Ask an Analyst, które było prowadzone
na nieistniejącym już portalu Topology Atlas.

2. Trochę teorii mnogości

Będziemy najczęściej prowadzić rozważania, dotyczące podzbiorów jakieś ustalonej prze-
strzeni X; rodzinę wszystkich podzbiorów zbioru X nazywamy zbiorem potęgowym i ozna-
czamy zazwyczaj przez P(X). Oprócz zwykłych operacji A∪B, A∩B, A \B, określonych
dla A,B ⊆ X, możemy mówić o dopełnieniu Ac = X \ A zbioru A. Przypomnijmy, że
operacja różnicy symetrycznej zbiorów jest określona jako

A△B = (A \B) ∪ (B \ A) = (A ∪B) \ (A ∩B).

Podstawowymi będą dla nas operacje mnogościowe wykonywane na ciągach zbiorów.
Jeśli dla każdej liczby naturalnej n ∈ N wybraliśmy pewien podzbiór An przestrzeni X to
(An)n nazwiemy ciągiem podzbiorów X i dla takiego ciągu definiujemy przekrój

⋂∞
n=1An i

sumę
⋃∞
n=1An przez warunki

x ∈
∞⋂
n=1

An wtedy i tylko wtedy gdy x ∈ An dla każdego n ∈ N;

x ∈
∞⋃
n=1

An wtedy i tylko wtedy gdy istnieje n ∈ N takie że x ∈ An.

Przykład 0.2.1 Rozważając podzbiory postaci (a, b) = {x ∈ R : a < x < b} możemy
napisać

∞⋂
n=1

(0, 1/n) = ∅,
∞⋂
n=1

(−1/n, 1/n) = {0},
∞⋃
n=1

(1/n, n) = (0,∞),

co jest oczywiste, nieprawdaż?1 ♦

Oczywiście umiejętność formalnego zapisania tego typu definicji za pomocą kwantyfi-
katorów (oraz ich zrozumienia) jest jak najbardziej pożądana, ale warto zwrócić uwagę na
to, że ścisłość i precyzja matematyczna nie kłóci się z użyciem języka potocznego.

1oczywistość jest kategorią psychologiczną; w praktyce matematycznej umawiamy się, że każdy fakt
oczywisty ma swój dowód i będzie okazany na żądanie oponenta bądź egzaminatora
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Lemat 0.2.2. Dla dowolnego ciągu zbiorów An w ustalonej przestrzeni X zachodzą prawa
de Morgana

(i)
( ∞⋂
n=1

An

)c
=
∞⋃
n=1

Acn, (ii)
( ∞⋃
n=1

An

)c
=
∞⋂
n=1

Acn.

Dowód. Aby udowodnić wzór (i) zauważmy, że x ∈ (⋂∞n=1An)c wtedy i tylko wtedy gdy x
nie należy do zbioru

⋂∞
n=1An, co jest równoważne temu, że x /∈ Ak dla pewnego k, a to jest

tożsame ze stwierdzeniem, że x ∈ ⋃∞n=1Acn.
Wzór (ii) można wyprowadzić z (i) i oczywistej zależności (Ac)c = A:

∞⋂
n=1

Acn =
[( ∞⋂
n=1

Acn

)c]c
=
[ ∞⋃
n=1

(Acn)
c

]c
=
( ∞⋃
n=1

An

)c
.

▲

Podamy teraz pewne definicje i oznaczenia, które będą bardzo przydatne w dalszym
ciągu. Niech (An)n będzie ciągiem zbiorów w ustalonej przestrzeni X. Taki ciąg nazywamy
rosnącym jeśli An ⊆ An+1 dla każdego n; analogicznie ciąg jest malejący gdy An ⊇ An+1
dla wszystkich n. Będziemy pisać

An ↑ A aby zaznaczyć, że ciąg (An)n jest rosnący i A =
∞⋃
n=1

An,

An ↓ A aby zaznaczyć, że ciąg (An)n jest malejący i A =
∞⋂
n=1

An.

Tego typu zbieżność zbiorów może być uogólniona w sposób następujący.

Definicja 0.2.3. Dla ciągu zbiorów (An)n zbiory

lim sup
n→∞

An =
∞⋂
n=1

∞⋃
k=n

Ak, lim inf
n→∞

An =
∞⋃
n=1

∞⋂
k=n

Ak,

nazywamy, odpowiednio, granicą górną i granicą dolną ciągu (An)n.
Mówimy, że ciąg (An)n jest zbieżny do zbioru A, pisząc A = limnAn, gdy

A = lim sup
n→∞

An = lim inf
n→∞

An.

Innym ważnym pojęciem jest przeliczalność zbiorów. Przypomnijmy, że dwa zbiory X i
Y są równoliczne jeżeli istnieje bijekcja f : X → Y (czyli funkcja wzajemnie jednoznaczna),
odwzorowująca X na Y . Zbiór X nazywamy przeliczalnym jeżeli X jest skończony lub też
X jest równoliczny ze zbiorem liczb naturalnych N. Inaczej mówiąc zbiór jest przeliczal-
ny jeżeli jest równoliczny z pewnym podzbiorem N. Najbardziej intuicyjnym wyrażeniem
przeliczalności będzie następująca uwaga: niepusty zbiór przeliczalny X można zapisać w
postaci X = {xn : n ∈ N} (wyliczyć wszystkie jego elementy; tutaj nie zakładamy, że xn są
parami różne). Przypomnijmy sobie następujące własności zbiorów przeliczalnych (dowód
poniżej jest ledwie naszkicowany).

Twierdzenie 0.2.4.
(i) Zbiór N× N jest przeliczalny.
(ii) Jeśli zbiory X i Y są przeliczalne to zbiory X ∪ Y i X × Y też są przeliczalne.
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(iii) Jeśli zbiory X1, X2, . . . są przeliczalne to zbiór X =
⋃∞
n=1Xn jest przeliczalny

2.
(iv) Zbiór liczb wymiernych Q jest przeliczalny.
(v) Zbiór {(p, q) : p < q, p, q ∈ Q} (wszystkich przedziałów na prostej o końcach wy-
miernych) jest przeliczalny.
(vi) Ani zbiór liczb rzeczywistych R, ani też żaden jego niepusty przedział (a, b) ⊆ R nie
jest przeliczalny.

Dowód. Dowód (i) wynika stąd, że ciąg

⟨1, 1⟩, ⟨1, 2⟩, ⟨2, 1⟩, ⟨1, 3⟩, ⟨2, 2⟩, ⟨3, 1⟩, . . .

w którym wyliczamy wszystkie pary o sumie 2, następnie wszystkie pary o sumie 3 itd.,
zawiera wszystkie elementy zbioru N× N.
W części (ii) dowód przeliczalności X ∪ Y zostawiamy czytelnikowi, natomiast przeli-

czalność X × Y wynika łatwo z (i).
W (iii) na mocy założenia możemy napisać Xn = {xnk : k ∈ N} dla każdego n. W ten

sposób otrzymamy zbiór X = {xnk : n, k ∈ N} ponumerowany za pomocą N × N, a to na
mocy (i) uzasadnia jego przeliczalność.
Przeliczalność Q wynika łatwo z (i) i pierwszej części (ii).
Z wielu różnych sposobów wykazania nieprzeliczalności R wspomnimy następujący:

niech xn będzie dowolnym ciągiem liczb rzeczywistych; wykażemy, że R ̸= {xn : n ∈ N}.
Wybierzmy dowolne liczby a1 < b1, takie że przedział [a1, b1] nie zawiera liczby x1. Za-
uważmy, że istnieją liczby a2, b2 takie że a1 < a2 < b2 < b1 i x2 /∈ [a2, b2]. Postępując
analogicznie zdefiniujemy zstępujący ciąg niezdegenerowanych przedziałów [an, bn] tak że
x1, x2, . . . , xn /∈ [an, bn]. Rzecz w tym, że istnieje liczba y ∈

⋂∞
n=1[an, bn] — na mocy aksjo-

matu Dedekinda można przyjąć y = supn an. Ostatecznie y ̸= xn dla każdego n i to kończy
dowód. Łatwo ten argument zmodyfikować, aby pokazać że żaden niepusty przedział (a, b)
na prostej nie jest przeliczalny. ▲

Tradycyjnie moc zbioru R oznaczana jest przez c i nosi nazwę continuum. W teorii
mnogości dowodzi się, że rodzina P (N) wszystkich podzbiorów N jest równoliczna z R,
czyli że P (N) też jest mocy c.

3. Odrobina topologii

W tym miejscu wprowadzimy podstawowe pojęcia topologiczne na prostej rzeczywistej.
Przypomnijmy, że o zbiorze R, oprócz zwykłych aksjomatów opisujących własności działań
+ i · oraz własności porządku, zakładamy następujący aksjomat Dedekinda: Każdy niepusty
i ograniczony z góry zbiór A ⊆ R ma najmniejsze ograniczenie górne (które oznaczamy
supA).

Definicja 0.3.1. Zbiór U ⊆ R jest otwarty jeżeli dla każdego x ∈ U istnieje liczba δ, taka
że (x− δ, x+ δ) ⊆ U .
Zbiór F ⊆ R nazywamy domkniętym jeśli zbiór R \ F jest otwarty, to znaczy jeśli dla

każdego x /∈ F istnieje δ > 0, taka że (x− δ, x+ δ) ∩ F = ∅.

2dla wielbicieli teorii ZF: ten fakt wymaga pewnika wyboru
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Przykład 0.3.2 Jest rzeczą oczywistą, ale godną odnotowania, że zbiory ∅ i R są otwarte,
a więc są także domknięte. Dowolny przedział postaci (a, b) jest otwartym podzbiorem
prostej; istotnie, jeśli x ∈ (a, b) to wystarczy przyjąć δ = min{x− a, b− x}. Z podobnych
powodów otwartymi są półproste postaci (a,∞), (−∞, b).
Przedział postaci [a, b] jest domkniętym zbiorem w sensie powyższej definicji, dlatego

że R \ [a, b] = (−∞, a) ∪ (b,∞) jest zbiorem otwartym. Tym samym terminy ‘otwarty’ i
‘domknięty’ rozszerzają potoczne określenia stosowane dla przedziałów.
Przedział postaci [a, b) dla a < b nie jest ani otwarty, jako że nie spełnia definicji

otwartości dla x = a, ani też domknięty. ♦

Nietrudno wywnioskować z definicji, że zbiór jest otwarty wtedy i tylko wtedy gdy jest
sumą pewnej rodziny przedziałów. W istocie mamy następujące

Twierdzenie 0.3.3. Każdy niepusty zbiór otwarty U ⊆ R jest postaci

U =
∞⋃
n=1

(an, bn)

dla pewnych liczb wymiernych an, bn.

Dowód. Dla każdego x ∈ U istnieje δ > 0, taka że (x−δ, x+δ) ⊆ U . Korzystając z gęstości
zbioru Q możemy znaleźć ax, bx ∈ Q, takie że x − δ < ax < x < bx < x + δ, a wtedy
x ∈ (ax, bx) ⊆ U . W ten sposób zdefiniowaliśmy rodzinę przedziałów {(ax, bx) : x ∈ U}
o końcach wymiernych. Rodzina ta jest przeliczalna na mocy Twierdzenia 0.2.4(v); jeśli
(pn, qn) jest numeracją wszystkich elementów tej rodziny to otrzymamy U =

⋃∞
n=1(pn, qn),

ponieważ dla dowolnego x ∈ U mamy x ∈ (ax, bx) = (pn, qn) dla pewnego n. ▲
Nieco inną metodą można wykazać następującą wersję Twierdzenia 0.3.3: każdy otwarty

podzbiór R jest przeliczalną sumą przedziałów parami rozłącznych, patrz Zadanie 4.11.
Na koniec wspomnimy jeszcze o specjalnej własności odcinków domkniętych, która w

topologii jest nazywana zwartością.

Twierdzenie 0.3.4. Jeżeli [a, b] ⊆ ⋃∞
n=1(an, bn) to istnieje n ∈ N, takie że [a, b] ⊆⋃n

i=1(ai, bi).

Dowód. Niech S będzie zbiorem tych liczb s ∈ [a, b], dla których odcinek [a, s] pokrywa się
skończoną ilością przedziałów (an, bn). Wtedy S ̸= ∅ ponieważ a ∈ S. Zbiór S jako niepusty
i ograniczony z góry podzbiór prostej ma kres górny, niech t = supS. Wtedy t ∈ [a, b] więc
t ∈ (ai, bi) dla pewnego i. Ponieważ ai < t więc istnieje s ∈ S, taki że ai < s < t. Oznacza
to, że odcinek [a, s] pokrywa się skończoną ilością przedziałów (an, bn), a zatem również
odcinek [a, t] ma taką samą własność – wystarczy do poprzedniego pokrycia skończonego
dołączyć (ai, bi). W ten sposób sprawdziliśmy, że t ∈ S. Gdyby t < b to biorąc s takie że
t < s < bi otrzymalibyśmy s ∈ S z powodu jak wyżej, a to jest sprzeczne z definicją kresu
górnego. Tym samym t = b i to właśnie należało wykazać. ▲

Wniosek 0.3.5. Niech F będzie domkniętym i ograniczonym podzbiorem prostej. Jeżeli
F ⊆ ⋃∞n=1(an, bn) to istnieje n ∈ N, takie że F ⊆ ⋃ni=1(ai, bi).
Dowód. Mamy F ⊆ [a, b] dla pewnych a, b, jako że F jest zbiorem ograniczonym. Ponadto
R\F jest zbiorem otwartym więc R\F = ⋃n(pn, qn) dla pewnych (pn, qn), patrz Twierdzenie
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0.3.3. Teraz wystarczy zastosować Twierdzenie 0.3.4 do pokrycia odcinka [a, b] odcinkami
(an, bn) i (pn, qn). ▲

Mówiąc w języku topologii każdy domknięty i ograniczony podzbiór R jest zwarty.
Zwartość można wysłowić też w języku ciągów – patrz Problem 5.D.
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4. Zadania

0.4.1 Obliczyć
(i)

⋂∞
n=1(0, 1/n);

⋂∞
n=1(−1/n, 1/n);

⋃∞
n=1[1/n, n);

(ii)
⋂∞
n=1(n, n+ 3);

⋃∞
n=1(n, n+ 3);

(iii)
⋂∞
n=1(n, 2n);

⋃∞
n=1(n− n2, 1/n).

0.4.2 Dla ciągów zbiorów An z poprzedniego zadania obliczyć lim supnAn i lim infnAn.

0.4.3 Zapisać przedział domknięty postaci [a, b] ⊆ R jako przekrój ciągu przedziałów otwar-
tych. Podobnie zapisać przedział otwarty (a, b) jako sumę przedziałów domkniętych.

0.4.4 Wykazać, że w powyższym zadaniu nie można zamienić miejscami określeń ‘otwarty’
i ‘domknięty’.

0.4.5 Zapisać trójkąt T = {(x, y) ∈ R2 : 0 < x < 1, 0 < y < x} jako sumę prostoką-
tów. Zauważyć, że wystarczy wysumować przeliczalnie wiele prostokątów, aby taki trójkąt
uzyskać.

0.4.6 Zauważyć, że x ∈ lim supnAn wtedy i tylko wtedy gdy x ∈ An dla nieskończenie wielu
n; podobnie x ∈ lim infnAn ⇐⇒ x ∈ An dla prawie wszystkich n.
0.4.7 Uzasadnić następujące zależności
(i)

⋂∞
n=1An ⊆ lim infnAn ⊆ lim supnAn ⊆

⋃∞
n=1An;

(ii) (lim infnAn)c = lim supnA
c
n, (lim supnAn)

c = lim infnAcn;
(iii) lim infn(An ∩Bn) = lim infnAn ∩ lim infnBn;
(iv) lim infn(An ∪Bn) ⊇ lim infnAn ∪ lim infnBn i równość na ogół nie zachodzi.
Zapisać zależności dla granicy górnej lim sup, analogiczne do (iii)–(iv).

0.4.8 Sprawdzić, że dla danego ciągu zbiorów An, przyjmując B1 = A1, Bn = An \
⋃
j<nAj

dla n > 1, otrzymujemy
⋃∞
n=1An =

⋃∞
n=1Bn, przy czym zbiory Bn są parami rozłączne.

0.4.9 Udowodnić, że limnAn = A ⇐⇒ limn(An△ A) = ∅.
0.4.10 Wykazać, że każda rodzina parami rozłącznych przedziałów na prostej jest przeliczal-
na.

0.4.11 Niech U ⊆ R będzie zbiorem otwartym. Dla x, y ∈ U definiujemy x ∼ y jeśli istnieje
przedział (a, b), taki że x, y ∈ (a, b) ⊆ U . Sprawdzić, że ∼ jest relacją równoważności, a jej
klasy abstrakcji są przedziałami otwartymi. Wywnioskować stąd i z zadania poprzedniego,
że każdy otwarty podzbiór prostej jest sumą ciągu parami rozłącznych przedziałów.

0.4.12 Sprawdzić, że przekrój skończonej ilości zbiorów otwartych jest otwarty.

5. Problemy

0.5.A Udowodnić następujący “warunek Cauchy’ego”: ciąg zbiorów An jest zbieżny wte-
dy i tylko wtedy gdy dla dowolnych ciągów liczb naturalnych (ni)i, (ki)i rozbieżnych do
nieskończoności mamy

⋂∞
i=1(Ani △ Aki) = ∅.

0.5.B Udowodnić, że dowolny ciąg zbiorów An ∈ P(N) ma podciąg zbieżny.
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0.5.C Podać przykład ciągu An ∈ P(R), który nie ma podciągu zbieżnego. Uwaga: może
być trudne; lepiej zastąpić R innym zbiorem tej samej mocy.
0.5.D Udowodnić, że jeśli F jest domkniętym i ograniczonym podzbiorem R to dla każdego
ciągu xn ∈ F istnieje podciąg tego ciągu zbieżny do pewnego x ∈ F .
Wskazówka: Aby x ∈ F był granicą pewnego podciągu xn potrzeba i wystarcza by dla
każdego δ > 0 w (x−δ, x+δ) znajdowało się nieskończenie wiele wyrazów ciągu xn. Przyjąć,
że żaden x ∈ F nie ma tej własności i zastosować Twierdzenie 0.3.5.
0.5.E Udowodnić, że moc zbioru P(N) jest równa mocy zbioru R.



ROZDZIAŁ 1

Rodziny zbiorów i miary

παντων χρηµατων µητρων αντθρωπωσ

Człowiek jest miarą wszechrzeczy (istniejących,
że istnieją i nieistniejących, że nie istnieją).
Protagoras z Abdery

W rozdziale tym wprowadzimy podstawowe pojęcia teorii miary, a następnie udowod-
nimy twierdzenie, pozwalające konstruować miary z funkcji zbioru określonych na pier-
ścieniach. Konstrukcja ta będzie zilustrowana wprowadzeniem miary Lebesgue’a na prostej
rzeczywistej. Nowoczesna teoria miary i całki zaczęła się od prac Henri Lebesgue’a na po-
czątku dwudziestego wieku i dlatego jego nazwisko będzie tu odmieniane przez wszystkie
przypadki.

1. Rodziny zbiorów

W tym podrozdziale, jak i w wielu następnych, będziemy rozważać rodziny podzbiorów
ustalonej niepustej przestrzeni X; przypomnijmy, że P(X) oznacza rodzinę wszystkich
podzbiorów X.

Definicja 1.1.1. Mówimy, że rodzina R ⊆ P(X) jest pierścieniem zbiorów jeżeli
(i) ∅ ∈ R;
(ii) jeżeli A,B ∈ R to A ∪B, A \B ∈ R.

Rodzina R jest ciałem zbiorów jeżeli R jest pierścieniem zbiorów oraz X ∈ R.
Powyższa terminologia nawiązuje nieco do pojęć algebraicznych (pierścienie i ciała w

algebrze to struktury, w których wykonalne są pewne działania) — ta analogia jest nieco
powierzchowna (ale patrz Zadanie 10.1). Ponieważ nie będzie to prowadzić do nieporozu-
mień, w dalszym ciągu będziemy po prostu mówić, że dana rodzina R jest pierścieniem lub
ciałem.
Zauważmy, że w pierścieniu R możemy wykonywać operacje różnicy symetrycznej i

przekroju; istotnie, jeżeli A,B ∈ R to A△ B ∈ R, co wynika bezpośrednio z aksjomatu
(ii) w Definicji 1.1.1; ponadto A ∩ B = A \ (A \ B) ∈ R. Zauważmy też, że na to, aby
rodzina R była ciałem potrzeba i wystarcza żeby ∅ ∈ R oraz A∪B,Ac ∈ R dla dowolnych
A,B ∈ R. Dostateczność tych warunków wynika z tożsamości X = ∅c oraz

A \B = A ∩Bc = (Ac ∪B)c.

Jeżeli dana rodzina zbiorów R jest zamknięta na sumy dwóch swoich elementów to prosta
indukcja pokaże, że

⋃n
i=1Ai ∈ R dla dowolnego n i Ai ∈ R. Możemy więc powiedzieć, że

ciało zbiorów to rodzina zamknięta na wszystkie skończone operacje mnogościowe.

https://pl.wikipedia.org/wiki/Henri_Lebesgue
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Definicja 1.1.2. Mówimy, że rodzina R ⊆ P(X) jest σ–pierścieniem zbiorów jeżeli R jest
pierścieniem zamkniętym na przeliczalne sumy, to znaczy spełniającym warunek

⋃∞
n=1An ∈

R dla dowolnego ciągu An ∈ R.
Jeżeli R jest σ–pierścieniem i X ∈ R to R nazywamy σ–ciałem.
Zauważmy, że w σ–ciele R wykonywalne są wszystkie przeliczalne operacje mnogościo-

we, na przykład jeżeli An ∈ R to
⋂∞
n=1An ∈ R na mocy Lematu 0.2.2, oraz

lim sup
n

An, lim inf
n

An ∈ R,

jako że rodzina R jest zamknięta na przeliczalne sumy i przekroje.

Przykład 1.1.3 RodzinaR = {∅} jest oczywiście pierścieniem, a rodzinaA = {∅, X} jest
najmniejszym ciałem podzbiorów X. Zauważmy, że zbiór potęgowy P(X) jest σ–ciałem.
Jeśli oznaczymy przez R rodzinę wszystkich skończonych podzbiorów nieskończonej

przestrzeni X to R jest pierścieniem, ale nie jest ciałem. Zauważmy też, że taka rodzina
nie jest σ–pierścieniem bo, skoro X jest nieskończonym zbiorem, to w X można wyróżnić
ciąg xn parami różnych jego elementów. Przyjmując A = {xn : n ∈ N} oraz An = {xn}
mamy An ∈ R ale A /∈ R.
Analogicznie w nieprzeliczalnej przestrzeni X rodzina C wszystkich podzbiorów przeli-

czalnych stanowi naturalny przykład σ–pierścienia, który nie jest σ–ciałem. ♦

Podamy teraz mniej banalny i ważny przykład pierścienia podzbiorów R.
Lemat 1.1.4. Rodzina R tych zbiorów A ⊆ R, które można, dla pewnych n ∈ N, ai, bi ∈ R,
zapisać w postaci

(∗) A =
n⋃
i=1

[ai, bi),

jest pierścieniem podzbiorów prostej rzeczywistej. Każdy A ∈ R ma takie przedstawienie
(*), w którym odcinki [ai, bi) są parami rozłączne.

Dowód. Mamy ∅ = [0, 0) ∈ R; z samej postaci formuły (*) wynika, że rodzina R jest za-
mknięta na skończone sumy. Zauważmy, że zbiór [a, b)\[c, d) jest albo pusty, albo odcinkiem
postaci [x, y), albo też, w przypadku gdy a < c < d < b, jest zbiorem [a, c) ∪ [d, b) ∈ R.
Korzystając z tej uwagi łatwo jest przez indukcję sprawdzić, że [a, b) \A ∈ R dla zbioru A
jak w (*). Stąd z kolei wynika, że R jest zamknięta na odejmowanie zbiorów.
Sprawdzenie końcowego stwierdzenia pozostawiamy czytelnikowi (patrz też Zadanie

10.19). ▲

Na ogół trudno jest opisywać w konkretny sposób rodziny które są zamknięte na przeli-
czalne operacje — zamiast tego wygodniej jest mówić o generowaniu danego σ–pierścienia
lub σ–ciała przez jakąś wyróżnioną rodzinę zbiorów. Zauważmy, że dla dowolnej rodziny
F ⊆ P(X) istnieje najmniejszy pierścień R0 zawierający F ; R0 jest po prostu przekrojem
wszystkich możliwych pierścieni R ⊇ F (por. Zadanie 10.3). Ta uwaga odnosi się też do
ciał i σ–ciał.

Definicja 1.1.5. Dla dowolnej rodziny F ⊆ P(X) przyjmiemy oznaczenia
r(F) — pierścień generowany przez rodzinę F (Ring);
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s(F) — σ–pierścień generowany przez rodzinę F (Sigma ring);
a(F) — ciało generowane przez rodzinę F (Algebra);
σ(F) — σ–ciało generowane przez rodzinę F (σ–algebra).
W nawiasach podano wyjaśnienie wybranych liter — w terminologii angielskiej często

ciało = field nazywa się też algebrą = algebra. Oznaczenia te będą stosowane tylko w
bieżącym rozdziale. Wyjątkiem jest oznaczenie σ(·), które warto zapamiętać bo jego rola
jest dużo poważniejsza.
Zauważmy, że pierścień przedziałów R z Lematu 1.1.4 jest generowany przez rodzinę

F = {[a, b) : a < b}, natomiast σ-pierścień zbiorów przeliczalnych z Przykładu 1 jest gene-
rowany przez rodzinę wszystkich singletonów {x} dla x ∈ X (inne przykłady generowania
znajdują się w zadaniach). Generowanie pierścieni czy ciał można porównać do sytuacji, gdy
w danej przestrzeni liniowej mówimy o podprzestrzeni generowanej przez wybrany układ
wektorów lub w ustalonej grupie — o podgrupie generowanej przez pewien jej podzbiór.

Definicja 1.1.6. Najmniejsze σ–ciało zawierające rodzinę U wszystkich otwartych pod-
zbiorów R oznaczamy Bor(R) = σ(U) i nazywamy σ-ciałem zbiorów borelowskich.
Powyższa definicja uogólnia się w oczywisty sposób na inne przestrzenie euklidesowe

oraz przestrzenie metryczne. W przypadku prostej rzeczywistej warto odnotować bardziej
“konkretne” rodziny generatorów zbiorów borelowskich — patrz lemat poniżej oraz Zadanie
10.8.

Lemat 1.1.7. Niech F będzie rodziną przedziałów postaci [p, q) gdzie p, q ∈ Q. Wtedy
σ(F) = Bor(R).
Dowód. Ponieważ [p, q) =

⋂∞
n=1(p − 1/n, q) więc [p, q), jako przekrój przeliczalnie wielu

zbiorów otwartych, jest elementem Bor(R). Stąd F ⊆ Bor(R) i tym samym σ(F) ⊆
Bor(R).
Z drugiej strony dla dowolnych a < b możemy napisać (a, b) =

⋃∞
n=1[pn, qn) ∈ σ(F),

gdzie pn, qn są odpowiednio dobranymi ciągami liczb wymiernych. Stąd i z Twierdzenia
0.3.3 wynika, że dowolny zbiór otwarty U jest elementem σ(F), a zatem Bor(R) ⊆ σ(F).
▲

O zbiorze borelowskim B ∈ Bor(R) można myśleć jako o takim zbiorze, który można
zapisać za pomocą przedziałów oraz przeliczalnych operacji mnogościowych. Mówiąc po-
glądowo każdy zbiór, który “można zapisać wzorem” jest borelowski i w znacznej części
rozważań matematycznych występują tylko zbiory borelowskie. W istocie wskazanie zbioru
spoza Bor(R), a raczej udowodnienie, że istnieją nieborelowskie podzbiory prostej, wymaga
pewnego wysiłku — patrz Problem 11.C.

2. Addytywne funkcje zbioru

Dla ustalonej rodziny R funkcję f : R → R nazywamy funkcją zbioru (aby wyraźnie
zaznaczyć, że argumenty tej funkcji mają inną naturę niż zmienne rzeczywiste). Tradycyjnie
funkcje zbioru oznaczane są literami alfabetu greckiego. Naturalnie jest zakładać, że funkcja
zbioru może także przyjmować wartość ∞, czyli rozważać funkcje zbioru

R → R∗+ = R+ ∪ {∞} = [0,∞];
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o symbolu nieskończoności zakładamy na razie tylko tyle, że x < ∞ i x +∞ = ∞ dla
x ∈ R.
Definicja 1.2.1. Niech R ⊆ P(X) będzie pierścieniem zbiorów. Funkcję µ : R → [0,∞]
nazywamy addytywną funkcją zbioru (albo miarą skończenie addytywną) jeżeli
(i) µ(∅) = 0;
(ii) jeśli A,B ∈ R i A ∩B = ∅ to µ(A ∪B) = µ(A) + µ(B).
Zauważmy, że jeśli istnieje A ∈ R, dla którego µ(A) <∞ to

µ(A) = µ(A ∪ ∅) = µ(A) + µ(∅), więc µ(∅) = 0.

Innymi słowy warunek (i) w definicji jest potrzebny tylko po to, aby wykluczyć przypadek
funkcji stale równej∞. Warunek skończonej addytywności (ii) ma następujące konsekwen-
cje.

Lemat 1.2.2. Niech µ będzie addytywną funkcją na pierścieniu R i niech A,B,Ai ∈ R.
(a) Jeżeli A ⊆ B to µ(A) ¬ µ(B).
(b) Jeżeli A ⊆ B i µ(A) <∞ to µ(B \ A) = µ(B)− µ(A).
(c) Jeżeli zbiory A1, . . . , An są parami rozłączne to µ(

⋃n
i=1Ai) =

∑n
i=1 µ(Ai).

Dowód. Ponieważ B = A ∪ (B \ A) dla zbiorów A ⊆ B, więc µ(B) = µ(A) + µ(B \ A).
Stąd wynika (a), jako że µ(B \ A) ­ 0 oraz (b).
Część (c) dowodzi się przez łatwą indukcję. ▲

Definicja 1.2.3. Jeśli µ jest addytywną funkcją na pierścieniu R to mówimy że µ jest
przeliczalnie addytywną funkcją zbioru, jeżeli dla dowolnych R ∈ R i parami rozłącznych
An ∈ R, takich że R =

⋃∞
n=1An zachodzi wzór

µ

( ∞⋃
n=1

An

)
=
∞∑
n=1

µ(An).

W powyższej definicji musimy założyć, że nieskończona suma zbiorów jest elementemR,
jako że rodzinaR jest z założenia jedynie pierścieniem. Odnotujmy, że warunek przeliczalnej
addytywności z tej definicji może oznaczać zarówno, że szereg

∑∞
n=1 µ(An) jest zbieżny

do wartości po lewej stronie, jak i że szereg jest rozbieżny i miara zbioru
⋃∞
n=1An jest

nieskończona.
Definicja przeliczalnej addytywności jest dostosowana do potrzeb Twierdzenia 1.4.2

poniżej. Naszym docelowym obiektem badań będzie miara, czyli przeliczalnie addytywna
funkcja zbioru określona na σ–ciele.

Lemat 1.2.4. Jeśli µ jest przeliczalnie addytywną funkcją na pierścieniu R to dla R ∈ R
i dowolnego ciągu An ∈ R, takich że R =

⋃∞
n=1An, zachodzi nierówność

µ

( ∞⋃
n=1

An

)
¬
∞∑
n=1

µ(An).

Dowód. Przyjmijmy B1 = A1 oraz

Bn = An \
⋃
i<n

Ai
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dla n > 1. Wtedy zbiory Bn są parami rozłączne, Bn ⊆ An oraz
⋃
nBn =

⋃
nAn = R więc

na mocy Lematu 1.2.2(a)

µ(R) =
∑
n

µ(Bn) ¬
∑
n

µ(An).

▲

Zauważmy, że dla funkcji addytywnej µ na R i zbioru R ∈ R, który jest sumą parami
rozłącznego ciągu zbiorów An ∈ R, dla każdego n zachodzi nierówność

µ(R) ­ µ(
n⋃
i=1

Ai) =
n∑
i=1

µ(Ai),

co implikuje µ(R) ­ ∑∞n=1 µ(An). Mówiąc obrazowo: funkcja addytywna jest przeliczalnie
nadaddytywna. Jak zobaczymy na przykładach przeliczalna addytywność jest warunkiem
istotnie mocniejszym. Najpierw jednak przekonamy się, że przeliczalną addytywność można
wyrazić na różne sposoby.

Twierdzenie 1.2.5. Addytywna funkcji zbioru µ na pierścieniu R jest przeliczanie ad-
dytywna wtedy i tylko wtedy gdy jest ciągła z dołu, to znaczy dla każdego A ∈ R i ciągu
An ∈ R, takiego że An ↑ A, zachodzi wzór limn µ(An) = µ(A).
Dowód. Warunek ciągłości z dołu jest konieczny: Dla rosnącego ciągu zbiorów An ↑ A
połóżmy B1 = A1 oraz Bn = An \ An−1 gdy n > 1. Wtedy A =

⋃
nBn, przy czym zbiory

Bn są parami rozłączne, a zatem

µ(A) = µ
( ∞⋃
n=1

Bn

)
=
∞∑
n=1

µ(Bn) = lim
N

N∑
n=1

µ(Bn) = lim
n
µ(An).

Rozważmy teraz parami rozłączne zbiory An i A =
⋃
nAn ∈ R. Niech Sn =

⋃n
i=1Ai. Wtedy

Sn ↑ A i warunek ciągłości pociąga za sobą
µ(A) = lim

N
µ(SN) = lim

N
(µ(A1) + . . . µ(AN)) =

∑
n

µ(An),

a więc przeliczalną addytywność. ▲

Twierdzenie 1.2.6. Dla addytywnej funkcji zbioru µ na pierścieniu R, przyjmującej tylko
wartości skończone następujące warunki są równoważne (gdzie zawsze An, A ∈ R)
(i) µ jest przeliczalnie addytywna;
(ii) µ jest ciągła z góry, to znaczy limn µ(An) = µ(A) jeżeli An ↓ A;
(iii) µ jest ciągła z góry na zbiorze ∅, czyli limn µ(An) = 0 jeżeli An ↓ ∅.

Dowód. (i) ⇒ (ii) Tutaj przyjmujemy Bn = A1 \ An; wtedy Bn ↑ A1 \ A więc, na mocy
Twierdzenia 1.2.5,

lim
n
µ(A1 \ An) = lim

n
µ(Bn) = µ(A1 \ A) = µ(A1)− µ(A),

co implikuje limn µ(An) = µ(A) po odjęciu µ(A1) stronami.
Implikacja (ii)⇒ (iii) jest oczywista po wstawieniu A = ∅.
(iii) ⇒ (i) Rozważmy parami rozłączne zbiory An i A =

⋃
nAn. Niech Sn =

⋃n
i=1Ai.

Wtedy Sn ↑ A i
µ(A) = µ(A1) + . . . µ(An) + µ(A \ Sn).
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Ponieważ limn µ(A \ Sn) = 0, powyższe pociąga zbieżność szeregu do µ(A). ▲

Przykład 1.2.7 Niech A będzie ciałem generowanym przez wszystkie skończone podzbio-
ry X, gdzie X jest nieskończony. Wtedy A ∈ A wtedy i tylko wtedy gdy

(†) A jest skończony lub X \ A jest skończony.

Istotnie, każdy zbiór o własności (†) należy do A, jako że taki zbiór łatwo zapisać za pomocą
singletonów i operacji sumy i dopełnienia. Z drugiej strony rodzina zbiorów o własności (†)
jest zamknięta na sumy skończone i dopełnienia, a więc rodzina ta jest ciałem.
Zdefiniujmy funkcję µ na A, gdzie µ(A) = 0 gdy A jest skończony i µ(A) = 1 w

przeciwnym przypadku. Wtedy µ jest skończenie addytywna na A. Istotnie jeśli A,B ∈ A
są rozłączne to µ(A∪B) = µ(A) + µ(B), ponieważ albo oba zbiory są skończone (i po obu
stronach wzoru jest 0), albo dokładnie jeden zbiór jest nieskończony i mamy równość 1=1;
(zauważmy, że jeśli obydwa zbiory A,B ∈ A są nieskończone to A ∩ B ̸= ∅). Jeśli X jest
nieskończonym zbiorem przeliczalnym to możemy napisać X =

⋃
n{xn} dla pewnego ciągu

xn i dlatego µ nie jest przeliczalnie addytywna w tym przypadku.
Niech teraz Σ będzie σ–ciałem generowanym przez wszystkie przeliczalne podzbiory X,

gdzie sam X jest nieprzeliczalny. Możemy analogicznie sprawdzić, że A ∈ Σ wtedy i tylko
wtedy gdy albo zbiór A, albo jego dopełnienie X \A jest przeliczalne. Kładąc µ(A) = 0 gdy
A jest przeliczalny i µ(A) = 1 w przeciwnym przypadku, określamy miarę na Σ. Istotnie,
jeśli An ∈ Σ są parami rozłączne i wszystkie zbiory An są przeliczalne to także zbiór
A =

⋃
mAn jest przeliczalny i dlatego

0 = µ(A) =
∑
n

µ(An) = 0.

Jeśli Ak jest nieprzeliczalny dla pewnego k to zbiory An ⊆ X \Ak dla n ̸= k są przeliczalne
i po obu stronach wzoru powyżej mamy 1.
Na σ–ciele P(X) można zdefiniować miarę w następujący prosty sposób: ustalmy x0 ∈ X

i przyjmijmy µ(A) = 0 gdy x0 /∈ A i µ(A) = 1 dla x0 ∈ A. Sprawdzenie przeliczalnej addy-
tywności nie powinno przedstawiać trudności (por. Zadanie 10.15). Miarę taką nazywamy
deltą Diraca i oznaczamy µ = δx0 . ♦

3. Miara Lebesgue’a I

Przykład 2 podaje proste, wręcz banalne, przykłady miar. W tej części zdefiniujemy na-
turalną funkcję zbioru λ na pierścieniu R, generowanym przez przedziały postaci [a, b), por.
Przykład 1.1.4. Funkcja λ ma za zadanie mierzyć “długość” zbiorów na prostej rzeczywistej
i dlatego przyjmujemy λ([a, b)) = b− a dla a < b. Dla zbioru R ∈ R postaci

(∗) R =
n⋃
i=1

[ai, bi), gdzie ai < bi, [ai, bi) ∩ [aj, bj) = ∅ dla i ̸= j, definujemy

(∗∗) λ(R) =
n∑
i=1

(bi − ai).
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W dalszym ciągu sprawdzimy, że λ jest dobrze określoną, przeliczalnie addytywną funkcją
zbioru na pierścieniu R. Poniżej przyjmiemy dla uproszczenia konwencję, że dla każdego
rozważanego przedziału [a, b) milcząco zakładamy, że [a, b) ̸= ∅, czyli że a < b.

Lemat 1.3.1. Jeżeli [an, bn) jest skończonym lub nieskończonym ciągiem parami rozłącz-
nych przedziałów zawartych w [a, b) to∑

n

(bn − an) ¬ b− a.

Dowód. Dowód dla ciągu skończonego [a1, b1), . . . , [an, bn) można przeprowadzić przez in-
dukcję: przyjmijmy, że bn = max(b1, . . . , bn). Wtedy bi ¬ an dla i < n więc [ai, bi) ⊆ [a, an)
dla i < n i dlatego, na mocy założenia indukcyjnego,

∑
i<n(bi − ai) ¬ an − a. Teraz∑

i¬n
(bi − ai) ¬ (an − a) + (bn − an) = bn − a ¬ b− a.

W przypadku nieskończonego ciągu [an, bn) mamy
∑
n¬N(bn− an) ¬ (b− a) dla każdego N

więc, przechodząc z N do nieskończoności, otrzymujemy
∑
n(bn − an) ¬ (b− a). ▲

Lemat 1.3.2. Jeżeli [an, bn) jest skończonym lub nieskończonym ciągiem przedziałów i
[a, b) ⊆ ⋃n[an, bn) to

b− a ¬
∑
n

(bn − an).

Dowód. (1) Przypadek skończony dowodzimy znowu przez indukcję: niech [a, b) ⊆ ⋃i¬n[ai, bi).
Możemy bez zmniejszenia ogólności założyć, że b ∈ [an, bn); wtedy [a, an) ⊆

⋃
i<n[ai, bi) więc

an − a ¬
∑
i<n(bi − ai) z założenia indukcyjnego, i

b− a ¬ bn − an + an − a ¬
∑
i¬n
(bi − ai).

(2) Zauważmy, że przypadek nieskończony nie redukuje się do skończonego w oczywisty
sposób i dlatego w rozumowaniu wykorzystamy Twierdzenie 0.3.4. Ustalmy ε > 0; skoro
[a, b) ⊆ ⋃n[an, bn) to

[a, b− ε] ⊆
⋃
n

(an − ε2−n, bn),

więc na mocy 0.3.4 dla pewnego N zachodzi [a, b − ε] ⊆ ⋃n¬N(an − ε2−n, bn) co na mocy
(1) daje

b− a− ε ¬
∑
n¬N
(bn − an + 2−nε) ¬

∑
n

(bn − an) + ε.

W ten sposób, z uwagi na dowolność ε > 0, otrzymujemy żądaną nierówność. ▲

Lemat 1.3.3. Definicja λ jest poprawna.

Dowód. Zauważmy najpierw, że z Lematów 1.3.1 i 1.3.2 wynika, że jeśli [a, b) jest rozłączną
sumą przedziałów [a1, b1), . . . , [an, bn) to b− a =

∑
i¬n(bi − ai).
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Każdy R ∈ R ma przynajmniej jedno przedstawienie w postaci sumy parami rozłącz-
nych przedziałów jak w (*), patrz Lemat 1.1.4. Niech

R =
⋃
i¬n
[ai, bi) =

⋃
j¬k
[ci, dj)

będą dwiema takimi reprezentacjami. Dla i ¬ n, j ¬ k oznaczmy przez Pi,j = [ai, bi) ∩
[cj, dj); wtedy Pi,j jest pusty lub jest przedziałem postaci [x, y).
Dla ustalonego i ¬ n mamy
[ai, bi) =

⋃
j¬k
[ai, bi) ∩ [cj, dj),

co daje bi − ai =
∑
j¬k λ(Pi,j) na mocy uwagi powyżej. Ostatecznie∑

i¬n
(bi − ai) =

∑
i,j

λ(Pi,j) =
∑
j¬k
(di − ci),

gdzie druga równość wynika z analogicznego rozumowania. ▲

Twierdzenie 1.3.4. Funkcja λ zdefiniowana wzorem (**) jest przeliczalnie addytywną
funkcją zbioru λ na pierścieniu przedziałów R.
Dowód. Addytywność λ wynika łatwo z samej definicji w (**) (i jej poprawności). Jeżeli
[a, b) jest sumą parami rozłącznych zbiorów Rn ∈ R to, przedstawiając każdy Rn w postaci
rozłącznej sumy

Rn =
⋃
i¬kn
[ani , b

n
i ),

otrzymujemy

b− a =
∑
n,i¬kn
(bni − ani ) =

∑
n

∑
i¬kn
(bni − ani ) =

∑
n

λ(Rn).

Przypadek ogólny, gdy R ∈ R jest sumą zbiorów Rn ∈ R otrzymamy przez prostą indukcję
po ilości przedziałów występujących w przedstawieniu R. ▲

4. Twierdzenie o konstrukcji miary

W poprzedniej części pokazaliśmy, że miarę można zdefiniować efektywnym wzorem
na rodzinie podzbiorów prostej zbudowanych w sposób elementarny. Aby taką funkcję λ
rozszerzyć do miary na σ-ciele Bor(R) potrzebna jest jednak pewna ogólna procedura, która
pozwoli nam pokonać trudności ze śledzeniem, jak z danego układu zbiorów generowane
jest σ-ciało.
W dalszym ciągu ograniczymy się do rozważania σ-skończonych funkcji zbioru; to po-

jęcie wyjaśnione jest w definicji poniżej.

Definicja 1.4.1. Powiemy że funkcja µ jest σ-skończona na pierścieniu R podzbiorów X
jeżeli istnieją zbiory Xn ∈ R, takie że X =

⋃
nXn i µ(Xn) <∞ dla każdego n.

Następujące Twierdzenie o konstrukcji miary jest kluczowe.

Twierdzenie 1.4.2. Jeżeli µ jest przeliczalnie addytywną i σ-skończoną funkcją na pier-
ścieniu R to µ rozszerza się jednoznacznie do miary na σ(R).
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Dowód istnienia takiego rozszerzenia do miary jest niewątpliwe najbardziej złożonym
elementem całego wykładu i dlatego zostanie odłożony na koniec tego rozdziału. Wcześniej
przekonamy się, że

wystarczy uwierzyć w istnienie miary, aby wyprowadzić jej własności.

Jak piszą oględnie autorzy podręczników dowód 1.4.2 można pominąć, przynajmniej
przy pierwszym czytaniu. Odnosi się to z pewnością to dowodu istnienia rozszerzenia1.
Dowód jednoznaczności rozszerzenia jest o tyle istotniejszy, ze stosowana w nim technika
ma inne zastosowania. Pierwsza ilustracja powyższej zasady metamatematycznej:

Twierdzenie 1.4.3. Jeżeli, w warunkach Twierdzenia 1.4.2, oznaczymy przedłużenie µ do
miary na σ(R) tą samą literą to dla każdego A ∈ σ(R) o własności µ(A) <∞ i dowolnego
ε > 0 istnieje R ∈ R, taki że µ(A△R) < ε.

Dowód. Rozważmy najpierw przypadek X ∈ R i µ(X) <∞ (wtedy R jest ciałem). Niech
A będzie rodziną tych A ∈ σ(R), które dają się aproksymować zbiorami z R w powyższy
sposób. Wtedy oczywiście R ⊆ A ⊆ σ(R); wystarczy więc sprawdzić, że A jest σ-ciałem,
aby otrzymać A = σ(R), czyli tezę twierdzenia.
Rodzina A jest zamknięta na branie dopełnień (zauważmy, że Ac△Rc = A△R). Jeżeli

A1, A2 ∈ A i ε > 0 to biorąc Ri ∈ R, takie że µ(Ai △ Ri) < ε/2 dla i = 1, 2, otrzymujemy
µ((A1 ∪ A2)△ (R1 ∪ R2)) < ε. Dlatego A jest zamknięta na skończone sumy, jest ciałem
zbiorów. Wystarczy jeszcze upewnić się, że jeżeli zbiory An ∈ A tworzą ciąg niemalejący
to A =

⋃
nAn ∈ A. Dla ε > 0 istnieje n, takie że µ(A \ An) < ε/2. Ponieważ An ∈ A więc

istnieje R ∈ R, taki że µ(An△R) < ε/2. Czytelnik sprawdzi, że wtedy µ(A△R) < ε i to
zakończy dowód przypadku skończonego.
W ogólnym przypadku rozważamy rozkład X =

⋃
nXn, gdzie Xn ∈ R są miary skoń-

czonej. Z pierwszej części dowodu wynika że, dla ustalonego n, każdy zbiór z σ(R) zawarty
w Xn daje się odpowiednio aproksymować. Z kolei A jest sumą zbiorów An = A ∩

⋃
i¬nXi

więc możemy zakończyć dowód, rozumując jak przed chwilą, w końcówce przypadku skoń-
czonego. ▲

5. Przestrzenie miarowe

Terminem miara będziemy określać przeliczalnie addytywną funkcję zbioru określoną
na σ-ciele.

Definicja 1.5.1. Przestrzenią miarową nazywamy trójkę (X,Σ, µ), gdzie Σ ⊆ P(X) jest
σ-ciałem, a µ : Σ→ [0,∞] jest miarą.
Zauważmy, że dla danej przestrzeni miarowej (X,Σ, µ), jeżeli Σ′ ⊆ Σ jest mniejszym σ-

ciałem, to (X,Σ′, µ′) gdzie µ′ = µ|Σ′ jest, formalnie rzecz biorąc, inną przestrzenią miarową.
Często jednak dla wygody obcięcia µ do podrodzin Σ oznaczamy tą samą literą.

Definicja 1.5.2. Przestrzeń miarową (X,Σ, µ) nazywamy skończoną jeżeli µ(X) < ∞
oraz probabilistyczną w przypadku, gdy µ(X) = 1. Przestrzeń taka jest σ-skończona, jeżeli
istnieją zbiory Xk ∈ Σ, takie że X =

⋃
kXk i µ(Xk) <∞ dla każdego k.

1w którym, nawiasem mówiąc, σ-skończoność nie jest potrzebna
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W przestrzeniach miarowych można dokonywać operacji brania podprzestrzeni, co opi-
sujemy w poniższym twierdzeniu, którego dowód jest zupełnie oczywisty.

Twierdzenie 1.5.3. Dla przestrzeni miarowej (X,Σ, µ) i zbioru Y ∈ Σ oznaczmy
ΣY = {A ∈ Σ : A ⊆ Y }.

Wtedy (Y,ΣY , µY ), gdzie µY (A) = µ(A) dla A ∈ ΣY jest przestrzenią miarową.
Każdą miarę można, tanim kosztem, uzupełnić.

Definicja 1.5.4. Mówimy, że przestrzeń miarowa (X,Σ, µ) jest zupełna jeżeli dla każdego
A ∈ Σ, jeżeli µ(A) = 0 to wszystkie podzbiory A należą do Σ. W takim przypadku mówimy
też, że Σ jest σ-ciałem zupełnym względem µ

Dowód twierdzenie podanego poniżej będzie potraktowany jako ćwiczenie, patrz Zada-
nie 10.18.

Twierdzenie 1.5.5. Dla każdej przestrzeni miarowej (X,Σ, µ) istnieje przestrzeń miarowa
zupełna (X, Σ̂, µ̂), gdzie Σ̂ ⊇ Σ i µ̂ jest rozszerzeniem miary µ na Σ̂.
Dowód. Niech Σ̂ będzie rodziną zbiorów postaci A △ N , gdzie A ∈ Σ i N ⊆ B ∈ Σ,
przy czym µ(B) = 0. Istota dowodu polega na sprawdzeniu, że Σ̂ jest σ-ciałem i wzór
µ̂(A△N) = µ(A) poprawnie definiuje miarę. ▲

6. Miara Lebesgue’a II

W podrozdziale 3 zdefiniowaliśmy funkcję zbioru λ na pierścieniu R podzbiorów pro-
stej, generowanym przez przedziały postaci [a, b). Ponieważ λ jest przeliczalnie addytywną
funkcją zbioru na R więc z Twierdzenia 1.4.2 wynika, że λ rozszerza się jednoznacznie do
miary na Bor(R). I to jest owa słynna miara Lebesgue’a (na prostej rzeczywistej). Liniowa
miara Lebesgue’a jest więc po prostu uogólnieniem elementarnej koncepcji długości odcin-
ka. Tak jak obiecaliśmy, z samego faktu istnienia jedynej takiej miary wyprowadzimy jej
podstawowe własności.
Mamy więc pierwszy niebanalny przykład przestrzeni miarowej: (R, Bor(R), λ). Sto-

sując zabieg opisany w Twierdzeniu 1.5.3 możemy też wyróżnić podstawową przestrzeń
probabilistyczną: ([0, 1], Bor[0, 1], λ).
Zbiory borelowskie można uzupełnić względem miary Lebesgue’a, jak to opisano w

twierdzeniu 1.5.5. Oznaczmy takie uzupełnione σ-ciało przez L (na cześć Lebesgue’a). Zbiór
A ∈ L nazywamy mierzalnym w sensie Lebesgue’a. Taki zbiór można więc zapisać jako
A = B△N , gdzie B ∈ Bor(R) i N jest podzbiorem zbioru miary zero (zbiór mierzalny to
modyfikacja zbioru borelowskiego na zbiorze miary zero). Otrzymujemy zupełną przestrzeń
miarową (R,L, λ) (jak zwykle pozostawiamy to samo oznaczenie na miarę). Jak się okaże,
zabieg uzupełniania jest drobny, ale bywa istotny.
Odnotujmy przede wszystkim, że λ({x}) = 0 dla każdego x ∈ R (dlatego że λ([x, x +

δ)) = δ dla δ > 0. Stąd wynika natychmiast że dla a < b mamy

λ([a, b)) = λ((a, b)) = λ([a, b]).

Twierdzenie 1.6.1. (a) Każdy zbiór przeliczalny jest miary Lebesgue’a zero.
(b) Dla każdego A ∈ L istnieją zbiory borelowskie B1 ⊆ A ⊆ B2, takie że λ(B2\B1) = 0.
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(c) Dla każdego zbioru mierzalnego A ∈ L i ε > 0 istnieje zbiór otwarty V i zbiór
domknięty F , takie że F ⊆ A ⊆ V i λ(V \ F ) < ε.

Dowód. Zbiór przeliczalny A jest przeliczalną sumą postaci A =
⋃
x∈A{x} więc λ(A) = 0

wprost z przeliczalnej addytywności.
Każdy zbiór A ∈ L jest postaci A = B △ N gdzie N jest podzbiorem borelowskiego

zbioru C miary zero. Wtedy można przyjąć B1 = B \ C i B2 = B ∪ C.
Z uwagi na (b), wystarczy (c) sprawdzić dla A ∈ Bor(R). Rozważamy najpierw zbiory

borelowskie A zawarte w [0, 1] i stosujemy znany chwyt: Niech A będzie rodziną tych
borelowskich A ⊆ [0, 1], które aproksymują się od góry zbiorami otwartymi V (otwartymi
w R), i od dołu zbiorami domkniętymi. Jest to rodzina podzbiorów [0, 1] zamknięta na
branie dopełnień (w [0, 1]). Istotnie, jeżeli F ⊆ A ⊆ V to

[0, 1] \ V ⊆ [0, 1] \ A ⊆ [0, 1] ∩ F c.

Tutaj [0, 1] \ V jest zbiorem domkniętym; zbiór [0, 1]∩F c nie musi być co prawda otwarty,
ale można go powiększyć, kosztem nieznacznego zwiększenia miar, do otwartego zbioru
(−δ, 1 + δ) ∩ F c.
Sprawdzamy teraz bez trudu, że A jest ciałem podzbiorów [0, 1] (zbiory otwarte są za-

mknięte na skończone sumy i przekroje, tę samą własność mają zbiory domknięte). Osta-
tecznie rozważamy rosnący ciąg An ∈ A i sprawdzamy, że A =

⋃
nAn ∈ A, postępując jak

w dowodzie 1.4.3.
Pierwszą część dowodu można oczywiście odnieść do ustalonego odcinka [n, n + 1].

Ostatecznie, biorąc dowolny zbiór borelowski A, dla danego ε > 0 przykrywamy każdy
zbiór A ∩ [n, n+ 1] otwartym zbiorem Vn z dokładnością ε/2|n|+2 (tutaj n przebiega liczby
całkowite). Wtedy V =

⋃
n Vn ⊇ A i

λ(V \ A) ¬
∞∑

n=−∞
λ(Vn \ A ∩ [n, n+ 1]) ¬ ε.

Aproksymacja od dołu zbiorem domkniętym przebiega analogicznie. Co prawda na ogół
nieskończona suma zbiorów domkniętych nie musi być domknięta, ale

⋃
n Fn jest zbiorem

domknięty, o ile zbiory domknięte spełniają warunek Fn ⊆ [n.n+ 1], proszę sprawdzić! ▲

Stosując Twierdzenie 1.4.3 otrzymujemy inny ważny fakt.

Twierdzenie 1.6.2. Jeżeli A ∈ L i λ(A) <∞ to dla każdego ε > 0 istnieje zbiór J będący
skończoną sumą odcinków i taki że λ(A△ J) < ε.

Odnotujmy jeszcze następujący wniosek.

Wniosek 1.6.3. Jeżeli A ∈ L i λ(A) <∞ to dla każdego ε > 0 istnieje zbiór zwarty (czyli
domknięty i ograniczony) K ⊆ A, taki że λ(A \K) < ε.

Dowód. Dla An = A ∩ (−n, n) mamy An ↑ A i dlatego λ(An) zbiega do λ(A). Wybierzmy
n takie że λ(An) > λ(A) − ε/2; z Twierdzenia 1.6.1 istnieje zbiór domknięty K ⊆ An o
własności λ(An \K) < ε/2. Wtedy K jest zbiorem zwartym i

λ(A \K) ¬ λ(A \ An) + λ(An \K) < ε.

▲
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Jak się okazuje dowolny zbiór mierzalny można na różne sposoby aproksymować z punk-
tu widzenia miary stosunkowo prostymi podzbiorami prostej. Nie należy jednak mylić in-
kluzji w Twierdzeniu 1.6.1(c): zbiór [0, 1]\Q jest miary 1, ale nie zawiera niepustych zbiorów
otwartych. Podobnie zbiór [0, 1]∩Q jest miary zero, ale każdy domknięty F ⊇ [0, 1]∩Q w
istocie zawiera [0, 1] więc λ(F ) ­ 1; por. Zadanie 10.23.

Przykład 1.6.4 Niech C ⊆ [0, 1] będzie “trójkowym” zbiorem Cantora; przypomnijmy,
że zbiór C powstaje w ten sposób, że odcinek jednostkowy dzielimy na 3 części punktami
1/3 i 2/3 i usuwamy z niego środkowy odcinek otwarty (1/3, 2/3). Następnie w drugim
kroku stosujemy analogiczną operację w odcinkach [0, 1/3] i [2/3, 1], usuwając odpowiednio
odcinki (1/9, 2/9) i (7/9, 8/9). Itd. . . Nietrudno policzyć, że łączna długość usuwanych od-
cinków wynosi 1; tym samym λ(C) = 1−1 = 0. Zauważmy, że C jest zbiorem domkniętym
i nie zawiera żadnego niepustego przedziału.
Inaczej mówiąc, zbiór C składa się ze wszystkich liczb x ∈ [0, 1], które można zapisać

w systemie trójkowym za pomocą cyfr 0 i 2. W ten sposób można uzasadnić, że C jest
zbiorem nieprzeliczalnym, równolicznym ze zbiorem R. Istnieją też wersje takiej konstrukcji,
prowadzące do zbioru “typu Cantora” miary dodatniej, patrz Zadanie 10.24 ♦

Wykorzystując własności zbioru Cantora wspomniane powyżej oraz Problem 11.C moż-
na wywnioskować, że L ̸= Bor(R). Istotnie, każdy zbiór A ⊆ C jest mierzalny, jako że
λ(C) = 0. W teorii mnogości dowodzi się, że rodzina P(C) jest mocy 2c > c, a moc Bor(R)
wynosi jedynie c. Dlatego też C zawiera nieborelowskie zbiory mierzalne.
W tym miejscu warto wspomnieć o własnościach miary Lebesgue’a związanych ze struk-

turą grupy addytywnej (R,+). Dla B ⊆ R i x ∈ R piszemy x+B na oznaczenie translacji
zbioru B, czyli {x+ b : b ∈ B}.
Twierdzenie 1.6.5. Dla dowolnego B ∈ Bor(R) i x ∈ R mamy x + B ∈ Bor(R) i
λ(x+B) = λ(B).

Dowód. Jeśli oznaczymy przezA rodzinę tych B ∈ Bor(R), dla których wszystkie translacje
są borelowskie toA zawiera wszystkie odcinki otwarte (a, b), jako że x+(a, b) = (a+x, b+x).
Wystarczy teraz zauważyć, że rodzina A jest σ-ciałem, aby otrzymać A = Bor(R). Dla
ustalonego x rozważmy miarę µ na Bor(R), daną przez wzór µ(A) = λ(x+A) (sprawdzenie,
że µ jest istotnie przeliczalnie addytywna pozostawiamy czytelnikowi). Dla a < b mamy

µ([a, b)) = λ([x+ b, x+ b)) = b− a = λ([a, b));
wynika stąd że µ(R) = λ(R) dla R z pierścienia przedziałów i tym samym µ(B) = λ(B)
dla B ∈ Bor(R) z jednoznaczności rozszerzenia miary Lebesgue’a. ▲
Nietrudno rozszerzyć niezmienniczość opisaną w Twierdzeniu 1.6.5 na σ-ciało zbiorów

mierzalnych L. Prowadzi to do klasycznej konstrukcji Vitalego, która pokazuje, że można
za pomocą pewnika wyboru udowodnić istnienie podzbioru prostej rzeczywistej, który nie
jest mierzalny, por. Problem 11.F.

7. Jednoznaczność rozszerzenia miary

Jeżeli R jest pierścieniem zbiorów przeliczalnych w nieprzeliczalnym zbiorze X to funk-
cję µ tożsamościowo równą zeru na R można przedłużyć na σ(R) na wiele sposobów.
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Okazuje się jednak, że w typowej sytuacji rozszerzenie do miary jest jedyne. Dowód tego
faktu opiera się na następującym pomyśle.

Definicja 1.7.1. RodzinęM⊆ P(X) nazywamy klasą monotoniczną jeśli dla dowolnego
ciągu An ∈M
(i) jeżeli An ↑ A to A ∈M;
(ii) jeżeli An ↓ A to A ∈M.
Oczywiście każdy σ-pierścień jest automatycznie klasą monotoniczną; zauważmy, że

pierścień będący klasą monotoniczną jest σ-pierścieniem, patrz Zadanie 10.??. Poniższe,
wcale nieoczywiste, twierdzenie bywa tradycyjnie nazywane lematem o klasie monotonicz-
nej.

Twierdzenie 1.7.2. Jeżeli klasa monotoniczna M zawiera pierścień R to zawiera też
σ-pierścień s(R) generowany przez R.
Dowód. Oznaczmy S = s(R); zauważmy, że wystarczy jeśli sprawdzimy, że jeżeliM jest
najmniejszą klasą monotoniczną zawierającąR toM = S. Zauważmy przy tym, żeM⊆ S,
jako że każdy σ-pierścień jest klasą monotoniczną.
Dla dowolnego A ⊆ X rozważymy rodzinę k(A), gdzie

k(A) = {B : A \B,B \ A,A ∪B ∈M}.

Zauważmy, że B ∈ k(A) wtedy i tylko wtedy gdy A ∈ k(B), z uwagi na symetrię warunków.
Odnotujmy też, że rodzina k(A) jest klasą monotoniczną dla dowolnego A; na przykład jeśli
Bn ∈ k(A) i Bn ↑ B to

A \Bn ↓ A \B, Bn \ A ↑ B \ A, Bn ∪ A ↑ B ∪ A,

co dowodzi że B ∈ k(A).
Dla R ∈ R z definicji pierścienia wynika natychmiast, że R ⊆ k(R). Tym samym, jako

że k(R) jest klasą monotoniczną, M ⊆ k(R) dla R ∈ R. Inaczej mówiąc, jeśli M ∈ M i
R ∈ R to M ∈ k(R), a więc także R ∈ k(M). Stąd otrzymujemy R ⊆ k(M) dla M ∈ M,
a zatem M ⊆ k(M) dla M ∈ M. To ostatnie stwierdzenie oznacza po prostu że M jest
pierścieniem. Klasa monotoniczna będąca pierścieniem jest automatycznie σ-pierścieniem,
co ostatecznie dowodzi, żeM = S. ▲

Twierdzenie 1.7.3. Niech µ będzie przeliczalnie addytywną funkcją zbioru na pierścieniu
R ⊆ P(X). Załóżmy, że X = ⋃k Sk dla pewnych Sk ∈ R, takich że µ(Sk) <∞.
Wtedy µ ma co najwyżej jedno przedłużenie do miary na σ(R).

Dowód. Załóżmy, że µ1, µ2 są miarami na σ(R), takimi, że µ1(R) = µ2(R) = µ(R)
dla R ∈ R. Będziemy rozumować jak poprzednio, rozważając wpierw przypadek miary
skończonej.
Załóżmy, że X ∈ R i µ(X) < ∞; rozważmy rodzinę M tych A ∈ σ(R), dla których

µ1(A) = µ2(A). WtedyM jest klasą monotoniczną, co wynika natychmiast z Twierdzenia
2. mamy M ⊇ R i dlatego M = σ(R) po zastosowaniu lematu o klasie monotonicznej
1.7.2. Oznacza to, że co µ1 = µ2.
W przypadku ogólnym możemy założyć, że zbiory Sk są parami rozłączne. Z pierwszej

części dowodu, zastosowanej do każdego zbioru Sk z osobna, wynika, że jeśli A ∈ σ(R) i A ⊆
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Sk dla pewnego k to µ1(A) = µ2(A). Ostatecznie dla dowolnego A ∈ σ(R) otrzymujemy

µ1(A) =
∑
k

µ1(A ∩ Sk) =
∑
k

µ2(A ∩ Sk) = µ2(A),

na mocy przeliczalnej addytywności µ1 i µ2. ▲

8. Miara zewnętrzna

W dalszym ciągu ustalmy dowolny pierścień R podzbiorów przestrzeni X i addytywną
funkcję µ na tym pierścieniu.

Definicja 1.8.1. Dla dowolnego E ⊆ X definiujemy
µ∗(E) = inf{

∑
n

µ(Rn) : Rn ∈ R, E ⊆
⋃
n

Rn}.

Tak określoną funkcję µ∗ : P(X)→ [0,∞] nazywamy miarą zewnętrzną pochodzącą od µ.

W ogólnym przypadku, gdy X nie pokrywa się ciągiem elementówR, zbiór występujący
po prawej stronie wzoru może być pusty — przypomnijmy, że inf ∅ =∞.
Lemat 1.8.2. Funkcja zbioru µ∗ zdefiniowana w 1.8.1 ma następujące własności:
(a) µ∗(∅) = 0.
(b) Jeżeli E1 ⊆ E2 ⊆ X to µ∗(E1) ¬ µ∗(E2).
(c) Dla dowolnych En ⊆ X µ∗(

⋃
nEn) ¬

∑
n µ
∗(En).

Dowód. (a) wynika z faktu, że µ(∅) = 0, natomiast (b) z uwagi, że inf A ­ inf B dla
A ⊆ B ⊆ R. Nierówność w (c) jest oczywista gdy µ∗(En) = ∞ dla pewnego n. Załóżmy
wobec tego, że µ∗(En) <∞ dla wszystkich n. Wtedy dla ustalonego ε > 0 istnieją Rnk ∈ R,
takie że

En ⊆
⋃
k

Rnk oraz
∑
k

µ(Rnk) ¬ µ∗(En) + ε/2n.

Wtedy ⋃
n

En ⊆
⋃
n,k

Rnk ,

µ∗
(⋃
n

En

)
¬
∑
n,k

(µ∗(En) + ε/2n) =
∑
n

µ∗(En) + ε,

co dowodzi tezy. ▲

Warunek 1.8.2(b) nazywany jest monotonicznością a warunek 1.8.2(c) to przeliczalna
podaddytywność. Czasami dowolną funkcję P(X) → [0,∞], niekoniecznie zdefiniowaną
wzorem 1.8.1, która jest monotoniczna i przeliczalnie podaddytywna (oraz znika na ∅)
nazywa się miarą zewnętrzną; ta ogólność nie będzie nam potrzebna. Idea miary zewnętrznej
polega na mierzeniu dowolnych zbiorów “ od zewnątrz”, przez pokrywanie ich ciągami
zbiorów z miarą już określoną.
Miara zewnętrzna zadana przez 1.8.1 nie jest na ogół przeliczalnie addytywna na rodzi-

nie wszystkich podzbiorów X, patrz na przykład Zadania 10.36 i następne. Jak się jednak
okaże, µ∗ jest przeliczalnie addytywna na σ(R).
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9. Dowód twierdzenia o konstrukcji miary

Podstawowy pomysł wykorzystywany w dowodzie pochodzi od Caratheodory’ego i opie-
ra się na tym, że można zdefiniować pewne σ-ciało zawierające wyjściowy pierścień i na
tym σ-ciele miara zewnętrzna jest przeliczalnie addytywna.

Definicja 1.9.1. Mówimy, że zbiór A ⊆ X jest mierzalny względem miary zewnętrznej µ∗
jeżeli

µ∗(Z) = µ∗(Z ∩ A) + µ∗(Z ∩ Ac),
dla dowolnego zbioru Z ⊆ X. Oznaczmy przez M(µ∗) rodzinę wszystkich mierzalnych pod-
zbiorów X.

Zauważmy, że w warunku definiującym mierzalność tylko nierówność “­” jest istotna
— nierówność przeciwna wynika z zależności Z = (Z ∩ A) ∪ (Z ∩ Ac) i (przeliczalnej)
podaddytywności miary zewnętrznej. Zauważmy też, że każdy zbiór A spełniający warunek
µ∗(A) = 0 jest mierzalny.
Poniżej udowodnimy, żeM(µ∗) jest σ-ciałem zawierającym wyjściowy pierścień, a miara

zewnętrzna jest przeliczalnie addytywna na tym σ-ciele i zgadza się z µ na R. Zauważmy,
że to automatycznie dowodzi Twierdzenia 1.4.2.

Lemat 1.9.2. Rodzina M(µ∗) jest ciałem zbiorów.

Dowód. Mamy ∅ ∈M(µ∗) ponieważ wzór w 1.9.1 jest spełniony dla A = ∅. Jeśli A ∈M(µ∗)
to Ac ∈M(µ∗) bo warunek 1.9.1 jest taki sam dla zbioru A, jak i dla jego dopełnienia Ac.
Rozważmy A,B ∈M(µ∗) i dowolny Z ⊆ X. Wtedy, testując mierzalność zbioru A zbiorem
Z, a następnie mierzalność zbioru B zbiorem Z ∩ A, otrzymamy

µ∗(Z) = µ∗(Z ∩A)+µ∗(Z ∩Ac) = µ∗(Z ∩A∩B)+µ∗(Z ∩A∩Bc)+µ∗(Z ∩Ac) ­

­ µ∗(Z ∩ A ∩B) + µ∗(Z ∩ (A ∩B)c),
gdzie w drugiej linii korzystamy z tego że

(Z ∩ A ∩Bc) ∪ (Z ∩ Ac) ⊇ Z ∩ (Ac ∪Bc) = Z ∩ (A ∩B)c,
oraz podaddytywności µ∗. W ten sposób dowiedliśmy A∩B ∈M(µ∗), jako że przeciwna nie-
równość jest zawsze prawdziwa. Tym samymM(µ∗) jest rodziną zamkniętą na dopełnienia
i przekroje, a więc jest ciałem. ▲

Lemat 1.9.3. Dla dowolnych parami rozłącznych zbiorów A1, . . . , An ∈M(µ∗) i dowolnego
Z ⊆ X zachodzi wzór

µ∗(Z ∩
⋃
i¬n

Ai) =
∑
i¬n

µ∗(Z ∩ Ai);

w szczególności µ∗ jest addytywną funkcją na M(µ∗).

Dowód. Dla dwóch rozłącznych zbiorów A1, A2 otrzymujemy tezę, testując mierzalność
zbioru A1 zbiorem Z ′ = Z ∩ (A1∪A2) bo Z ′∩A1 = Z ∩A1 i Z ′∩Ac1 = Z ∩A2; rozszerzenie
wzoru na n składników wymaga jedynie prostej indukcji. Addytywność µ∗ otrzymujemy
podstawiając Z = X. ▲
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Twierdzenie 1.9.4. RodzinaM(µ∗) jest σ-ciałem zawierającym R, a µ∗ jest przeliczalnie
addytywna na M(µ∗). Zachodzi wzór µ(R) = µ∗(R) dla R ∈ R.
Dowód. Sprawdzimy, że M(µ∗) jest σ-ciałem. Ponieważ M(µ∗) jest ciałem (Lemat 1.9.2)
więc wystarczy sprawdzić, żeM(µ∗) jest rodziną zamkniętą na rozłączne przeliczalne sumy.
Niech An ∈ M(µ∗) będzie ciągiem parami rozłącznych zbiorów i A =

⋃
nAn. Wtedy dla

dowolnego Z i n mamy na mocy 1.9.3

µ∗(Z) = µ∗(Z ∩
⋃
i¬n

Ai) + µ∗
Z ∩

⋃
i¬n

Ai

c ­∑
i¬n

µ∗(Z ∩ Ai) + µ∗(Z ∩ Ac).

Stąd, wykorzystując przeliczalną podaddytywność µ∗,

µ∗(Z) ­
∑
n

µ∗(Z ∩ An) + µ∗(Z ∩ Ac) ­ µ∗(Z ∩ A) + µ∗(Z ∩ Ac).

To dowodzi, że A ∈ M(µ∗). Miara zewnętrzna µ∗ jest przeliczalnie addytywna na M(µ∗)
jako funkcja jednocześnie przeliczalnie podaddytywna i addytywna (por. Lemat 1.9.3 i
1.8.2).
Niech R ∈ R. Aby pokazać, że R ∈M(µ∗) rozważmy dowolny Z. Jeżeli µ∗(Z) =∞ to

automatycznie µ∗(Z) ­ µ∗(Z ∩R) + µ∗(Z ∩Rc). Jeżeli µ∗(Z) <∞ to dla dowolnego ε > 0
istnieje ciąg parami rozłącznych zbiorów Rn ∈ R taki że Z ⊆

⋃
nRn i µ∗(Z) ¬

∑
n µ(Rn)+ε.

Wtedy

µ∗(Z ∩R)+µ∗(Z ∩Rc) ¬
∑
n

µ(Rn∩R)+
∑
n

µ(Rn∩Rc) =
∑
n

µ(Rn) ¬ µ∗(Z)+ ε,

co dowodzi nierówności µ∗(Z ∩R) + µ∗(Z ∩Rc) ¬ µ∗(Z), a więc R ∈M(µ∗).
Dla R ∈ R mamy µ∗(R) ¬ µ(R) z definicji µ∗. Jeśli R ⊆ ⋃

nRn dla pewnego ciągu
parami rozłącznych zbiorów Rn ∈ R to

µ(R) = µ(R ∩
⋃
n

Rn) =
∑
n

µ(R ∩Rn) ¬ µ∗(R),

gdzie stosujemy przeliczalną addytywność µ na R. ▲
Można się na koniec zastanawiać, jaka jest różnica pomiędzyM(µ∗) i σ(R). Otóż pierw-

sze σ-ciało jest uzupełnieniem tego drugiego. Wyjaśnia to, że nasza wyjściowa definicja
podzbioru prostej mierzalnego w sensie Lebesgue’a zgadza się z definicją mierzalności za-
daną poprzez warunek Caratheodory’ego. Dowód końcowego faktu przebiega podobnie do
poprzednich rozważań i zostanie pominięty.

Lemat 1.9.5. Dla każdego A ∈ M(µ∗) istnieją B1, B2 ∈ σ(R), takie że B1 ⊆ A ⊆ B2 i
µ∗(B2 \B1) = 0. W szczególności σ̂(R) =M(µ∗).
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10. Zadania

Rodziny zbiorów

1.10.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A,B ∈ R to A △ B ∈ R
i A ∩ B ∈ R. Sprawdzić, że (R,△,∩) jest także pierścieniem w sensie algebraicznym, w
szczególności, że działanie △ jest łączne i ⋂ jest rozdzielne względem △.
1.10.2 Niech F będzie taką rodziną podzbiorów X, że X ∈ F oraz A \B ∈ F dla A,B ∈ F .
Sprawdzić, że F jest ciałem.
1.10.3 Zauważyć, że przekrój dowolnej ilości pierścieni, ciał. . . jest pierścieniem, ciałem itp.

1.10.4 Zauważyć, że jeśli F ⊆ G ⊆ P(X) to α(F) ⊆ α(G), gdzie α oznacza jeden z symboli
generowania r, s, a, σ.

1.10.5 Niech G będzie rodziną wszystkich skończonych podzbiorów X. Opisać r(G), s(G),
a(G) i σ(G).
1.10.6 Niech A ⊆ P(X) będzie ciałem zbiorów i niech Z ⊆ X. Wykazać, że

a(A ∪ {Z}) = {(A ∩ Z) ∪ (B ∩ Zc) : A,B ∈ A}.

1.10.7 Zauważyć, że jeżeli C jest taką rodziną podzbiorów X, że X = ⋃∞n=1Cn dla pewnych
Cn ∈ C to s(C) = σ(C).
1.10.8 Sprawdzić, że jeśli A jest ciałem zbiorów i rodzina A jest zamknięta na rozłączne
przeliczalne sumy to A jest σ-ciałem.
1.10.9 Niech A będzie skończonym ciałem zbiorów. Udowodnić, że |A| = 2n dla pewnej
liczby naturalnej n.Wskazówka: wymyśleć, co to jest n,

1.10.10 Niech F będzie przeliczalną rodziną zbiorów. Udowodnić, że ciało a(F) jest przeli-
czalne.

1.10.11 Udowodnić, że jeśli A jest nieskończonym σ–ciałem to A ma przynajmniej c elemen-
tów. Wskazówka: Wykazać wpierw, że w każdym nieskończonym σ–ciele istnieje ciąg
niepustych parami rozłącznych zbiorów; skorzystać z tego, że c jest mocą P(N).

Funkcje zbioru

1.10.12 Niech µ będzie skończoną addytywną funkcją zbioru, określoną na pierścieniu R.
Sprawdzić, że (dla dowolnych A,B,C ∈ R)
(i) |µ(A)− µ(B)| ¬ µ(A△B);
(ii) µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B);
(iii) µ(A∪B∪C) = µ(A)+µ(B)+µ(C)−µ(A∩B)−µ(A∩C)−µ(B∩C)+µ(A∩B∩C).
Jak będzie wyglądał analogiczny wzór dla 4, 5. . . zbiorów?

1.10.13 Sprawdzić, że dla funkcji µ z poprzedniego zadania, warunek A ∼ B ⇐⇒ µ(A△
B) = 0 określa relację równoważności na R.

1.10.14 Niech X będzie zbiorem skończonym. Sprawdzić, że wzór µ(A) = |A|
|X| określa miarę

probabilistyczną na P(X).
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1.10.15 Niech (xn) ⊆ X będzie ustalonym ciągiem i niech (cn) będzie ciągiem liczb nieujem-
nych. Wykazać, że wzór

µ(A) =
∑
n:xn∈A

cn

określa miarę na P(X) (w razie trudności rozważyć ciąg skończony x1, . . . , xn). Kiedy taka
miara jest skończona?

1.10.16 Zauważyć, że P(N) jest σ-ciałem generowanym przez singletony. Wykazać, że każda
miara na P(N) jest postaci opisanej w poprzednim zadaniu.

1.10.17 Niech µ będzie miarą na σ-ciele A i niech An ∈ A. Zakładając, że µ(An ∩ Ak) = 0
dla n ̸= k, wykazać że

µ(
∞⋃
n=1

An) =
∞∑
n=1

µ(An).

1.10.18 Uzupełnić szczegóły dowodu Twierdzenia 1.5.5 w następujący sposób: Dla przestrzeni
miarowej (X,Σ, µ) zdefiniujmy Σ̂ jako rodzinę zbiorów postaci A△N , gdzie A ∈ Σ, N ⊆ B
dla pewnego B ∈ Σ miary zero. Wtedy Σ̂ jest σ–ciałem, a wzór µ̂(A△N) = µ(A) definiuje
poprawnie przedłużenie miary µ z Σ na Σ̂.

Na prostej; miara Lebesgue’a

1.10.19 Niech R będzie pierścieniem na prostej rzeczywistej, generowanym przez przedziały
postaci [a, b). Sprawdzić, że A ∈ R wtedy i tylko wtedy gdy A jest rozłączną skończoną
sumą takich przedziałów.

1.10.20 Wykazać, że rodzina podzbiorów R postaci
(F1 ∩ V1) ∪ . . . ∪ (Fk ∩ Vk),

gdzie Fi są domknięte, Vi są otwarte, k ∈ N, jest ciałem.
1.10.21 Sprawdzić, że σ-ciało Bor(R) jest generowane przez każdą z rodzin
(i) odcinki otwarte o końcach wymiernych;
(ii) odcinki domknięte;
(iii) półproste postaci (−∞, a];
(iv) półproste postaci (a,∞);
(v) odcinki domknięte o końcach wymiernych.

1.10.22 Sprawdzić, że
(i) λ(A) = 0 dla każdego zbioru skończonego A;
(ii) λ[a, b] = λ(a, b) = b− a dla a < b;
(iii) λ(U) > 0 dla każdego zbioru otwartego U ̸= ∅;
(iv) λ(A) = 0 dla każdego zbioru przeliczalnego A.

1.10.23 Podać przykład zbioru mierzalnego A, takiego że
(i) λ(A) = 1 i A jest nieograniczonym zbiorem otwartym;
(ii) λ(int(A)) = 1, λ(A) = 2, λ(A) = 3;
(iii) λ(A) = 0 i A ⊆ [0, 1] jest zbiorem nieprzeliczalnym.
Uwaga: int(A) oznacza wnętrze zbioru, czyli największy zbiór otwarty zawarty w A.
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1.10.24 Skonstruować, dla ustalonego ε > 0, zbiór domknięty F ⊆ [0, 1] o wnętrzu pustym,
dla którego λ(F ) > 1− ε.
I sposób: Zmodyfikować konstrukcję zbioru Cantora.
II sposób: Niech (qn)n będzie ciągiem liczb wymiernych z [0, 1]. Rozważyć zbiór otwarty
V =

⋃∞
n=1(qn − ε2−n, qn + ε2−n) przy odpowiednim doborze ε > 0.

1.10.25 Zauważyć, że dla każdego zbioru M ∈ L, jeśli λ(M) < ∞ to dla każdego ε > 0
istnieje ograniczony zbiór mierzalny M0 ⊆M , taki że λ(M \M0) < ε.

1.10.26 Zauważyć, że istnieje zbiór domknięty F ⊆ [0, 1] miary dodatniej złożony z liczb
niewymiernych.

1.10.27 Dla B ⊆ R i x ̸= 0, niech xB oznacza zbiór {xb : b ∈ B} (czyli jednokładność zbioru
B).
Sprawdzić, że takie przeskalowanie zbioru otwartego jest otwarte i że rodzina tych B ∈
Bor(R) dla których xB ∈ Bor(R) dla każdego x ̸= 0 jest σ-ciałem. Wyciągnąć stąd
wniosek, że dla każdego B ∈ Bor(R) i x mamy xB ∈ Bor(R) (tzn. że σ–ciało Bor(R) jest
niezmiennicze na jednokładność).

1.10.28 Wykazać, że λ(xB) = xλ(B) dla każdego zbioru borelowskiego B i x > 0. Rozszerzyć
ten rezultat na zbiory mierzalne.

1.10.29 Udowodnić, że dla dowolnego zbioru mierzalnegoM miary skończonej i ε > 0 istnieje
zbiór postaci I =

⋃
i¬n(ai, bi), taki że λ(M △ I) < ε, przy czym ai, bi ∈ Q. Wskazówka:

patrz 1.6.2.

Własności miar

1.10.30 Niech (X,Σ, µ) będzie skończoną przestrzenią miarową. Wykazać, że jeżeli An ∈ Σ i
dla każdego n zachodzi nierówność µ(An) ­ δ > 0, to istnieje x ∈ X, taki że x ∈ An dla
nieskończenie wielu n.

1.10.31 Udowodnić, że jeśli (An) jest ciągiem zbiorów z σ–ciała, na którym określona jest
skończona miara µ, to jeśli (An) jest zbieżny do A to µ(A) = limn µ(An). Czy skończoność
miary jest istotna?

1.10.32 Niech (X,Σ, µ) będzie przestrzenią miarową. Zbiór T ∈ Σ jest atomem miary µ jeśli
µ(T ) > 0 i dla każdego A ∈ Σ, jeśli A ⊆ T to µ(A) = 0 lub µ(A) = µ(T ). Mówimy, że
miara µ jest bezatomowa jeśli nie ma atomów.
Sprawdzić, że miara Lebesgue’a jest bezatomowa. Zauważyć, że inne miary rozważane do
tej pory miały atomy.

1.10.33 Udowodnić, że skończona miara bezatomowa µ na Σ ma następującą własność Dar-
boux: dla każdego A ∈ Σ i 0 ¬ r ¬ µ(A) istnieje B ∈ Σ, taki że B ⊆ A i µ(B) = r.
Pierwszy sposób (dla osób wierzących tylko w konstruktywną matematy-
kę): Niech µ(X) = 1; sprawdzić, że dla każdego ε > 0 i A ∈ Σ jeśli µ(A) > 0 to istnieje
B ∈ Σ, że B ⊆ A i 0 < µ(B) < ε. Następnie sprawdzić, że X jest rozłączną sumą zbiorów
An o własności 0 < µ(An) < ε. To rozumowanie pokaże, że zbiór wartości µ jest gęsty w
[0, 1]; potem już blisko do celu.
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Sposób Sierpińskiego (dla wielbicieli pewnika wyboru): Rozważyć maksymalny
łańcuch C zbiorów z Σ, które są zawarte w danym zbiorze A. Tutaj łańcuch oznacza rodzinę
zbiorów uporządkowaną liniowo przez inkluzję, a istnienie maksymalnego łańcucha wynika
łatwo z lematu Kuratowskiego-Zorna.

Ideały i miary zewnętrzne (zadania do podrozdziału 8)

1.10.34 Niepustą rodzinę J ⊆ P(X) nazywamy σ–ideałem jeśli A ⊆ B i B ∈ J implikuje
A ∈ J oraz ⋃∞n=1An ∈ J jeśli An ∈ J dla n = 1, 2, . . .. Podaj znane Ci przykłady
σ–ideałów na R i R2.

1.10.35 Niech J będzie σ–ideałem na X. Opisać A = σ(J ) (rozważyć przypadki X ∈ J , X /∈
J ). Zdefiniować na A zerojedynkową miarę µ, analogicznie jak w przykładzie z rozdziału
2.

1.10.36 Niech J ⊆ P(X) będzie σ–ideałem nie zawierającym X. Na a(J ) definiujemy addy-
tywną, zerojedynkową funkcję zbioru µ (por. zadanie poprzednie). Określić miarę zewnętrz-
ną za pomocą µ i scharakteryzować rodzinę zbiorów mierzalnych.

1.10.37 Niech {A1, A2, . . .} będzie partycją przestrzeni X na zbiory niepuste.
(i) Opisać ciało A generowane przez zbiory An, n ∈ N.
(ii) Na A określamy addytywną funkcję µ, tak aby µ(An) = 2−n i µ(X) = 1. Jak można
opisać σ–ciało zbiorów mierzalnych względem miary zewnętrznej pochodzącej od µ?
(patrz Definicja 1.9.1)

1.10.38 Niech X = [0, 1) × [0, 1] i niech R będzie ciałem w X generowanym przez cylindry
postaci [a, b)× [0, 1]. Na R rozważamy funkcję zbioru, taką że µ([a, b)× [0, 1]) = b− a dla
0 ¬ a < b ¬ 1. Jak wyglądają (z grubsza. . . ) zbiory µ∗-mierzalne? (patrz Definicja 1.9.1).
Zauważyć, że w X można wskazać wiele parami rozłącznych zbiorów E niemierzalnych,
takich że µ∗(E) = 1.

1.10.39 Niech R będzie pierścieniem podzbiorów Q generowanym przez zbiory postaci Q ∩
[a, b) (a, b ∈ R). Sprawdzić, że na R można określić addytywną funkcję ν, tak że ν(Q ∩
[a, b)) = b− a dla a < b. Udowodnić, że ν nie jest przeliczalnie addytywna na R i obliczyć
ν∗(Q).

1.10.40 Zauważyć, że we wzorze na λ∗ można zastąpić odcinki postaci [a, b) przez odcinki
postaci (a, b) (lub [a, b]). Stąd bezpośrednio wynika możliwość przybliżania od góry zbiorami
otwartymi.

11. Problemy

1.11.A Udowodnić, że suma dowolnej (nawet nieprzeliczalnej) rodziny przedziałów na prostej,
postaci [a, b], a < b, jest zbiorem borelowskim.

1.11.B Udowodnić, że dla dowolnego zbioru X, |X| ¬ c wtedy i tylko wtedy gdy istnieje w
P(X) przeliczalna rodzina zbiorów F , taka że σ(F) zawiera wszystkie punkty.

1.11.C Niech F ⊆ P(X) będzie rodziną mocy ¬ c. Udowodnić, że |σ(F)| ¬ c. Wywnioskować
stąd, że |Bor(R)| = c i że istnieją nieborelowskie zbiory na prostej.
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Uwaga: tutaj potrzebna jest indukcja pozaskończona.

1.11.D Udowodnić, że funkcja zbioru λ zdefiniowana na pierścieniu generowanym przez od-
cinki postaci [a, b) (przez warunek λ([a, b)) = b− a dla a < b) jest ciągła z góry na zbiorze
∅ (a więc jest przeliczalnie addytywna).Wskazówka: Zbiory postaci ⋃ni=1[ci, di] są zwarte
i (w pewnym sensie) przybliżają zbiory z R od środka.
1.11.E Niech (X,Σ, µ) będzie przestrzenią probabilistyczną i niech A1, . . . , A2025 ∈ Σ bę-
dą zbiorami o własności µ(Ai) ­ 1/2. Wykazać, że istnieje x ∈ X, taki że x ∈ Ai dla
przynajmniej 1013 wartości i.

1.11.F Przeprowadzić następującą konstrukcję zbioru Vitali’ego: Dla x, y ∈ [0, 1), niech x ∼
y ⇐⇒ x − y ∈ Q. Sprawdzić, że ∼ jest relacją równoważności. Niech Z będzie zbiorem,
który z każdej klasy abstrakcji tej relacji wybiera dokładnie jeden element. Sprawdzić, że⋃
q∈Q(Z ⊕ q) = [0, 1), gdzie ⊕ oznacza dodawanie mod 1.
Zauważyć, że λ jest niezmienniczna na [0, 1) względem działania ⊕; wywnioskować stąd,
że powyższy zbiór Z nie jest mierzalny w sensie Lebesgue’a.

1.11.G Skonstruować zbiór borelowski B ⊆ R, taki że λ(B ∩ I) > 0 i λ(Bc ∩ I) > 0 dla
każdego niepustego odcinka otwartego I.
Uwaga: Z różnych konstrukcji ta jest najlepsza, patrz zbiory Bernsteina poniżej: Rozważyć
ciąg wszystkich przedziałów o końcach wymiernych i wykorzystać fakt, że każdy przedział
zawiera zbiór domknięty miary dodatniej, mający puste wnętrze.

1.11.H Udowodnić twierdzenie Steinhausa: Jeśli A ⊆ R jest mierzalny i λ(A) > 0 to zbiór
A − A (różnica kompleksowa) zawiera odcinek postaci (−δ, δ) dla pewnego δ > 0. Nieco
ogólniej: różnica kompleksowa dwóch zbiorów miary dodatniej ma niepuste wnętrze.
Wskazówka: Można założyć, że λ(A) < ∞; pokazać najpierw że istnieje taki niepusty
odcinek I, że λ(A ∩ I) ­ 34λ(I).
1.11.I Niech A ⊆ R będzie takim zbiorem mierzalnym, że λ(A△ (x + A)) = 0 dla każdej
liczby wymiernej x. Udowodnić, że λ(A) = 0 lub λ(R \ A) = 0.
Wskazówka: Twierdzenie Steinhausa.

1.11.J (Wymaga indukcji pozaskończonej.) Skonstruować zbiór Bernsteina Z ⊆ [0, 1], czyli
taki zbiór, że

Z ∩ P ̸= ∅, P \ Z ̸= ∅,
dla dowolnego zbioru domkniętego nieprzeliczalnego P ⊆ [0, 1]. Zauważyć, że Z nie jest
mierzalny w sensie Lebesgue’a, a nawet λ∗(Z) = λ∗([0, 1] \ Z) = 1.
Wskazówka: Wszystkie zbiory P domknięte nieprzeliczalne można ustawić w ciąg Pα,
α < c. Zdefiniować Z jako {zα : α < c}, gdzie ciąg zα i pomocniczy ciąg yα sa takie, że

zα, yα ∈ Pα \ {zβ, yβ : β < α}.
Aby przeprowadzić konstrukcję trzeba wiedzieć lub sprawdzić, że każdy zbiór Pα ma moc
continuum.
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12. Dodatek o zbiorach dziwnych
Studentom matematyki należy mówić prawdę,
ale cała prawda nie zawsze jest wskazana.

Cytat powyżej zmyśliłem, ale tego typu opinie słyszałem wielokrotnie podczas swoich
studiów. Studenci jednak bywają dociekliwi i już w czasie wykładu obalili moje metatwier-
dzenie o tym, że nie da się wskazać zbioru nieborelowskiego — można faktycznie uznać,
że przytoczona2 konstrukcja Łuzina wskazuje zbiór nieborelowski. Z tej inspiracji powstało
poniższe uzupełnienie.
Wspomniany przykład Łuzina wiąże się z następującym fenomenem: istnieją funkcje cią-

głe f na R \Q (topologicznie rzecz biorąc, jest to przestrzeń NN z topologią produktową),
takie że obraz f [R \ Q] nie jest borelowskim podzbiorem prostej. Takie obrazy nazywa-
my zbiorami analitycznymi — zajmuje się nimi deskryptywna teoria mnogości. Wskazanie
stosownego analitycznego zbioru i udowodnienie, ze nie jest on borelowski wymaga pew-
nej techniki. Jeśli ktoś nie chce czekać to może sam zajrzeć do książki Kechrisa Modern
descriptive set theory3. Ciekawe jest to, że każdy zbiór analityczny na prostej jest jednak
mierzalny w sensie Lebesgue’a. Pewne podstawowe wiadomości o obrazach zbiorów przez
porządne funkcje zawarte są w zadaniach do rozdziału 2.
Zbiorów niemierzalnych na prostej nie da się wskazać, przynajmniej zrobić gołymi rę-

kami — patrz model Solovaya. Jeżeli jednak mamy do dyspozycji poręczny obiekt, na
przykład ultrafiltr, to sprawa przedstawia sie dużo lepiej. Przypomnijmy, że F ⊆ P(N) jest
ultrafiltrem niegłównym jeżeli zbiory skończone nie należą do F , F jest zamknięty na prze-
kroje i nadzbiory oraz dla każdego podziału N = A ∪ B zachodzi A ∈ F lub B ∈ F . Otóż
Sierpiński udowodnił, że mając taki F możemy zdefiniować niemierzalny zbiór Z wzorem

Z =
{∑
n∈F
1/2n : F ∈ F

}
.

Oczywiście samo istnienie ultrafiltru niegłównego wymaga pewnika wyboru. Inne tego typu
konstrukcje wspomniane są na końcu rozdziału 4.
Konstrukcja Vitalego pokazuje, ze nie istnieje przedłużenie miary Lebesgue’a do nie-

zmienniczej miary określonej na pełnym σ-ciele P(R). Ten rezultat został później uogól-
niony przez Banacha i Ulama: w zasadzie4 nie istnieje przedłużenie miary Lebesgue’a do
jakiejkolwiek miary mierzącej wszystkie podzbiory prostej. Podstawowa wersja twierdze-
nia Ulama znajduje się w bardzo przystępnej książce Oxtoby’ego Measure and category.

2przez pana Franciszka
3chyba nietrudno dotrzeć do tekstu online
4to znaczy o ile c nie jest liczbą kardynalną słabo nieosiągalną, na przykład gdy c = ℵ1,ℵ2, . . .

https://en.wikipedia.org/wiki/Solovay_model
https://math.rice.edu/~michael/teaching/426_Spr14/Banach_Mazur.pdf


ROZDZIAŁ 2

Funkcje mierzalne

Licz to, co policzalne, mierz to, co mierzalne,
a to, co niemierzalne, uczyń mierzalnym.
Galileusz

1. Podstawowe wiadomości

Przypomnijmy, że dla dowolnej funkcji f : X → Y i dowolnych zbiorów A ⊆ X oraz
B ⊆ Y , zbiory f [A] i f−1[B], zdefiniowane jako

f [A] = {f(x) ∈ Y : x ∈ A}, f−1[B] = {x ∈ X : f(x) ∈ B},

nazywamy, odpowiednio, obrazem zbioru A przez funkcję f oraz przeciwobrazem zbioru B
przez funkcję f . Operacja przeciwobrazu zachowuje wszystkie działania mnogościowe, na
przykład

f−1
[⋂
n

Bn

]
=
⋂
n

f−1[Bn],

dla dowolnego ciągu zbiorów Bn ⊆ Y ; por. Zadanie 5.1. W przypadku, gdy B = {b} pisze-
my raczej f−1[b] niż f−1[{b}], czego nie należy mylić z obliczaniem wartości (potencjalnie
istniejącej) funkcji odwrotnej.
Przypomnijmy, że ciągłość funkcji f : R→ Rmożna wyrazić za pomocą przeciwobrazów

zbiorów przez tę funkcję — zbiór f−1[V ] jest otwarty dla każdego zbioru otwartego V ⊆ R.
Istotnie, jeśli x0 ∈ f−1[V ] to y0 = f(x0) ∈ V , a skoro V jest otwarty to dla pewnego ε > 0
mamy (y0 − ε, y0 + ε) ⊆ V . Dobierając teraz δ > 0 jak w warunku Cauchy’ego ciągłości
funkcji f w x0, otrzymamy natychmiast (x0 − δ, x0 + δ) ⊆ f−1[V ].
Nietrudno jest wykazać, że w istocie funkcja f jest ciągła wtedy i tylko wtedy gdy

przeciwobrazy zbiorów otwartych przez tę funkcję są otwarte. Ten ostatni warunek z kolei
jest równoważny faktowi, że zbiór f−1[F ] jest domknięty dla każdego domkniętego zbioru
F ⊆ R — wynika to tożsamości R \ f−1[F ] = f−1[R \ F ].
Rozważmy ustaloną przestrzeń miarową (X,Σ, µ) (chwilowo sama miara nie będzie

odgrywała żadnej roli). Odpowiednio “dobre względem Σ” własności funkcji f : X → R
definiuje się następująco.

Definicja 2.1.1. Mówimy, że funkcja f : X → R jest Σ–mierzalna, albo po prostu mie-
rzalna jeśli jest jasne jakie σ-ciało mamy na myśli, gdy f−1[B] ∈ Σ dla każdego zbioru
B ∈ Bor(R).
Poniższy fakt pozwoli wysłowić mierzalność funkcji w prostszy sposób.
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Lemat 2.1.2. Niech G ⊆ Bor(R) będzie dowolną rodziną zbiorów, taką że σ(G) = Bor(R),
Wtedy dla mierzalności funkcji f : X → R potrzeba i wystarcza, aby f−1[G] ∈ Σ dla każdego
G ∈ G.
Dowód. Rozważmy rodzinę A złożoną z tych B ∈ Bor(R), dla których f−1[B] ∈ Σ. Wtedy
A jest σ-ciałem zbiorów. Istotnie, jeśli An ∈ A i A =

⋃
nAn to wtedy f−1[An] ∈ Σ dla

każdego n i

f−1[A] =
⋃
n

f−1[An] ∈ Σ.

Jeśli A ∈ A to także Ac ∈ A, ponieważ f−1[Ac] = (f−1[A])c ∈ Σ.
Jako że A jest σ-ciałem, z inkluzji G ⊆ A wynika Bor(R) = σ(G) ⊆ A, czyli A =

Bor(R), co dowodzi dostateczności warunku — jego konieczność jest oczywista. ▲

Wniosek 2.1.3. Każdy z poniższych warunków pociąga mierzalność funkcji f : X → R:
(i) {x : f(x) < t} ∈ Σ dla każdego t ∈ R;
(ii) {x : f(x) ¬ t} ∈ Σ dla każdego t ∈ R;
(iii) {x : f(x) > t} ∈ Σ dla każdego t ∈ R;
(iv) {x : f(x) ­ t} ∈ Σ dla każdego t ∈ R.

Dowód. Sprawdzimy dla przykładu dostateczność warunku (i). Niech G będzie rodziną
półprostych (−∞, t) dla t ∈ R. Wtedy f−1[G] ∈ Σ dla G ∈ G więc f jest mierzalna, jako
że G generuje Bor(R), patrz Zadanie 10.21 ▲

Wniosek 2.1.4. Jeśli funkcja f : R→ R jest ciągła to jest mierzalna względem Bor(R).

Przykład 2.1.5 Funkcję f : R → R, która jest Bor(R)-mierzalna nazywamy po prostu
funkcją borelowską. Zauważmy, że dlaX = [0, 1] lub innego borelowskiego podzbioru prostej
możemy rozważyć rodzinę {B ∈ Bor(R) : B ⊆ X}, która jest σ-ciałem podzbiorów X.
Takie σ-ciało będzie oznaczane Bor(X) — przypomnijmy, że w topologii za zbiory otwarte
w X uważa się zbiory postaci U ∩X, gdzie U ⊆ R jest otwarty.
Dla dowolnego A z σ-ciała Σ podzbiorów dowolnej przestrzeni X funkcję χA : X → R,

gdzie χA(x) = 1 dla x ∈ A i χA(x) = 0 dla x /∈ A nazywamy funkcją charakterystyczną zbio-
ru A. Taka funkcja jest mierzalna, jako że χ−1A [U ] jest elementem rodziny {∅, A,Ac, X} ⊆ Σ.
Dla dowolnego B ∈ Bor(R) funkcja χB jest więc borelowska. Zauważmy, że χQ nie

jest ciągła w żadnym punkcie prostej, co pokazuje, że mierzalność jest własnością znacznie
ogólniejszą. ♦

W dalszym ciągu pokażemy, że wiele naturalnych operacji przeprowadzanych na funk-
cjach mierzalnych prowadzi do funkcji mierzalnych.

Lemat 2.1.6. Jeżeli funkcja f : X → R jest Σ-mierzalna, a funkcja g : R→ R jest ciągła
to funkcja g ◦ f : X → R jest Σ-mierzalna.
Dowód. Dla dowolnego zbioru otwartego U ⊆ R, zbiór g−1[U ] jest otwarty na mocy ciągłości
g; stąd (g ◦ f)−1[U ] = f−1[g−1[U ]] ∈ Σ. ▲
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Wniosek 2.1.7. Jeżeli funkcja f : X → R jest Σ-mierzalna to funkcje c · f , f 2, |f | też są
Σ-mierzalne.

Lemat 2.1.8. Jeżeli funkcje f, g : X → R są Σ-mierzalne to funkcja f+g jest Σ-mierzalna.
Dowód. Wystarczy wykazać, że dla h = f + g i t ∈ R mamy h−1[(−∞, t)] ∈ Σ. Ale

{x ∈ X : f(x) + g(x) < t} =
⋃

p+q<t,p,q∈Q
{x : f(x) < p} ∩ {x : g(x) < q}.

co nietrudno sprawdzić, korzystając z gęstości zbioru Q w R. Zauważmy, że suma mnogo-
ściowa w powyższym wzorze jest przeliczalna, patrz Twierdzenie 0.2.4, i dlatego należy do
Σ. ▲

Wniosek 2.1.9. Jeżeli funkcje f, g : X → R są Σ-mierzalne to także mierzalne są funkcje
f · g,max(f, g),min(f, g).
Dowód. Dowód wynika bezpośrednio z rozważań powyżej, tożsamości

f · g = (f + g)
2 − f 2 − g2

2
, max(f, g) =

|f − g|+ f + g
2

,

oraz analogicznego wzoru na min(f, g). ▲

Dodajmy że mierzalność iloczynu f · g można sprawdzić zapisując zbiór postaci
{x : f(x)g(x) < t}

analogicznie jak w dowodzie Lematu 2.1.8.
Czasami wygodnie jest rozważać funkcje postaci f : X → R ∪ {−∞,∞}. Naturalnie

jest wtedy przyjąć, że Σ-mierzalność funkcji f oznacza dodatkowo, że zbiory f−1(−∞) i
f−1(∞) należą do Σ. Przy takiej umowie możemy dla dowolnego ciągu funkcji mierzalnych
fn : X → R zdefiniować, na przykład supn fn, bez konieczności zakładania, że zbiór {fn(x) :
n ∈ N} jest ograniczony dla każdego x ∈ X. Podobnie, rozważamy funkcję f = lim supn fn,
zadaną oczywiście przez f(x) = lim supn fn(x). Występujące tu pojęcie granicy górnej ciągu
liczbowego, a także własności granic górnych i dolnych przypomniane są w Dodatku 7.

Lemat 2.1.10. Jeżeli funkcje fn : X → R są Σ-mierzalne to mierzalne są również funkcje
lim inf
n

fn, lim sup
n

fn, inf
n
fn, sup

n
fn.

Dowód. Pokażemy dla przykładu, że funkcja f = lim supn fn jest mierzalna – wynika to
bezpośrednio z tożsamości

{x : f(x) =∞} =
⋂
k

⋂
m

⋃
n­m
{x : fn(x) > k},

{x : f(x) ¬ t} =
⋂
k

⋃
m

⋂
n­m
{x : fn(x) < t+ 1/k},

i analogicznej formuły dla −∞. Drugi ze wzorów powyżej wynika z faktu, że na to, aby
f(x) ¬ t potrzeba i wystarcza, aby dla dowolnej małej liczby postaci ε = 1/k, prawie
wszystkie wyrazy ciągu fn(x) spełniały fn(x) < t+ 1/k. ▲

Wniosek 2.1.11. Granica punktowa zbieżnego ciągu funkcji mierzalnych jest mierzalna.
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Intuicyjnie rzecz biorąc, każda przeliczalna operacja wykonywana na funkcjach mie-
rzalnych prowadzi do funkcji mierzalnych i na przykład każda funkcja R → R zapisana
“wzorem”, w którym występują przeliczalne kwantyfikatory jest borelowska.

Przykład 2.1.12 Niech fn : X → R będzie ciągiem funkcji Σ-mierzalnych; sprawdzimy,
że zbiór

A = {x : lim sup
n

fn(x) > lim inf
n

fn(x)} ∈ Σ.

W tym celu należy zapisać formalnie warunek definiujący x ∈ A za pomocą przeliczalnych
kwantyfikatorów. Zauważmy, że x ∈ A wtedy i tylko wtedy gdy istnieją liczby wymierne
p, q, takie że

lim sup
n

fn(x) > p > q > lim inf
n

fn(x).

Warunek lim supn fn(x) > p oznacza że dla pewnej liczby postaci 1/m nierówność fn(x) >
p + 1/m zachodzi dla nieskończenie wielu n; analogiczna uwaga dotyczy warunku q >
lim inf fn(x). Tym samym x ∈ A wtedy i tylko wtedy gdy

(∃p, q ∈ Q, p > q)(∃m)(∀k)(∃n1, n2 ­ k)fn1(x) > p+ 1/m, fn2(x) < q − 1/m,
co pozwala napisać

A =
⋃
p>q

⋃
m

⋂
k

⋃
n1,n2>k

{x : fn1(x) > p+ 1/m} ∩ {x : fn2(x) < q − 1/m} ∈ Σ,

(tutaj p, q ∈ Q, a wszystkie pozostałe zmienne są naturalne). Powyższy przykład ilustruje
formalną drogę sprawdzania mierzalności. Oczywiście w tym przykładzie trochę prościej
jest sprawdzić, że X \ A ∈ Σ: zauważmy, że x /∈ A oznacza, że ciąg fn(x) jest zbieżny, co
pozwala zapisać

X \ A =
⋂
m

⋃
k

⋂
n1,n2>k

{x : |fn1(x)− fn2(x)| < 1/m},

ponieważ zbieżność ciągu liczbowego jest równoważna warunkowi Cauchy’ego. ♦

Na koniec tej części odnotujemy następujący prosty, ale często wykorzystywany fakt.

Lemat 2.1.13. Każdą Σ-mierzalną funkcję f : X → R można zapisać w postaci f =
f+ − f−, różnicy funkcji mierzalnych i nieujemnych.
Dowód. Istotnie, niech f+ = max(f, 0), f− = −min(f, 0); wtedy oczywiście f = f+ − f−,
a funkcje f+, f− są mierzalne na mocy Wniosku 2.1.9. ▲

2. Funkcje proste

Dla ustalonego σ-ciała Σ na X możemy zdefiniować dość bogatą rodzinę funkcji mie-
rzalnych X → R.
Definicja 2.2.1. Funkcję f : X → R nazywamy funkcją prostą jeśli zbiór wartości f [X]
jest skończony.

Funkcja charakterystyczna χA dowolnego zbioru A ⊆ X jest prosta. W istocie wszystkie
funkcje proste są skończonymi kombinacjami liniowymi funkcji charakterystycznych.
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Lemat 2.2.2. Funkcja f : X → R jest prosta wtedy i tylko wtedy gdy
f =

∑
i¬n

aiχAi

dla pewnych liczb ai ∈ R i zbiorów Ai ⊆ X. Funkcja prosta jest Σ-mierzalna wtedy i tylko
wtedy gdy f można wyrazić jako kombinacją liniową funkcji charakterystycznych zbiorów z
Σ.

Dowód. Jeżeli f [X] = {a1, . . . , an} to biorąc Ai = f−1[ai] mamy f =
∑
i¬n aiχAi . Na od-

wrót, dla funkcji postaci f =
∑
i¬n aiχAi jej zbiór wartości zawiera się w skończonym zbiorze

złożonym z 0 i wszystkich liczb będących sumami pewnych elementów zbioru {a1, . . . , an}.
Drugie stwierdzenie wynika natychmiast z tych uwag. ▲

Z punktu widzenia opisanego poniżej rodzina funkcji prostych mierzalnych jest dość
bogata.

Twierdzenie 2.2.3. Niech f : X → R będzie funkcją nieujemną, mierzalną względem
pewnego σ-ciała Σ podzbiorów X. Wtedy istnieje ciąg mierzalnych funkcji prostych sn :
X → R, taki że

0 ¬ s1(x) ¬ s2(x) ¬ . . . , i lim
n
sn(x) = f(x),

dla każdego x ∈ X. Jeśli ponadto funkcja f jest ograniczona to ciąg sn można dobrać tak,
aby był jednostajnie zbieżny do f .

Dowód. Ustalmy n i dla każdego 1 ¬ k ¬ n2n niech

An,k = {x :
k − 1
2n
¬ f(x) < k

2n
};

wtedy An,k ∈ Σ, jako że funkcja f jest mierzalna. Niech sn będzie zdefiniowana tak, że

sn(x) =
k − 1
2n

, dla x ∈ An,k,

oraz sn(x) = n gdy f(x) > n. Niewątpliwie funkcje proste sn zdefiniowane w ten sposób są
mierzalne i nieujemne. Jeżeli x ∈ An,k dla pewnego k to sn(x) = (k − 1)/2n, natomiast

sn+1(x) = (k − 1)/2n lub sn+1(x) = (2k − 1)/2n+1,
czyli sn(x) ¬ sn+1(x).
Dla ustalonego x i n > f(x) mamy f(x) ­ sn(x) ­ f(x) − 1/2n, co pokazuje, że

limn sn(x) = f(x). Jeśli f jest ograniczona to 0 ¬ f(x)− sn ¬ 1/2n jednostajnie po x ∈ X,
o ile tylko n ogranicza f [X] z góry. ▲

3. Prawie wszędzie

Dla ustalonej przestrzeni miarowej (X,Σ, µ) i funkcji mierzalnych f, g : X → Rmówimy,
że f = g µ-prawie wszędzie jeżeli µ({x : f(x) ̸= g(x)}) = 0. W wielu rozważaniach zmiana
wartości danej funkcji na zbiorze miary zero nie zmienia jej istotnych własności i dlatego
funkcje równe prawie wszędzie można będzie, do pewnego stopnia, utożsamiać. Ale warto
pamiętać, że to zależy od punktu widzenia: χQ = 0 λ-prawie wszędzie, ale χQ nie jest ciągła
w żadnym punkcie prostej.
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Ogólniej możemy o dowolnej (ale “mierzalnej”) własności ϕ punktów x ∈ X powiedzieć,
że ϕ(x) zachodzi prawie wszędzie jeżeli µ({x : ¬ϕ(x)}) = 0. Taki charakter ma poniższa
definicja.

Definicja 2.3.1. Ciąg funkcji mierzalnych fn : X → R jest zbieżny µ-prawie wszędzie
(albo po prostu prawie wszędzie) do funkcji f jeżeli limn fn(x) = f(x) dla wszystkich x
spoza pewnego zbioru miary zero.

Przykład 2.3.2 Niech X = [0, 1]; rozważmy funkcje fn(x) = xn. Wtedy fn → 0 λ-prawie
wszędzie oraz fn → 1 µ-prawie wszędzie, gdzie µ = δ1 jest deltą Diraca. ♦

Przypomnijmy, że dla funkcji określonych na prostej rzeczywistej lub jej podzbiorach
naturalne jest rozważać ich mierzalność względem σ-ciała Bor(R), ale także względem σ-
ciała L zbiorów mierzalnych względem miary Lebesgue’a. Funkcje L-mierzalne bywają też
nazywane λ-mierzalnymi; funkcje Bor(R)-mierzalne nazywa się po prostu funkcjami bore-
lowskimi. Poniższe twierdzenie jest w pewnym sensie faktem analogicznym do Twierdzenia
1.6.1.

Twierdzenie 2.3.3. Dla każdej funkcji λ-mierzalnej f istnieje funkcja borelowska g, taka
że f = g λ-prawie wszędzie.

Dowód. Niech I1, I2, . . . będzie ciągiem zawierającym wszystkie odcinki postaci (p, q), p, q ∈
Q (por. Twierdzenie 0.2.4). Dla każdego n zbiór f−1[In] jest mierzalny, a więc na mocy
Twierdzenia 1.6.1 mamy An ⊆ f−1[In] ⊆ Bn i λ(Bn \ An) = 0 dla pewnych zbiorów
borelowskich An, Bn. Tym samym f−1[In] = An ∪ Zn, gdzie Zn jest miary zero. Niech
Z =

⋃
n Zn; wtedy λ(Z) = 0 i istnieje zbiór borelowski C, taki że Z ⊆ C i λ(C) = 0.

Zdefiniujmy funkcję g tak że g(x) = f(x) dla x /∈ C oraz g(x) = 0 dla x ∈ C. Wtedy g = f
prawie wszędzie. Ponadto

g−1[In] = An \ C gdy 0 /∈ In;

g−1[In] = An ∪ C gdy 0 ∈ In;
co w szczególności oznacza, że g−1[In] ∈ Bor(R). Stąd i z Lematu 2.1.2 wynika, że g jest
funkcją borelowską. ▲

4. Zbieżność ciągów funkcyjnych

Jak wynika z Twierdzenia 2.2.3 każda funkcja mierzalna jest granicą punktową cią-
gu funkcji prostych, a każda funkcja mierzalna ograniczona jest jednostajną granicą ciągu
takich funkcji (tutaj dla funkcji niekoniecznie nieujemnych należy zastosować jeszcze Le-
mat 2.1.13). Jak się za chwilę przekonamy, za pomocą miary można definiować i głębiej
analizować różne rodzaje zbieżności ciągów funkcyjnych.
Ciąg funkcji fn : [0, 1] → R, fn(x) = xn jest dobrze znanym przykładem punktowo

zbieżnego ciągu funkcji, który nie jest zbieżny jednostajnie. Zauważmy, że dla dowolnego
ε > 0 ciąg fn zbiega jednostajnie do zera na odcinku [0, 1− ε]. Można więc powiedzieć, że
usunięcie zbioru małej miary poprawia zbieżność ciągu. To zjawisko ma charakter bardzo
ogólny, o czym mówi tak zwane twierdzenie Jegorowa.
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Twierdzenie 2.4.1. Jeżeli (X,Σ, µ) jest skończoną przestrzenią miarową, a fn : X → R
jest ciągiem funkcji mierzalnych zbieżnym prawie wszędzie do funkcji f to dla każdego ε > 0
istnieje A ∈ Σ, taki że µ(A) ¬ ε i ciąg fn jest jednostajnie zbieżny do f na zbiorze X \A.
Dowód. Załóżmy po prostu, że f(x) = limn fn(x) dla każdego x ∈ X — w ogólnym
przypadku zbiór punktów, w których ciąg nie jest zbieżny jest miary zero i można go
usunąć z dalszych rozważań. Dla dowolnych m,n ∈ N rozważamy zbiory

E(m,n) =
∞⋂
i=n

{x : |fi(x)− f(x)| < 1/m}.

Wtedy E(m, 1) ⊆ E(m, 2) ⊆ . . . dla każdego m oraz⋃
n

E(m,n) = X,

co wynika z tego, że fn(x)→ f(x), czyli że dla każdego x istnieje n, że |fi(x)−f(x)| < 1/m.
Ustalmy ε > 0; ponieważ E(m,n) ↑ X więc X \ E(m,n) ↓ ∅ i, korzystając z ciągłości

miary skończonej na zbiorze pustym, dla każdego m istnieje nm, takie że

µ(X \ E(m,nm)) < ε/2m.

Wtedy, kładąc

A =
⋃
m

(X \ E(m,nm)), mamy;

µ(A) ¬
∑
m

µ(X \ E(m,nm)) ¬
∑
m

ε/2m = ε.

Ponadto |fn(x)− f(x)| < 1/m dla n > nm i x /∈ A, co oznacza jednostajną zbieżność fn na
X \ A. ▲
Założenie µ(X) <∞ w twierdzeniu Jegorowa jest istotne: ciąg funkcji fn(x) = x/n na

prostej zbiega punktowo do zera i nie jest zbieżny jednostajnie na żadnym nieograniczo-
nym podzbiorze prostej. Dla potrzeb licznych zastosowań Twierdzenia 2.4.1 wprowadza się
następującą definicję.

Definicja 2.4.2. Mówimy, że ciąg funkcji mierzalnych jest niemal jednostajnie zbieżny
jeżeli dla każdego ε > 0 ciąg fn zbiega jednostajnie na dopełnieniu pewnego zbioru miary
< ε.

Wprowadzimy teraz inne ważne pojęcie zbieżności ciągów funkcyjnych: zbieżność we-
dług miary.

Definicja 2.4.3. Ciąg fn : X → R funkcji mierzalnych jest zbieżny do funkcji f według
miary jeżeli dla każdego ε > 0

lim
n→∞

µ({x : |fn(x)− f(x)| ­ ε}) = 0.

Piszemy fn
µ−→ f , aby odnotować zbieżność według miary µ.

Wniosek 2.4.4. Ciąg funkcyjny zbieżny niemal jednostajnie jest zbieżny według miary. W
szczególności, ciąg funkcyjny zbieżny prawie wszędzie na przestrzeni o mierze skończonej
jest zbieżny według miary.
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Dowód. Jeżeli funkcje fn zbiegają do f niemal jednostajnie to (w szczególności) dla do-
wolnego ε istnieje zbiór A, taki że µ(A) < ε i |fn(x)− f(x)| < ε dla dużych n i wszystkich
x /∈ A. Wtedy {x : |fn(x)− f(x)| ­ ε} ⊆ A więc

µ({x : |fn(x)− f(x)| ­ ε}) ¬ µ(A) < ε

dla dostatecznie dużych n. Drugie stwierdzenie wynika z Twierdzenia 2.4.1. ▲

Zbieżność według miary jest jednak własnością istotnie słabszą niż zbieżność prawie
wszędzie, nawet przy założeniu skończoności miary. Poniższy przykład nosi nazwę “wędru-
jącego garbu”.

Przykład 2.4.5 Niech fn : [0, 1]→ R będzie ciągiem

χ[0,1], χ[0,1/2], χ[1/2,1], χ[0,1/4], χ[1/4,1/2], . . .

gdzie w ogólności “garb” ma długość 1/2n i przemierza cały odcinek [0, 1]. Bez trudu
sprawdzamy, że fn zbiega do zera według miary Lebesgue’a, ale lim infn fn(x) = 0 i
lim supn fn(x) = 1 dla każdego x ∈ [0, 1]. ♦

W powyższym przykładzie można bez trudu wskazać podciągi ciągu fn zbieżne prawie
wszędzie do zera. To jest ogólna prawidłowość, wysłowiona w poniższym twierdzeniu Riesza.

Twierdzenie 2.4.6. Niech (X,Σ, µ) będzie dowolną przestrzenią miarową i niech fn :
X → R będzie ciągiem funkcji mierzalnych, spełniającym warunek Cauchy’ego według mia-
ry, to znaczy

lim
n,k→∞

µ({x : |fn(x)− fk(x)| ­ ε}) = 0,

dla każdego ε > 0. Wtedy
(a) istnieje podciąg n(k) liczb naturalnych, taki że ciąg funkcji fn(k) jest zbieżny prawie
wszędzie oraz według miary do pewnej funkcji f ;
(b) ciąg fn jest zbieżny według miary do f .

Dowód. Zauważmy, że wspomniany w założeniu warunek Cauchy’ego implikuje, że dla
każdego k istnieje n(k), takie że dla dowolnych n,m ­ n(k) zachodzi

µ({x : |fn(x)− fm(x)| ­ 1/2k}) ¬ 1/2k,

przy czym możemy dodatkowo zażądać, aby n(1) < n(2) < . . .. Niech

Ek = {x : |fn(k)(x)− fn(k+1)(x)| ­ 1/2k}, Ak =
⋃
n­k

En;

wtedy µ(Ak) ¬ 1/2k−1 i dlatego zbiór A =
⋂
k Ak jest miary zero. Jeżeli x /∈ Ak to dla

każdego k i x /∈ Ak mamy

|fn(i)(x)− fn(i+1)(x)| ¬ 1/2i

dla wszystkich i ­ k. Z nierówności trójkąta otrzymujemy, że dla j > i ­ k zachodzi

|fn(i)(x)− fn(j)(x)| ¬ 1/2i−1.
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Tym samym, dla x /∈ A ciąg liczbowy fn(i)(x) spełnia warunek Cauchy’ego i dlatego jest
zbieżny do liczby, którą oczywiście oznaczymy f(x). W ten sposób otrzymujemy, że fn(k)
zbiega prawie wszędzie do funkcji f .
Z powyższych rozważań wynika, że {x : |f(x) − fn(k)(x)| ­ ε} ⊆ Ak, co dowodzi

zbieżności tego podciągu do funkcji f według miary; tym samym część (a) została wykazana.
Dla sprawdzenia (b) wystarczy zauważyć, że fn

µ−→ f , co wynika z zależności

{x : |fn(x)−f(x)| ­ ε} ⊆ {x : |fn(x)−fn(k)(x)| ­ ε/2}∪{x : |fn(k)(x)−f(x)| ­ ε/2},
i warunku Cauchy’ego dla zbieżności według miary. ▲

Warto podkreślić, że badanie własności ciągów zbieżnych według miary wymaga często
sporego wysiłku, por. Zadania 5.16–18.
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5. Zadania

2.5.1 Sprawdzić, że operacja przeciwobrazu zbioru przez funkcję zachowuje podstawowe
operacje mnogościowe. Zauważyć, że

f

[⋃
n

An

]
=
⋃
n

f [An],

dla dowolnych zbiorów An z dziedziny funkcji f . Zauważmy, że inkluzja f [A1 ∩ A2] ⊆
f [A1] ∩ f [A2] może być właściwa.
2.5.2 Niech fn : X → R będzie ciągiem funkcji mierzalnych względem σ–ciała Σ. W każdym
z podanych przykładów opisać warunek formułą logiczną, wykorzystującą tylko kwantyfi-
katory postaci ∀n i ∃k.
(i) ciąg fn(x) jest rosnący;
(ii) fn(x) < 2 dla wszystkich n;
(iii) fn(x) < 2 dla prawie wszystkich n;
(iv) fn(x) < 2 dla nieskończenie wielu n;
(v) supn fn(x) ¬ 2;
(vi) supn fn(x) < 2;
(vii) ciąg fn(x) jest zbieżny;
(viii) lim sup fn(x) > lim inf fn(x).
Na podstawie tych formuł, podać w każdym przykładzie wzór na zbiór x, dla których
warunek jest spełniony.

2.5.3 Wykazać, że suma zbieżnego szeregu funkcji mierzalnych jest mierzalna.

2.5.4 Niech f : R → R będzie dowolną funkcją. Niech Fε = {x ∈ R : oscx(f) ­ ε},
gdzie oscx(f) ­ ε oznacza, że dla każdego δ > 0 istnieją x′, x′′ ∈ (x − δ, x + δ) takie że
|f(x′)− f(x′′)| ­ ε.
Sprawdzić, że zbiór Fε jest domknięty. Wywnioskować stąd, że zbiór punktów ciągłości
każdej funkcji jest borelowski.

2.5.5 Niech dla każdego t z pewnego zbioru T dana będzie funkcja ciągła ft : R → R.
Rozważmy funkcję h = supt∈T ft. Wykazać, że h jest funkcją borelowską (nawet jeśli zbiór
indeksów T jest nieprzeliczalny). W tym celu rozważyć zbiór postaci {x : h(x) > a}.
2.5.6 Sprawdzić, że każdą funkcję prostą, mierzalną względem σ–ciała Σ ⊆ P (X) można
zapisać w postaci
(i)

∑
i¬n aiχAi , gdzie Ai ∈ Σ, A1 ⊆ A2 ⊆ . . . ⊆ An, oraz

(ii)
∑
i¬n biχBi , gdzie Bi ∈ Σ, a B1, . . . , Bn są parami rozłączne.

2.5.7 Sprawdzić, że rodzina funkcji prostych jest zamknięta na kombinacje liniowe, branie
modułu i mnożenie.

2.5.8 Niech f : R→ R spełnia warunek Lipschitza, tzn. |f(x)−f(y)| ¬ L|x−y| dla pewnej
stałej L. Pokazać, że f [A] jest miary Lebesgue’a zero dla każdego A miary zero.

2.5.9 Wywnioskować z poprzedniego zadania, że obraz zbioru mierzalnego przez funkcję
spełniającą warunek Lipschitza jest mierzalny.
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Wskazówka: f [F ] jest zwarty gdy f jest ciągła i F ⊆ R jest zwarty; zastosować Wniosek
1.6.3.

2.5.10 Wykazać, że w zadaniach 8 i 9 wystarczy zakładać, że funkcja f spełnia warunek
Lipschitza lokalnie, na każdym odcinku postaci [−n, n], a więc w szczególności gdy f ma
ciągłą pochodną.

2.5.11 Zauważyć, że dowolna funkcja niemalejąca f : R→ R jest borelowska.
2.5.12 Skonstruować funkcję schodkową Cantora — niemalejącą funkcję ciągłą g : [0, 1] →
[0, 1], taką że g[C] = [0, 1], gdzie C ⊆ [0, 1] jest trójkowym zbiorem Cantora.
Wskazówka: intuicyjnie rzecz biorąc, wystarczy położyć g(x) = 1/2 dla x ∈ (1/3, 2/3);
g(x) = 1/4 dla x ∈ (1/9, 2/9), g(x) = 3/4 dla x ∈ (7/9, 8/9 itd. Trzeba jednak trochę ten
proces sformalizować, aby zademonstrować ciągłość.

2.5.13 Stosując funkcję g z poprzedniego zadania zauważyć, że obraz zbioru mierzalnego
przez funkcję ciągłą nie musi być mierzalny.
Sprawdzić też, że przeciwobraz zbioru mierzalnego przez funkcję ciągłą nie musi być mie-
rzalny. Tutaj warto rozważyć funkcję h, h(x) = 1/2

(
x+ g(x)

)
.

Następnie pogodzić te odkrycia z twierdzeniami i definicjami z rozdziału drugiego!

2.5.14 Zauważyć, że jeśli µ(X) < ∞, a f : X → R jest funkcją mierzalną, to dla każdego
ε > 0 istnieje zbiór A, taki że µ(A) < ε i f jest ograniczona na X \ A.

2.5.15 Niech |fn| ¬M , gdzie fn
µ−→ f . Sprawdzić, że |f | ¬M prawie wszędzie.

2.5.16 Niech fn będzie niemalejącym ciągiem funkcji mierzalnych, zbieżnych do f według
miary. Udowodnić, że wtedy fn → f prawie wszędzie.

2.5.17 Sprawdzić, że jeśli fn
µ−→ f i gn

µ−→ g to fn + gn
µ−→ f + g. Pokazać, że fngn

µ−→ fg
przy dodatkowym założeniu, że fn i gn są wspólnie ograniczone przez stałą.

2.5.18 Niech µ będzie miarą skończoną. Wykazać, że jeśli fn
µ−→ f oraz f(x) ̸= 0 dla każdego

x, to 1/fn
µ−→ 1/f .

2.5.19 Niech µ(X) < ∞. Udowodnić, że jeśli fn
µ−→ f i gn

µ−→ g to fngn
µ−→ fg (por.

Zadanie 17). Pokazać, że założenie skończoności miary jest istotne.

6. Problemy

2.6.A Udowodnić, że na przestrzeni z miarą skończoną µ, zbieżność fn
µ−→ f jest równo-

ważna stwierdzeniu
każdy podciąg fnk ma podciąg zbieżny prawie wszędzie.

Zauważyć, że ten fakt prowadzi to do innych dowodów w zadaniach typu 19.

2.6.B Niech A ⊆ R będzie zbiorem mierzalnym miary Lebesgue’a skończonej. Udowodnić,
że funkcja

g : R→ R, g(x) = λ(A ∩ (x+ A)),

jest ciągła (tutaj λ oznacza miarę Lebesgue’a, x+ A jest przesunięciem zbioru).
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2.6.C Wykazać, że każda mierzalna w sensie Lebesgue’a funkcja f : [0, 1]→ R ma następu-
jącą własność: Dla każdego ε > 0 istnieje funkcja ciągła g, taka że

λ
(
{x ∈ [0, 1] : |f(x)− g(x)| ­ ε}

)
< ε.

Wywnioskować stąd, że istnieje ciąg funkcji ciągłych gn zbieżny do f prawie wszędzie. W
istocie można takie gn wybrać klasy C∞.
Wskazówka: Zacząć od przypadku f ograniczonej. W sprawie funkcji gładkich: poszukać
konstrukcji “gładkiego kapelusza”; patrz na przykład Bump function

2.6.D Wykazać, że nie istnieje ciąg funkcji ciągłych fn : R → R, zbieżny punktowo do
funkcji χQ (czyli funkcji charakterystycznej zbioru Q).
Wskazówka: I sposób: można przeprowadzić dowód nie wprost, wykorzystując jedynie
własność Darboux. II sposób: udowodnić, że granica ciągu funkcji ciągłych musi mieć punkt
ciągłości.

2.6.E Niech f : R→ R będzie dowolną funkcją, spełniającą warunek f(x+y) = f(x)+f(y)
dla wszystkich x, y. Sprawdzić, że wtedy f(x) = ax dla wszystkich x ∈ Q (a = f(1)).
Udowodnić, że jeśli funkcja f jest mierzalna to f jest po prostu funkcją liniową, f(x) = ax
dla wszystkich x ∈ R.
2.6.F Niech µ i ν będą dwiema bezatomowymi miarami probabilistycznymi, określonymi
na borelowskich podzbiorach [0, 1]. Udowodnić, że istnieje przedział [a, b] ⊆ [0, 1], taki że

µ([a, b]) = ν([a, b]) = 1/2.

2.6.G Niech µ i ν będą dwiema bezatomowymi miarami probabilistycznymi, określonymi
na pewnym σ–ciele Σ podzbiorów X. Udowodnić, że istnieje zbiór A ∈ Σ, taki że µ(A) =
ν(A) = 1/2.

7. DODATEK: lim sup an oraz lim inf an

Niech (an) będzie ciągiem liczb rzeczywistych. Liczbę a nazywamy punktem skupienia
ciągu jeśli istnieje podciąg ciągu (an) zbieżny do a. Podobnie definiujemy fakt, że∞ lub−∞
jest punktem skupienia ciągu. Przypomnijmy, że każdy ciąg ograniczony zawiera podciąg
zbieżny (a więc ma punkt skupienia będący liczbą).
2.7.1 Pokazać, że zawsze istnieje najmniejszy punkt skupienia danego ciągu (będący liczbą
bądź −∞,∞). Tę wielkość oznaczamy lim infn→∞ an.
2.7.2 Zauważyć, że lim infn→∞ an = −∞ wtedy i tylko wtedy gdy ciąg (an) jest nieograni-
czony z dołu.

2.7.3 Udowodnić, że a = lim infn→∞ an (gdzie a jest liczbą) wtedy i tylko wtedy gdy dla
każdego ε > 0 mamy an > a − ε dla prawie wszystkich n i an < a + ε dla nieskończenie
wielu n.

2.7.4 Udowodnić, że lim infn→∞ an = limn→∞ infk­n ak.

2.7.5 Sprawdzić, że lim infn→∞(an + bn) ­ lim infn→∞ an + lim infn→∞ bn.
2.7.6 Zdefiniować analogiczne pojęcie lim sup i zapisać jego podstawowe własności.

https://en.wikipedia.org/wiki/Bump_function
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2.7.7 Zauważyć, że ciąg jest zbieżny wtedy i tylko wtedy gdy jego granica górna jest równa
dolnej i jest liczbą rzeczywistą.

2.7.8 lim infn→∞(an − bn) = a− lim supn→∞ bn gdy lim an = a.



ROZDZIAŁ 3

Całka

Does anyone believe that the difference between the Le-
besgue and Riemann integrals can have physical signi-
ficance, and that whether say, an airplane would or
would not fly could depend on this difference? If such
were claimed, I should not care to fly in that plane
Richard W. Hamming

W niniejszym rozdziale wprowadzimy i zbadamy centralne pojęcie skryptu, czyli całkę
typu Lebesgue’a, zdefiniowaną na dowolnej przestrzeni miarowej σ-skończonej. Założenie
σ-skończoności nie jest tak naprawdę istotne, ale pozwala ominąć kilka komplikacji, por.
Problemy 6.A–B. Jak się okaże w przypadku prostej rzeczywistej, całka Lebesgue’a ma
zastosowanie do znacznie szerszej rodziny funkcji niż klasyczna całka Riemanna.

1. Całka z funkcji prostych

W tej części będziemy rozważać ustaloną przestrzeń miarową (X,Σ, µ). Całkowanie
jest operacją liniową, przypisującą funkcjom wartości liczbowe. Ponieważ całka z funkcji
nieujemnej ma wyrażać “pole pod wykresem funkcji” więc jasne, że powinniśmy przyjąć∫
X χA dµ = µ(A) dla A ∈ Σ, oraz poniższą definicję. Dla symboli∞ i−∞, oprócz konwencji
x+∞ =∞, x−∞ = −∞ dla x ∈ R, przyjmujemy dodatkowo

0 · ∞ = 0 · (−∞) = 0.

Przypomnijmy, że wyrażeniu ∞−∞ nie można nadać sensu liczbowego.
Definicja 3.1.1. Jeśli f =

∑
i¬n aiχAi dla Ai ∈ Σ to definiujemy∫

X
f dµ =

∑
i¬n

aiµ(Ai),

jeśli tylko wyrażenie po prawej stronie wzoru ma sens liczbowy. Mówimy, że funkcja f jest
całkowalna jeżeli

∫
X f dµ ma wartość skończoną.

Tym samym dla f = 2χ[0,1] + cχ[3,∞] mamy
∫
R f dλ = 2 gdy c = 0; wartość tej całki

jest ∞ dla c > 0 i −∞ dla c < 0. Dla funkcji g = χ[−∞,0)−χ[1,∞) wyrażenie
∫
R g dλ nie ma

sensu liczbowego.

Lemat 3.1.2. Definicja całki z funkcji prostej jest poprawna, to znaczy

jeżeli f =
∑
i¬n

aiχAi =
∑
j¬k

bjχBj to
∑
i¬n

aiµ(Ai) =
∑
j¬k

bjµ(Bj).

Dowód. Patrz Zadanie 5.1. ▲
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Oprócz całki po całej przestrzeni możemy rozważać całkę na dowolnym zbiorze A ∈ Σ;
przyjmujemy po prostu za definicję wzór∫

A
f dµ =

∫
X
f · χA dµ.

Twierdzenie 3.1.3. Dla funkcji prostej mierzalnej h i funkcji prostych całkowalnych f i
g zachodzą następujące zależności
(i)

∫
X(a · f + b · g) dµ = a

∫
X f dµ+ b

∫
X g dµ (tutaj a, b ∈ R);

(ii) jeżeli h = 0 prawie wszędzie to
∫
X h dµ = 0;

(iii) jeżeli f ¬ g prawie wszędzie to
∫
X f dµ ¬

∫
X g dµ;

(iv) |
∫
X(f + g) dµ| ¬

∫
X |f | dµ+

∫
X |g| dµ;

(v) jeżeli a ¬ f ¬ b to aµ(X) ¬
∫
X f dµ ¬ bµ(X);

(vi) jeżeli
∫
X h dµ = 0 i h ­ 0 prawie wszędzie to h = 0 prawie wszędzie;

(vii) dla A,B ∈ Σ, jeżeli A ∩B = ∅ to∫
A∪B

f dµ =
∫
A
f dµ+

∫
B
f dµ.

Dowód. Wzór (i) dla a = b = 1, wynika natychmiast z poprawności definicji całki z funkcji
prostych; rozszerzenie tego wzoru na dowolne a, b ∈ R to po prostu rozdzielność mnożenia
względem dodawania.
Jeżeli h = 0 prawie wszędzie to możemy przedstawić h jako

∑
i aiχAi , gdzie µ(Ai) = 0 i

dlatego
∫
X h dµ = 0.

Zauważmy, że jeśli f ­ 0 prawie wszędzie to f = h′ +
∑
i aiχAi dla pewnej funkcji h

′

równej zero prawie wszędzie i ai ­ 0; stąd i z (ii) otrzymamy
∫
X f dµ ­ 0. Aby sprawdzić

(iii) piszemy g = f + (g − f) i stosując te uwagę, otrzymujemy na mocy (i)∫
X
f dµ ¬

∫
X
f dµ+

∫
X
(g − f) dµ =

∫
X
g dµ.

(iv) wynika z (iii) i nierówności −|f + g| ¬ f + g ¬ |f + g|. Podobnie sprawdzamy (v).
Część (vi) jest oczywista.
Wzór w (vii) wynika stąd, że χA∪B = χA + χB, o ile A ∩B = ∅ i dlatego∫

A∪B
f dµ =

∫
X
fχA∪B dµ =

∫
X
fχA dµ+

∫
X
fχB dµ =

∫
A
f dµ+

∫
B
f dµ.

▲

2. Całka z funkcji mierzalnych

W dalszym ciągu rozważamy funkcje na ustalonej σ-skończonej przestrzeni (X,Σ, µ) —
zakładamy milcząco, że wszystkie omawiane funkcje są Σ-mierzalne. Zdefinujemy wpierw
całkę z funkcji mierzalnej nieujemnej f : X → R. Zauważmy, że jeśli s jest nieujemną
funkcją prostą, przedstawioną w postaci s =

∑
i¬n aiχAi , gdzie Ai są parami rozłączne i

ai ­ 0 to warunek 0 ¬ s ¬ f oznacza, geometrycznie rzecz biorąc, że prostokąty postaci
Ai × [0, ai] znajdują się pod wykresem funkcji f i dlatego powinno być tak, że

∫
X f dµ ­∫

X s dµ. Istotnie, przyjmujemy następującą definicję.



G. Plebanek, MIARA I CAŁKA Rozdział 3: Całka 46

Definicja 3.2.1. Dla funkcji nieujemnej mierzalnej f definiujemy∫
X
f dµ = sup{

∫
X
s dµ : 0 ¬ s ¬ f},

gdzie supremum jest liczone po funkcjach s prostych mierzalnych. Funkcję f nazywamy
całkowalną, jeżeli całka z f jest skończona.

Zauważmy, że w istocie całka z funkcji nieujemnej f może być zdefiniowana jako supre-
mum wartości

∫
X s dµ, brane po funkcjach prostych całkowalnych, por. Problem 6.A–B.

W wielu przypadkach wygodniej jest operować raczej poniższym twierdzeniem niż wzorem
podanym w Definicji 3.2.1.

Twierdzenie 3.2.2. Jeśli f jest nieujemną funkcją mierzalną, a sn ciągiem funkcji pro-
stych, takim że s1 ¬ s2 ¬ . . . i limn sn = f prawie wszędzie to∫

X
f dµ = lim

n

∫
X
sn dµ.

Dowód. Ponieważ ciąg całek
∫
X sn dµ jest niemalejący na mocy Twierdzenia 3.1.3(iii) więc

faktycznie granica limn
∫
X sn dµ, właściwa lub niewłaściwa, zawsze istnieje oraz na mocy

definicji całki zachodzi nierówność
∫
X f dµ ­ limn

∫
X sn dµ.

Rozważmy funkcję prostą g, taką że 0 ¬ g ¬ f i g =
∑
i¬k aiχAi , gdzie Ai są parami

rozłącznymi zbiorami miary skończonej. Wtedy X0 =
⋃
i¬k Ai ma miarę skończoną; niech

M = maxi ai (w tym momencie wielkości µ(X0) i M są ustalone!).
Z twierdzenia Jegorowa 2.4.1 sn zbiega do f niemal jednostajnie na zbiorze X0. Dla

ustalonego ε > 0 istnieje A ⊆ X0, taki że µ(A) < ε/M i zbieżność naX0\A jest jednostajna.
Tym samym dla dużych n mamy nierówność

g(x)− sn(x) ¬ f(x)− sn(x) < ε/µ(X0),

dla x ∈ X0 \ A i dlatego∫
X
g dµ =

∫
X0
g dµ =

∫
X0\A

g dµ+
∫
A
g dµ ¬

∫
X0\A
(sn + ε/µ(X0)) dµ+Mµ(A) ¬

∫
X0
sn dµ+ ε+ ε,

co dowodzi, że lim
∫
X sn dµ ­

∫
X g dµ. ▲

Wreszcie całkę z funkcji mierzalnych niekoniecznie nieujemnych definiujemy za pomocą
rozkładu opisanego w Lemacie 2.1.13.

Definicja 3.2.3. Mówimy, że funkcja mierzalna f : X → R jest całkowalna jeżeli∫
X
|f | dµ <∞;

w takim przypadku definiujemy całkę wzorem∫
X
f dµ =

∫
X
f+ dµ−

∫
X
f− dµ,

gdzie f = f+ − f− jest rozkładem na f+ = max(f, 0) i f− = −min(f, 0).
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Zauważmy, że funkcja f jest całkowalna wtedy i tylko wtedy gdy funkcje f+ i f−

są całkowalne. Oczywiście w przypadku, gdy
∫
X f
+ dµ = ∞ i

∫
X f
− dµ < ∞ czymś

naturalnym jest przyjąć
∫
X f dµ =∞. Zauważmy też, że dla funkcji całkowalnej f i A ∈ Σ,

zachodzi wzór∫
A
f dµ =

∫
X
f · χA dµ.

Teraz bez trudu rozszerzymy podstawowe własności całki (patrz 3.1.3) na przypadek
funkcji mierzalnych.

Twierdzenie 3.2.4. Dla funkcji całkowalnych f, g i funkcji mierzalnej h zachodzą nastę-
pujące zależności
(i)

∫
X(a · f + b · g) dµ = a

∫
X f dµ+ b

∫
X g dµ (tutaj a, b ∈ R);

(ii) jeżeli h = 0 prawie wszędzie to
∫
X h dµ = 0;

(iii) jeżeli f ¬ g prawie wszędzie to
∫
X f dµ ¬

∫
X g dµ;

(iv) |
∫
X(f + g) dµ| ¬

∫
X |f | dµ+

∫
X |g| dµ;

(v) jeżeli a ¬ f ¬ b to aµ(X) ¬
∫
X f dµ ¬ bµ(X);

(vi) jeżeli
∫
X h dµ = 0 i h ­ 0 prawie wszędzie to h = 0 prawie wszędzie;

(vii) dla A,B ∈ Σ, jeżeli A ∩B = ∅ to∫
A∪B

f dµ =
∫
A
f dµ+

∫
B
f dµ.

Dowód. Warunek (i) dla funkcji nieujemnych f, g możemy, korzystając z Twierdzenia 2.2.3,
dobrać niemalejące ciągi funkcji prostych sn i tn, takie że zachodzi zbieżność punktowa
sn → f i tn → g. Wtedy sn + tn → f + g więc korzystając z Twierdzenia 3.2.2 i 3.1.3(i)
otrzymujemy∫

X
(f+g) dµ = lim

n

∫
X
(sn+tn) dµ = lim

n

∫
X
sn dµ+lim

n

∫
X
tn dµ =

∫
X
f dµ+

∫
X
g dµ.

Teraz rozszerzenie wzoru na przypadek dowolny wynika z Definicji 3.2.3 oraz tożsamości

(f + g)+ + f− + g− = (f + g)− + f+ + g+.

(ii) jest oczywiste.
Ad (iii): W przypadku 0 ¬ f ¬ g nierówność

∫
X f dµ ¬

∫
X g dµ wynika natychmiast z

Definicji 3.2.1. W ogólnym przypadku, pisząc f = f+ − f− i g = g+ − g−, mamy f+ ¬ g+
i f− ­ g−, czyli∫

X
f+ dµ ¬

∫
X
g+ dµ i

∫
X
g− dµ ­

∫
X
f− dµ;

odejmując te nierówności stronami otrzymujemy żądaną zależność.
(iv) i (v) wynikają bezpośrednio z (iii), ale (vi) wymaga nowego argumentu:
Załóżmy, że h nie jest prawie wszędzie równa zeru. Wtedy dla zbioru A = {x : h(x) > 0}

mamy µ(A) > 0; oznaczając An = {x : h(x) > 1/n}, spełniona jest zależność A =
⋃
nAn,

a zatem istnieje n0, takie że µ(An0) > 0. Stąd, na mocy (iii),∫
X
h dµ ­

∫
An0

h dµ ­ (1/n0)µ(An0) > 0.

Część (vii) sprawdzamy tak samo jak dla funkcji prostych, por. Twierdzenie 3.1.3. ▲
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Uwzględniając własności całki opisane w Twierdzeniu 3.2.4 nietrudno wywnioskować
następującą własność monotoniczności całki.

Wniosek 3.2.5. Jeżeli f ¬ g prawie wszędzie to∫
X
f dµ ¬

∫
X
g dµ.

o ile tylko całki występujące we wzorze mają sens liczbowy.

3. Twierdzenia graniczne

Przedstawimy teraz klasyczne twierdzenia o przechodzeniu do granicy pod znakiem
całki — jak się okaże możliwości wykonania takiej operacji wymagają dość słabych założeń.
Niezmiennie rozważamy ustaloną przestrzeń σ-skończoną (X,Σ, µ) i milcząco zakładamy,
że wszystkie omawiane funkcje są mierzalne względem σ-ciała Σ.
Najprostsze twierdzenie graniczne wynika łatwo z twierdzenia Jegorowa:

Twierdzenie 3.3.1. Załóżmy że µ(X) < ∞ i |fn| ¬ M prawie wszędzie dla wszystkich n
i pewnej stałej M . Jeżeli f = limn fn prawie wszędzie to

lim
n

∫
X
|fn − f | dµ = 0 oraz

∫
X
f dµ = lim

n

∫
X
fn dµ.

Dowód. Ciąg fn zbiega do f niemal jednostajnie i dlatego dla ustalonego ε > 0 istnieje
A ∈ Σ, taki że µ(A) < ε oraz zachodzi jednostajna zbieżność na X \ Z. Wtedy∫

X
|fn − f | dµ =

∫
X\A
|fn − f | dµ+

∫
A
|fn − f | dµ ¬

¬
∫
X\A

ε dµ+
∫
A
2M dµ ¬ ε · µ(X) + 2Mε

dla dużych n. Ponieważ wielkości µ(X) orazM są stałe, udowodniliśmy pierwszą część tezy.
Druga jest jej bezpośrednią konsekwencją. ▲

Twierdzenie 3.3.2 (o zbieżności monotonicznej). Niech funkcje fn będą nieujemne oraz
f1 ¬ f2 ¬ . . . prawie wszędzie to funkcja graniczna f = limn fn spełnia wzór∫

X
f dµ = lim

n

∫
X
fn dµ.

Odnotujmy przed dowodem, że funkcje fn nie muszą być całkowalne. Funkcja graniczna
jest dobrze określona prawie wszędzie, przy czym f może przyjmować wartości nieskończo-
ne.

Dowód. Jak wynika z Wniosku 3.2.5 ciąg całek
∫
X fn dµ jest niemalejący i dlatego istnieje

jego granica limn
∫
X fn dµ ¬

∫
X f dµ. Wystarczy więc uzasadnić nierówność przeciwną.

W tym celu rozważymy całkowalną funkcję prostą s, taką że 0 ¬ s ¬ f i pokażemy, że
limn

∫
X fn dµ ­

∫
X s dµ.

Przypuśćmy, że s =
∑
i¬k aiχAi , gdzie ai > 0, a zbiory Ai są parami rozłączne i µ(Ai) <

∞. Wtedy X0 =
⋃
i¬k Ai jest zbiorem miary skończonej i bez zmniejszenia ogólności można

zakładać, że µ(X0) > 0.
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Rozważmy funkcje hn = min(fn, s) na zbiorze X0 i zastosujmy do nich Twierdzenie
3.3.1 (gdzie M = maxi ai). Mamy hn → s więc

lim
n

∫
X
fn dµ ­ lim

n

∫
X0
fn dµ ­

∫
X0
hn dµ =

∫
X0
s dµ,

co kończy dowód. ▲

Twierdzenie 3.3.3 (Lemat Fatou). Dla dowolnego ciągu funkcji nieujemnych fn zachodzi
nierówność∫

X
lim inf
n

fn dµ ¬ lim inf
n

∫
X
fn dµ.

Dowód. Oznaczając

gn = inf
k­n

fk, f = lim inf
n

fn,

otrzymujemy 0 ¬ g1 ¬ g2 ¬ . . . oraz limn gn = f (patrz Zadanie 7.4). Dlatego z Twierdzenia
3.3.2 ∫

X
fn dµ ­

∫
X
gn dµ→

∫
X
f dµ,

a to daje natychmiast tezę twierdzenia. ▲

Jeżeli

fn = χ[0,1/2] lub fn = χ[1/2,1]

w zależności od tego, czy n jest parzyste, czy nieparzyste, to lim infn fn = 0, podczas gdy∫
[0,1] fn dµ = 1/2 dla każdego n. Ten prosty przykład pokazuje, że w lemacie Fatou nie
musi być równości; jednocześnie przykład ten pozwala łatwo zapamiętać, która nierówność
jest zawsze prawdziwa. Nietrudno też pokazać ma przykładzie, że założenie fn ­ 0 w
Twierdzeniu 3.3.3 jest istotne, por. Zadanie 5.17.

Twierdzenie 3.3.4 (Twierdzenie Lebesgue’a o zbieżności ograniczonej). Niech fn i g bę-
dą takimi funkcjami mierzalnymi, że dla każdego n nierówność |fn| ¬ g zachodzi prawie
wszędzie, przy czym

∫
X g dµ <∞. Jeżeli f = limn fn prawie wszędzie to

lim
n

∫
X
|fn − f | dµ = 0 oraz

∫
X
f dµ = lim

n

∫
X
fn dµ.

Dowód. Przyjmijmy hn = |fn − f | i h = 2g; wtedy hn → 0 prawie wszędzie i 0 ¬ hn ¬ h.
Dlatego, stosując lemat Fatou do funkcji h− hn, otrzymujemy∫

X
h dµ =

∫
X
lim inf
n
(h−hn) dµ ¬ lim inf

n

∫
X
(h−hn) dµ =

∫
X
h dµ−lim sup

n

∫
X
hn dµ.

Ta zależność daje lim supn
∫
X hn dµ = 0, jako że

∫
X h dµ < ∞. Pokazaliśmy więc, że∫

X |fn − f | dµ→ 0. Ponieważ∣∣∣∣∫
X
fn dµ−

∫
X
f dµ

∣∣∣∣ ¬ ∫
X
|fn − f | dµ,

to druga zależność wynika z pierwszej. ▲



G. Plebanek, MIARA I CAŁKA Rozdział 3: Całka 50

Zauważmy, że dla X = [0, 1] i funkcji fn = nχ[0,1/n] zachodzi fn → 0 λ-prawie wszędzie,
ale

∫
[0,1] fn dλ = 1. Jak widać, występujące (nawet w nazwie) Twierdzenia 3.3.4 założenie

“zbieżności ograniczonej” jest istotne.
Teraz możemy łatwo uzasadnić następującą własność całki.

Twierdzenie 3.3.5. Jeżeli f jest mierzalną i nieujemną funkcją na przestrzeni miarowej
(X,Σ, µ) to funkcja ν : Σ→ [0,∞] dana dla A ∈ Σ wzorem ν(A) =

∫
A f dµ jest miarą.

Dowód. Jak już było udowodnione (Twierdzenie 3.2.4(vii)), ν jest addytywną funkcją
zbioru na Σ. Jeżeli An ↑ A dla pewnych zbiorów An, A ∈ Σ to χAn jest niemalejącym
ciągiem funkcji zbieżnym do χA, a fχAn → fχA. Dlatego z Twierdzenia 3.3.2 wynika, że

ν(A) =
∫
A
f dµ =

∫
X
fχA dµ = lim

n

∫
X
fχAn dµ = limn ν(An).

Stąd ν jest ciągła z dołu i dlatego ν jest przeliczalnie addytywna. ▲

4. Całka Lebesgue’a na prostej

Na prostej rzeczywistej bądź jej podzbiorach możemy całkować funkcje λ-mierzalne
(czyli mierzalne względem σ-ciała L zbiorów mierzalnych). Ponieważ każda funkcja L-
mierzalna jest prawie wszędzie równa funkcji borelowskiej więc w większości przypadków
własności całki Lebesgue’a względem λ sprowadzają się do rozważania tylko tych ostatnich.
Oczywiście należy wyjaśnić, jakie są związki całki Lebesgue’a z klasyczną całką Riemanna.
Niech f będzie ograniczoną funkcją, określoną na odcinku [a, b] zawartym w R. Przy-

pomnijmy, że do definicji całki Riemanna
∫ b
a f(x) dx służą pojęcia, które z naszego punktu

widzenia można zreferować następująco. Podziałem P odcinka [a, b] nazywamy dowolną
skończoną rodzinę odcinków domkniętych, taką że

⋃
I∈P I = [a, b], przy czym dla I, J ∈ P ,

jeżeli I ̸= J to zbiór I ∩ J jest co najwyżej jednoelementowy (gdy odcinki mają wspólny
koniec). Wyrażenia

L(f,P) =
∑
I∈P
inf
I
(f)λ(I), U(f,P) =

∑
I∈P
sup
I
(f)λ(I),

nazywane są, odpowiednio, sumą dolną i górną dla podziału P . Funkcja f jest całkowalna w
sensie Riemanna jeżeli dla każdego ε > 0 istnieje taki podział P , że U(f,P)−L(f,P) < ε.
Zauważmy, że sumy całkowe opisane powyżej to nic innego jak całki z pewnych funkcji

prostych; jeśli

(∗) s =
∑
I∈P
inf
I
(f)χI to L(f,P) =

∫
[a,b]

s dλ,

(∗∗) t =
∑
I∈P
sup
I
(f)χI to U(f,P) =

∫
[a,b]

t dλ,

przy czym s ¬ f ¬ t poza, być może, skończoną ilością punktów.
Twierdzenie 3.4.1. Jeżeli ograniczona funkcja f : [a, b] → R jest całkowalna w sensie
Riemanna to jest λ-mierzalna i obie całki są równe:∫ b

a
f(x) dx =

∫
[a,b]

f dλ.
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Dowód. Z założenia dla każdego n istnieje podział Pn odcinka [a, b], taki że
U(f,Pn)− L(f,Pn) < 1/n.

Możemy przy tym założyć, że dla każdego n podział Pn+1 jest wpisany w podział Pn,
to znaczy, że każdy I ∈ Pn jest sumą pewnych odcinków z podziału Pn+1. Wtedy, jak
nietrudno wykazać,

L(f,Pn) ¬ L(f,Pn+1) ¬ U(f,Pn+1) ¬ U(f,Pn).
Dlatego też, oznaczając przez sn i tn funkcje proste zdefiniowane analogicznie jak we wzo-
rach (*) i (**) dla podziału P = Pn, nierówności

s1 ¬ s2 ¬ . . . ¬ t2 ¬ t1
zachodzą prawie wszędzie, a dokładnie poza przeliczalnym zbiorem końców odcinków po-
działów. Przyjmijmy f1 = limn sn, f2 = limn tn; wtedy funkcje f1 i f2 są borelowskie,
f1 ¬ f2 prawie wszędzie i

∫
[a,b] f1 dλ =

∫
[a,b] f2 dλ, a zatem f1 = f2 prawie wszędzie. Dlate-

go funkcja f , spełniająca prawie wszędzie nierówności f1 ¬ f ¬ f2 jest mierzalna. Równość
całek wynika natychmiast stąd, że∫ b

a
f(x) dx = lim

n
L(f,Pn) = lim

n

∫
[a,b]

sn dλ =
∫
[a,b]

f dλ.

▲

Warto przypomnieć, że w teorii całki Riemanna dowodzi się1, że funkcja ograniczona
f jest całkowalna na odcinku [a, b] wtedy i tylko wtedy gdy zbiór D(f) jej punktów nie-
ciągłości jest miary Lebesgue’a zero. W ten sposób również można pokazać λ-mierzalność
funkcji R-całkowalnych; por. Zadanie 5.4. Warto podkreślić, że jeżeli A jest podzbiorem
zbioru Cantora, to funkcja χA jest całkowalna w sensie Riemanna, ale dla nieborelowkich
zbiorów A taka funkcja nie jest borelowska, por. uwaga po Przykładzie 6.
Oczywiście w dalszym ciągu nie ma potrzeby odróżniania całek Lebesgue’a i Riemanna;

dlatego będziemy raczej pisać
∫ b
a f dλ lub po prostu

∫ b
a f dx na oznaczenie całki Lebesgue’a

dla funkcji zmiennej rzeczywistej. Zadanie 5.10 pokazują że całka Lebesgue’a pokrywa się
też z bezwzględnie zbieżną niewłaściwą całką Riemanna. W jednym tylko przypadku, gdy
całka niewłaściwa Riemanna jest zbieżna jedynie warunkowo, według przyjętych definicji
funkcja nie jest całkowalna w sensie Lebesgue’a.
Przypomnijmy, że dla zbioru A = [0, 1] ∩ Q funkcja χA jest klasycznym przykładem

funkcji niecałkowalnej w sensie Riemanna. Oczywiście
∫ 1
0 χA dλ = 0 bo λ(A) = 0. Warto

zaznaczyć, że przymiotnik niecałkowalny ma inne znaczenie w przypadku obu całek: gdy
myślimy o całce Riemanna, mówimy najczęściej, że funkcja jest niecałkowalna, gdy jest
zbyt skomplikowana i sumy całkowe nie pozwalają prawidłowo zdefiniować całki. Z punktu
teorii Lebesgue’a funkcja f jest niecałkowalna po prostu dlatego, że

∫
|f | dλ = ∞. Tutaj

też można napotkać na funkcje “zbyt skomplikowane”. czyli niemierzalne, ale nie dają się
one zdefiniować w sposób analityczny.

1patrz na przykład M. Spivak, Analiza na rozmaitościach
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5. Zadania

3.5.1 Sprawdzić, że wzór∫
X

n∑
i=1

aiχAi dµ =
n∑
i=1

aiµ(Ai)

jednoznacznie definiuje całkę z funkcji prostych całkowalnych na dowolnej przestrzeni (X,Σ, µ).
Wskazówka: Jeżeli

∑n
i=1 aiχAi =

∑k
j=1 bjχBj to istnieje skończona partycja X na zbiory

mierzalne Ts, 1 ¬ s ¬ p, takie że każdy zbiór Ai i każdy zbiór Bj jest sumą pewnych zbiorów
Ts.

3.5.2 Niech µ(X) = 1 i µ(Ai) ­ 1/2 dla i = 1, 2, . . . , n. Wykazać, że istnieje x ∈ X
należący do przynajmniej n/2 zbiorów Ai. W tym celu oszacować

∫
X

∑
i¬n χAi dµ (por.

Problem 1.11.E).

3.5.3 Rozważyć funkcję f(x) = − 1
x2+1 , aby zauważyć, że nie można w ogólnym przypadku

zdefiniować całki
∫
R f dλ jako supremum z całek

∫
s dλ po funkcjach prostych s ¬ f .

Zdefiniować podobną funkcję na [0, 1].

3.5.4 Niech (X,Σ, µ) będzie przestrzenią miarową, a f, g : X → R funkcjami mierzalnymi.
Sprawdzić że
(i) jeśli

∫
A f dµ = 0 dla każdego A ∈ Σ, to f = 0 prawie wszędzie;

(ii) jeśli f jest całkowalna na X, to jest też całkowalna na każdym X0 ∈ Σ;
(iii) jeśli A,B ∈ Σ i µ(A△B) = 0, to

∫
A f dµ =

∫
B f dµ dla każdej f (oraz istnienie jednej

z całek pociąga istnienie drugiej);
(iv)

∫
|f − g| dµ ­ |

∫
|f | dµ−

∫
|g| dµ|.

3.5.5 Ustalić, czy
(i) iloczyn dwóch funkcji całkowalnych jest całkowalny;
(ii) funkcja f , gdzie f = 1 prawie wszędzie jest całkowalna;
(iii) f jest całkowalna jeśli jest całkowalna na każdym zbiorze miary skończonej.

3.5.6 Rozpatrzmy przestrzeń (N, P (N), µ), gdzie µ jest miarą liczącą, to znaczy µ(A) = |A|
dla zbiorów skończnych i µ(A) =∞ dla każdego A ⊆ N nieskończonego.
Udowodnić, że f : N → R jest całkowalna wtedy i tylko wtedy gdy ∑∞n=1 |f(n)| < ∞.
Zauważyć, że w tym przypadku całka jest sumą szeregu.

3.5.7 Czy istnieje ciąg funkcji całkowalnych, który jest
(i) zbieżny prawie wszędzie, ale nie według miary;
(ii) zbieżny wg miary ale nie prawie wszędzie;
(iii) zbieżny prawie wszędzie, ale nieograniczony;
(iv) zbieżny jednostajnie do zera i taki, że całki nie zbiegają do zera;
(v) jest zbieżny jednostajnie do funkcji niecałkowalnej.
Przy każdym pytaniu rozważyć przypadek µ(X) <∞ i µ(X) =∞.
3.5.8 Niech f : [a, b] → R będzie ograniczoną funkcją borelowską. Zauważyć, że f jest
całkowalna względem miary Lebesgue’a na [a, b].

3.5.9 Wykazać, że jeśli f : R→ R jest całkowalna w sensie Lebesgue’a to dla każdego ε > 0
istnieje odcinek [a, b] taki że

∫
[a,b] |f | dµ >

∫
R |f | dµ− ε.
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3.5.10 Niech f : R → R będzie nieujemną funkcją dla której istnieje skończona całka nie-
właściwa Riemanna

∫∞
−∞ f(x) dx. Udowodnić, że f jest całkowalna w sensie Lebesgue’a.

Wykazać, że założenie nieujemności funkcji jest istotne.

3.5.11 Niech µ(X) < ∞. Udowodnić, że funkcja mierzalna f jest całkowalna wtedy i tylko
wtedy gdy dla zbiorów An = {x : |f(x)| ­ n} zachodzi warunek

∑∞
n=1 µ(An) <∞.

3.5.12 Wykazać tzw. nierówność Czebyszewa: dla funkcji całkowalnej f zachodzi∫
|f | dµ ­ εµ({x : |f(x)| ­ ε}).

3.5.13 Wywnioskować z nierówności Czebyszewa, że

jeżeli
∫
|f − fn| dµ→ 0 to fn

µ−→ f.

3.5.14 Niech An będzie ciągiem zbiorów mierzalnych, takim że µ(An△Ak)→ 0 gdy n, k →
∞. Wykazać, że istnieje mierzalny zbiór A, taki że µ(A△ An)→ 0.
3.5.15 Zdefiniować funkcje ciągłe całkowalne fn : [0, 1] → [0,∞), takie że fn → 0 prawie
wszędzie, ale funkcja supn fn nie jest całkowalna.

3.5.16 Niech f : R→ R będzie funkcją całkowalną. Sprawdzić, że funkcja F (x) =
∫
[0,x] f(t) dλ(t)

jest ciągła. Podać przykłady świadczące o tym, że F nie musi być różniczkowalna.

3.5.17 Zauważyć, że lemat Fatou nie jest prawdziwy bez założenia nieujemności funkcji.
Zbadać, przy jakich założeniach o funkcjach zachodzi wzór

lim sup
n

∫
X
fn dµ ¬

∫
X
lim sup
n

fn dµ.

3.5.18 Niech (fn) będzie takim ciągiem funkcji całkowalnych, że
∑∞
n=1

∫
|fn| dµ < ∞. Udo-

wodnić, że szereg
∑
n fn jest zbieżny prawie wszędzie i∫ ∞∑

n=1

fn dµ =
∞∑
n=1

∫
fn dµ.

3.5.19 Zbadać, czy wzór z poprzedniego zadania zachodzi dla szeregu funkcji fn(x) = xn−1−
2x2n−1 na odcinku (0, 1).

3.5.20 Zbadać, czy∫ 1
0

∞∑
n=1

(−1)n√
n+ x

dx =
∞∑
n=1

∫ 1
0

(−1)n√
n+ x

dx.

Jak można uogólnić ten przykład?

3.5.21 Niech µ będzie miarą skończoną na X; fn, f : X → R będą funkcjami mierzalnymi,
takimi że fn

µ−→ f . Udowodnić, że jeśli h : R→ R jest ograniczona i jednostajnie ciągła to

lim
n→∞

∫
X
h(fn) dµ =

∫
X
h(f) dµ.

3.5.22 Niech fn będzie ciągiem funkcji całkowalnych, zbieżnym do całkowalnej funkcji f
prawie wszędzie. Udowodnić, że limn→∞

∫
|fn − f | dλ → 0 wtedy i tylko wtedy gdy

limn→∞
∫
|fn| dλ =

∫
|f | dλ.

Wskazówka: Lemat Fatou.
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6. Problemy

3.6.A Mówimy, że przestrzeń miarowa (X,Σ, µ) jest semiskończona jeżeli

µ(A) = sup{µ(B) : B ∈ Σ, B ⊆ A, µ(B) <∞}.
Zauważyć, że każda przestrzeń σ-skończona jest semiskończona.

3.6.B Zauważyć że w definicji całki z funkcji nieujemnej na przestrzeni semiskończonej moż-
na liczyć supremum po funkcjach prostych całkowalnych. Sprawdzić, że twierdzenia gra-
niczne dla całki zachodzą niezmienionej formie dla przestrzeni semiskończonych.

3.6.C Udowodnić, że każda przestrzeń (X,Σ, µ), która nie jest semiskończona, zawiera nie-
skończony atom miary, to znaczy zbiór A ∈ Σ, taki że µ(A) = ∞ i µ(B) ∈ {0,∞} dla
każdego zbioru B ⊆ A z σ-ciała Σ.
3.6.D Niech f : R→ R będzie funkcją całkowalną względem miary Lebesgue’a. Udowodnić,
że dla każdego ε > 0 istnieje funkcja ciągła g, taka że

∫
R |f − g| dλ < ε.

3.6.E Udowodnić (wspomniane w tym rozdziale, klasyczne) twierdzenie: Ograniczona funk-
cja f : [a, b] → R jest całkowalna w sensie Riemanna wtedy i tylko wtedy gdy jej zbiór
punktów nieciągłości jest mary Lebesgue’a zero.

3.6.F Niech f : R → R będzie funkcją całkowalną względem miary Lebesgue’a. Zbadać,
czy dla każdego zbieżnego do zera ciągu xn ∈ R, oznaczając fn(x) = f(x + xn), można
stwierdzić, że ciąg fn zbiega do f prawie wszędzie.
Sugestie: zapewne tak, gdy szereg

∑
n xn jest zbieżny; zapewne nie w przeciwnym przy-

padku (a kontrprzykład f jest funkcją charakterystyczną).



ROZDZIAŁ 4

Miary produktowe i twierdzenie Fubiniego

Dajcie mi Twierdzenie, a wtedy łatwo
znajdę jego dowód.
Bernhard Riemann

W tym rozdziale zdefiniujemy i zbadamy operację produktowania przestrzeni miarowych
oraz udowodnimy twierdzenie Fubiniego1, które jest podstawową metodą liczenia całek z
funkcji wielu zmiennych. Pozwoli nam to na szybkie wprowadzenie wielowymiarowej miary
i całki Lebesgue’a w przestrzeniach euklidesowych.

1. Produktowanie σ-ciał

Rozważmy dwie przestrzenie (X,Σ) i (Y,Θ), gdzie Σ ⊆ P (X) i Θ ⊆ P (Y ) są ustalonymi
σ-ciałami. Zbiory postaci A×B będziemy nazywać prostokątami; prostokąt A×B nazwiemy
mierzalnym jeżeli A ∈ Σ i B ∈ Θ. W produkcie X × Y możemy zdefiniować następujące
σ-ciało.

Definicja 4.1.1. Symbolem Σ⊗Θ oznaczamy σ-ciało podzbiorów X × Y , zadane jako
Σ⊗Θ = σ ({A×B : A ∈ Σ, B ∈ Θ}) ;

Σ⊗Θ nazywamy produktem σ-ciał Σ i Θ.

Oczywiście sama rodzina prostokątów mierzalnych A× B nie jest zamknięta nawet na
skończone sumy. W dalszym ciągu będzie też przydatnym rozważanie ciała

F = a ({A×B : A ∈ Σ, B ∈ Θ}) ,
generowanego przez takie prostokąty; ciało F będziemy nazywać, trochę nieściśle, ciałem
prostokątów mierzalnych.

Lemat 4.1.2. Zbiór F ⊆ X × Y należy do ciała prostokątów F wtedy i tylko wtedy gdy
(∗) F =

⋃
i¬n

Ai ×Bi,

dla pewnych Ai ∈ Σ i Bi ∈ Θ, i = 1, . . . , n. We wzorze (*) można przy tym zażądać, aby
prostokąty Ai ×Bi były parami rozłączne.
Dowód. Wystarczy zauważyć, że rodzina tych zbiorów F , które można przedstawić w
postaci (*) jest ciałem. Oczywiście rodzina ta jest zamknięta na skończone sumy. Fakt, że
dla zbioru F zadanego przez (*), jego dopełnienie też można zapisać w podobny sposób
można nietrudno wywnioskować stąd, że

(A×B)c = (Ac × Y ) ∪ (X ×Bc),
1Guido Fubini (1879–1943), matematyk włoski
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i faktu, że przekrój dwóch prostokątów też jest prostokątem. To, że prostokąty w przedsta-
wieniu (*) można urozłącznić, wynika ze wzoru

(A1 ×B1) \ (A2 ×B2) =

= [(A1 \ A2)× (B1 ∩B2)] ∪ [(A1 \ A2)× (B1 \B2)] ∪ [(A1 ∩ A2)× (B1 \B2)] ,
gdzie składniki po prawej stronie są parami rozłączne. ▲

Dla zbioru E ⊆ X × Y i ustalonych x ∈ X, y ∈ Y , zbiory

Ex = {z ∈ Y : ⟨x, z⟩ ∈ E}, Ey = {z ∈ X : ⟨z, y⟩ ∈ E},

nazywamy, odpowiednio, cięciem pionowym i poziomym zbioru. Analogicznie, dla funkcji
rzeczywistej f określonej na produkcie X×Y możemy rozważyć odpowiednie funkcje jednej
zmiennej:

fx : Y → R, fx(z) = f(⟨x, z⟩), f y : X → R, fy(z) = f(⟨z, y⟩).
Lemat 4.1.3. Jeżeli E ∈ Σ⊗Θ to Ex ∈ Θ dla każdego x ∈ X i Ey ∈ Σ dla każdego y ∈ Y .
Jeżeli funkcja f : X × Y → R jest Σ⊗ Θ-mierzalna to funkcja fx jest θ-mierzalna dla

wszystkich x ∈ X, a funkcja f y jest Σ-mierzalna dla każdego y ∈ Y .
Dowód. Ustalmy x ∈ X. Nietrudno sprawdzić, że rodzina E tych zbiorów E ∈ Σ ⊗ Θ,
dla których Ex ∈ Θ jest σ-ciałem. Ponieważ (A × B)x = B lub (A × B)x = ∅ więc każdy
prostokąt mierzalny należy do E . Stąd E = Σ ⊗ Θ. Oczywiście sprawdzenie mierzalności
cięć poziomych jest analogiczne.
Rodzina tych funkcji f dla których, przy ustalonym x ∈ X, funkcja fx jest Θ-mierzalna

zawiera funkcje proste i dlatego, na mocy Twierdzenia 2.2.3, teza zachodzi dla wszystkich
funkcji f nieujemnych, jako że wspomniana rodzina jest zamknięta na granice punktowe.
Rozszerzenie na funkcje niekoniecznie nieujemne otrzymujemy jak zwykle przez rozkład na
części dodatnią i ujemną. ▲

Dla przykładu możemy rozważyć σ ciało produktowe Bor(R) ⊗ Bor(R) na płaszczyź-
nie. Zauważmy przede wszystkim, że w R × R istnieje inne naturalne σ-ciało, które teraz
zdefiniujemy.
Ponieważ R×R jest przestrzenią metryczną przy naturalnej metryce euklidesowej więc

możemy rozważać zbiory otwarte i domknięte na płaszczyźnie. Przypomnijmy, że odległość
euklidesową liczymy według wzoru

||x− y|| =
√
|x1 − y1|2 + |x2 − y2|2, dla x = ⟨x1, x2⟩, y = ⟨y1, y2⟩.

Jak zwykle kula Br(x) o środku w x i promieniu r zdefiniowana jest jako

Br(x) = {y : ||x− y|| < r}.

Zbiór U ⊆ R × R jest otwarty gdy dla każdego x ∈ U istnieje r > 0, takie że Br(x) ⊆ U .
Zauważmy jednak, że można równoważnie otwartość U wyrazić przez warunek: dla każdego
x ∈ U istnieje δ > 0, taka że

(x1 − δ, x1 + δ)× (x2 − δ, x2 + δ) ⊆ U,
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co oznacza, że wraz z każdym swoim elementem, zbiór U zawiera prostokąt otwarty, ota-
czający ten punkt i zawarty w U . σ-ciało Bor(R×R) borelowskich podzbiorów płaszczyzny
jest zdefiniowane jako najmniejsze σ-ciało zawierające wszystkie zbiory otwarte.

Twierdzenie 4.1.4. Bor(R)⊗Bor(R) = Bor(R× R).
Dowód. Udowodnimy najpierw, że Bor(R)⊗Bor(R) ⊆ Bor(R×R). Ponieważ dla otwartego
zbioru V ⊆ R, zbiór V × R jest otwarty więc, rozważając rodzinę

{B ∈ Bor(R) : B × R ∈ Bor(R× R)},

bez trudu sprawdzimy, że taka rodzina jest równa Bor(R). Podobny argument można za-
stosować do drugiej osi; stąd dla dowolnego borelowskiego prostokąta A×B mamy

A×B = (A× R) ∩ (R×B) ∈ Bor(R× R),

co implikuje żądaną inkluzję.
Zauważmy, że dla dowodu inkluzji przeciwnej Bor(R×R) ⊆ Bor(R)⊗Bor(R) wystarczy

sprawdzić, że dowolny zbiór otwarty U ⊆ R×R należy do σ-ciała produktowego. Rozumując
jak w dowodzie Twierdzenia 0.3.3 można pokazać, że taki zbiór U można wyrazić jako
przeliczalną sumę prostokątów otwartych, co oznacza, że U ∈ Bor(R)⊗Bor(R). ▲

Przykład 4.1.5 Z twierdzenia powyżej wynika, że przekątna ∆, jako zbiór domknięty
należy do Bor(R)⊗Bor(R); tę samą własność ma wykres każdej funkcji ciągłej f : R→ R.
Ogólniej, jeżeli funkcja f jest borelowska to jej wykres G można zapisać jako

G =
∞⋂
n=1

∞⋃
k=−∞

f−1 [[k/n, (k + 1)/n)]× [[k/n, (k + 1)/n)] ,

co pokazuje, że G ∈ Bor(R)⊗Bor(R). ♦

2. Produktowanie miar

Niech (X,Σ, µ) i (Y,Θ, ν) będą dwiema σ-skończonymi przestrzeniami miarowymi.
Przedstawimy teraz konstrukcję miary produktowej µ ⊗ ν, określonej na Σ ⊗ Θ. Jak się
okaże, jest to jedyna taka miara, która spełnia naturalny wzór

µ⊗ ν(A×B) = µ(A) · ν(B)

dla wszystkich prostokątów mierzalnych.

Lemat 4.2.1. Niech F będzie ciałem podzbiorów X × Y , generowanym przez prostokąty
postaci A × B, gdzie A ∈ Σ, B ∈ Θ. Wtedy funkcja zbioru κ zdefiniowana dla F ∈ F
wzorem

(∗∗) κ(F ) =
∫
X
ν(Fx) dµ(x)

jest przeliczalnie addytywna; ponadto, κ(A × B) = µ(A) · ν(B) dla wszystkich A ∈ Σ,
B ∈ Θ.
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Dowód. Zauważmy, że dla F ∈ F , F jest skończoną sumą prostokątów mierzalnych (Lemat
4.1.2), a stąd łatwo wynika, że funkcja x→ ν(Fx) jest Σ-mierzalną funkcją prostą. Ta uwaga
uzasadnia poprawność wzoru (∗∗). Addytywność funkcji κ wynika z własności całki: jeżeli
E,F ∈ F są rozłączne to

κ(E ∪ F ) =
∫
X
ν((E ∪ F )x) dµ(x) =

∫
X
(ν(Ex) + ν(Fx)) dµ(x) =

=
∫
X
ν(Ex) dµ(x) +

∫
X
ν(Fx) dµ(x) = κ(E) + κ(F ).

Ponadto κ jest ciągła z dołu: jeżeli Fn ∈ F i Fn ↑ F ∈ F to dla każdego x ∈ X mamy
(Fn)x ↑ Fx i dlatego ν((Fn)x)→ ν(Fx), z ciągłości miary ν. Stąd i z twierdzenia o zbieżności
monotonicznej

κ(Fn) =
∫
X
ν((Fn)x) dµ(x)→

∫
X
ν(Fx) dµ(x) = κ(F ).

Ostatecznie κ jest przeliczalnie addytywna jako funkcja addytywna i ciągła z dołu (Twier-
dzenie 1.2.5). Wzór κ(A×B) = µ(A) · ν(B) wynika natychmiast ze wzoru (∗∗). ▲

Twierdzenie 4.2.2. Niech (X,Σ, µ) i (Y,Θ, ν) będą σ-skończonymi przestrzeniami mia-
rowymi. Na σ-ciele Σ ⊗ Θ istnieje jedyna miara µ ⊗ ν, spełniająca dla każdego A ∈ Σ i
B ∈ Θ warunek

(a) µ⊗ ν(A×B) = µ(A) · ν(B).

Dla dowolnego zbioru E ∈ Σ ⊗ Θ funkcje x → ν(Ex) i y → µ(Ey) są mierzalne względem
odpowiednich σ-ciał i zachodzą wzory

(b) µ⊗ ν(E) =
∫
X
ν(Ex) dµ(x) =

∫
Y
µ(Ey) dν(y).

Dowód. Funkcja κ zdefiniowana w Lemacie 4.2.1 jest przeliczalnie addytywna na ciele
F prostokątów mierzalnych i dlatego rozszerza się do miary na σ(F) = Σ ⊗ Θ, patrz
Twierdzenie 1.7.3. Jedyność miary produktowej wynika stąd, że każda miara spełniająca
wzór (∗∗) musi być równa funkcji κ na F , por. Lemat 4.1.2. Zauważmy, że jeżeli miary
µ i ν są σ-skończone to X × Y można pokryć przeliczalną sumą prostokątów mierzalnych
miary κ skończonej.
Wzór (b) sprawdzimy najpierw przy założeniu, że µ(X) i ν(Y ) są wartościami skończo-

nymi. Niech E będzie rodziną tych zbiorów E ∈ Σ⊗Θ, dla których funkcja x→ ν(Ex) jest
Σ-mierzalna oraz

µ⊗ ν(E) =
∫
X
ν(Ex) dµ(x).

Bez trudu sprawdzamy, że rodzina E zawiera wszystkie prostokąty mierzalne i skończone
rozłączne sumy takich prostokątów. Stąd i z Lematu 4.1.2 widać, że F ⊆ E . Aby pokazać, że
E = Σ⊗Θ wystarczy upewnić się, że E jest klasą monotoniczną i zastosować Twierdzenie
1.7.2. Niech na przykład En ∈ E i En ↓ E. Wtedy ν(Ex) = limn ν((En)x) więc funkcja
x→ ν(Ex) jest mierzalna oraz

µ⊗ ν(E) = lim
n
µ⊗ ν(En) = lim

n

∫
X
ν((En)x) dµ(x) =
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=
∫
X
lim
n
ν((En)x) dµ(x) =

∫
X
ν(Ex) dµ(x),

gdzie zastosowaliśmy ciągłość miary skończonej µ ⊗ ν z góry oraz twierdzenie Lebesgue’a
o zbieżności ograniczonej (dla całki względem µ). Drugi ze wzorów (b) można sprawdzić
analogicznie.
Jeżeli µ i ν są σ-skończone to możemy napisać X i Y jako wstępujące sumy

X =
⋃
n

Xn, Y =
⋃
n

Yn,

gdzie zbiory Xn ∈ Σ są miary µ skończonej i zbiory Yn ∈ Θ są miary ν skończonej. Niech
E ∈ Σ ⊗ Θ, E = ⋃nEn, gdzie En = E ∩ (Xn × Yn). Wtedy każdy zbiór En spełnia wzór
(b), czyli

µ⊗ ν(En) =
∫
X
ν((En)x) dµ(x).

Przechodząc po obu stronach do granicy n → ∞ otrzymamy analogiczną tożsamość dla
zbioru E. ▲

Dodajmy, że nawet jeśli miary µ i ν są zupełne to miara produktowa µ ⊗ ν nie musi
być zupełna na Σ ⊗ Θ, por. Zadanie 5.9. Z Twierdzenia 4.2.2 wynika w szczególności, że
istnieje jedyna miara λ2 = λ ⊗ λ na borelowskich podzbiorach płaszczyzny. Taka płaska
miara Lebesgue’a λ2 jest jedyną miarą na płaszczyźnie, uogólniającą elementarny wzór na
pole prostokąta. Miarę λ2 można też skonstruować, postępując jak w rozdziale 1, to znaczy
definiując λ2 na pierścieniu generowanym przez prostokąty postaci [a, b)× [c, d), a następ-
nie rozszerzając miarę na generowane przez nie σ-ciało. Konstrukcja z Twierdzenia 4.2.2
pozwala uniknąć komplikacji w rachunkach, dzięki temu, że kluczowe fakty wyprowadza się
ze znanych już własności całki.

3. Twierdzenie Fubiniego

Twierdzenie Fubiniego, czyli wzór na całkę względem miary produktowej jest już prostą
konsekwencją Twierdzenia 4.2.2. Twierdzenie to zwykle podaje się w następujących dwóch
wersjach.

Twierdzenie 4.3.1 (Twierdzenie Fubiniego). Niech (X,Σ, µ) i (Y,Θ, ν) będą σ-skończonymi
przestrzeniami miarowymi. O funkcji Σ⊗Θ-mierzalnej f : X × Y → R załóżmy, że
(i) f jest nieujemna, lub
(ii) f jest µ⊗ ν-całkowalna.

Wtedy funkcje

I : x→
∫
Y
f(x, y) dν(y), J : y →

∫
X
f(x, y) dµ(x),

(przyjmujące być może wartości nieskończone) są mierzalne względem Σ i, odpowiednio, θ
oraz

(∗∗∗)
∫
X×Y

f dµ⊗ν =
∫
X

(∫
Y
f(x, y) dν(y)

)
dµ(x) =

∫
Y

(∫
X
f(x, y) dµ(x)

)
dν(y).
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Dowód. Zauważmy, że dla funkcji charakterystycznej f = χE zbioru E ∈ Σ ⊗ Θ, wzory
(***) redukują się do wzoru (b) z Twierdzenia 4.2.2. Stosując addytywność całek łatwo
stąd wywnioskować, że teza zachodzi dla każdej funkcji prostej.
Jeżeli f ­ 0 to biorąc ciąg mierzalnych funkcji prostych fn monotonicznie zbieżny do

f otrzymamy stąd dowód przy założeniu (i). Istotnie, I(x) = limn In(x), gdzie In : x →∫
Y fn(x, y) dν(y) z twierdzenia o zbieżności monotonicznej dla całki względem ν. Dlatego
I jest funkcją mierzalną; przechodząc do granicy we wzorze∫

X×Y
fn dµ⊗ ν =

∫
X
In(x) dµ(x),

otrzymujemy natychmiast∫
X×Y

f dµ⊗ ν =
∫
X
I(x) dµ(x),

ponieważ po lewej stronie działa twierdzenie o zbieżności monotoniznej dla całki względem
µ⊗ν, a po prawej dla całki względem miary µ. Drugi ze wzorów (***) można wyprowadzić
zupełnie analogicznie.
Zauważmy, że dla funkcji całkowalnej f ­ 0 mamy I(x) < ∞ dla µ-prawie wszystkich

x, co wynika natychmiast z pierwszego wzoru (***). Dlatego też, jeżeli funkcja f = f+−f−
jest µ⊗ ν-całkowalna to możemy zastosować udowodnioną część twierdzenia do f+ i f− i
odjąć otrzymane wyniki stronami, a to da wzory całkowe dla f . ▲

Twierdzenie Fubiniego nie zachodzi dla funkcji, które są jedynie mierzalne — na przy-
kład całki iterowane mogą być skończone, ale dawać różne wyniki, por. Zadania 5.10 i
5.11.

4. Produkty skończone i nieskończone

Dla trzech przestrzeni σ-skończonych (Xi,Σi, µi) możemy zdefiniować ich produkt jako
produkt przestrzeni (X1 ×X2,Σ1 ⊗ Σ2, µ1 ⊗ µ2) oraz (X3,Σ3, µ3). Ta uwaga prowadzi do
następującego uogólnienia Twierdzenia 4.2.22.

Twierdzenie 4.4.1. Jeżeli (Xi,Σi, µi) są dla i = 1, . . . , n σ-skończonymi przestrzeniami
miarowymi to na σ-ciele

⊗
i¬nΣi podzbiorów X =

∏
i¬nXi, generowanych przez wszystkie

kostki mierzalne A1 × A2 × . . . × An, istnieje jedyna miara µ =
⊗
i¬n µi spełniająca, dla

wszystkich Ai ∈ Σi, warunek
µ(A1 × A2 × . . .× An) = µ1(A1) · µ2(A2) · . . . · µn(An).

W szczególności na przestrzeni euklidesowej Rn można zdefiniować n-wymiarową miarę
Lebesgue’a λn, przyjmując

λn =
⊗
i¬n

λ.

Miara λn może być rozważana na σ-ciele⊗
i¬n

Bor(R) = Bor(Rn),

generowanym przez wszystkie n-wymiarowe kostki borelowskie; por. Zadanie 5.14.
2szczegóły dowodu zostaną pominiete
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Twierdzenie Fubiniego pokazuje, że całka względem miary n-wymiarowej może być
sprowadzona do n całek iterowanych, Zauważmy na przykład, że dla funkcji nieujemnej
f : R3 → R możemy napisać∫

R3
f dλ3 =

∫
R

∫
R

∫
R
f(x1, x2, x3) dλ(x1) dλ(x2) dλ(x3),

a w istocie jest 3! takich wzorów, uwzględniających różne kolejności liczenia całek.
Rozważa się też produkty nieskończone przestrzeni miarowych probabilistycznych. Do-

wód twierdzenia poniżej pomijamy; w szczególnych przypadkach twierdzenie to omówimy
dokładniej w dalszym ciągu.

Twierdzenie 4.4.2. Jeżeli (Xn,Σn, µn) jest ciągiem przestrzeni probabilistycznych to na
σ-ciele

⊗
nΣn podzbiorów X =

∏
nXn, generowanych przez wszystkie skończenie wymiarowe

kostki mierzalne postaci

E = A1 × A2 × . . .× An ×Xn+1 ×Xn+2 × . . . ,
gdzie Ai ∈ Σi dla i ¬ n, istnieje jedyna miara µ =

⊗
n µn spełniająca, dla wszystkich

zbiorów E jak wyżej, warunek

µ(E) = µ1(A1) · µ2(A2) · . . . · µn(An).

5. Miara na zbiorze Cantora

Zagadnienie nieskończonych produktów zilustrujemy następującym ważnym przykła-
dem3. Na zbiorze dwuelementowymX0 = {0, 1}możemy zdefiniować miarę µ = 1/2(δ0+δ1),
określoną na wszystkich podzbiorach X0. Zauważmy, że dla n ∈ N, miara⊗i¬n µ na {0, 1}n
jest po prostu unormowaną miarą liczącą: każdy punkt przestrzeni ma miarę 1/2n. Okazuje
się, że operacja nieskończonego produktu nawet dla tak prostej miary jak µ prowadzi do
jakościowo zupełnie innej miary.
Niech K = {0, 1}N będzie zbiorem wszystkich nieskończonych ciągów zerojedynkowych.

Nietrudno sprawdzić, że na zbiorze K można określić metrykę d wzorem

d(x, y) = 1/n gdzie n = min{k : x(k) ̸= y(k)},
dla x ̸= y; ponadto przyjmujemy d(x, x) = 0. Zauważmy, że zbieżność w metryce d to zbież-
ność po współrzędnych, to znaczy dla xn, x ∈ K, zbieżność d(xn, x) → 0 jest równoważna
temu, że xn(k) → x(k) dla każdego k (co w tym przypadku oznacza, że xn(k) = x(k) dla
dostatecznie dużych n). Dowodzi się, że przestrzeń K jest zwarta w metryce d — ten fakt
wynika też z następującego twierdzenia, które mówi, że przestrzeń K jest nieco tylko innym
opisem zbioru Cantora.

Twierdzenie 4.5.1. Funkcja

f : K → [0, 1], f(x) =
∞∑
n=1

2x(n)
3n

,

jest homeomorfizmem pomiędzy przestrzenią K i zbiorem f [K] ⊆ [0, 1], który jest trójkowym
zbiorem Cantora C.

3ta część podana jest nieco szkicowo i stanowi materiał nieobowiązkowy
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Dowód. Jeżeli d(x, y) < 1/n to x(i) = y(i) dla i ¬ n i dlatego

|f(x)− f(y)| ¬

∣∣∣∣∣∣
∞∑

k=n+1

2(x(k)− y(k))
3k

∣∣∣∣∣∣ ¬
∞∑

k=n+1

2
3k
= 2 · 1

3n+1
1

1− 1/3
= 1/3n.

Ta zależność oznacza, że funkcja f jest ciągła. Z drugiej strony dla x ̸= y biorąc najmniejsze
n, takie że x(n) ̸= y(n), otrzymujemy

|f(x)− f(y)| ­ 2/3n −
∞∑

k=n+1

2|x(k)− y(k)|
3k

­ 2/3n − 1/3n = 1/3n,

co dowodzi różnowartościowości f oraz faktu, że funkcja odwrotna też jest ciągła. Oczy-
wiście f [K] = C, jako że elementy C to te liczby z [0, 1], które w rozwinięciu trójkowym
mają tylko cyfry 0 i 2. ▲

Dlatego też zbiór K = {0, 1}N jest po prostu nazywany zbiorem Cantora. Dla funkcji
ϕ : A → {0, 1} dziedzinę funkcji A oznaczać będziemy A = dom(ϕ). Dla dowolnego
skończonego zbioru A ⊆ N definiujemy

[ϕ] = {x ∈ K : x(i) = ϕ(i) dla i ∈ dom(ϕ)}.

Zauważmy, że dla A = {1, 2, . . . , n} i dowolnej ϕ : A→ {0, 1}, jeśli x ∈ [ϕ] to [ϕ] jest kulą
o środku w x i promieniu 1/n względem metryki d.

Lemat 4.5.2. Zbiory postaci [ϕ] są jednocześnie otwarte i domknięte w K. Rodzina takich
zbiorów stanowi bazę topologii w K.

Dowód. Zbiór postaci [ϕ] jest otwarty bo jeżeli x ∈ [ϕ] i n jest taką liczbą, że dom(ϕ) ⊆
{1, 2, . . . , n} to kula B = B1/n(x) (o środku w x i promieniu 1/n) zawiera te y, które
zgadzają się z x na pierwszych n współrzędnych, a zatem B ⊆ [ϕ]. Z drugiej strony do-
pełnienie zbioru [ϕ] jest skończoną sumą zbiorów postaci [ψ], gdzie dom(ψ) = dom(ϕ) i
ψ ̸= ϕ. Dlatego [ϕ] jest także zbiorem domkniętym. ▲

Oznaczmy przez C ciało podzbiorów K generowane przez wszystkie cylindry postaci [ϕ],
gdzie dom(ϕ) ⊆ N. Zauważmy, że jest przeliczalnie wiele takich funkcji ϕ i dlatego ciało C
też jest przeliczalne, patrz Zadanie 10.10. Można sprawdzić, że każdy zbiór C ∈ C jest sumą
skończenie wielu zbiorów postaci [ϕ] i dlatego każdy taki zbiór C jest otwarto-domknięty.

Lemat 4.5.3. Zbiór C ∈ C wtedy i tylko wtedy gdy istnieje n i C ′ ⊆ {0, 1}n, takie że

(†) C = C ′ × {0, 1} × . . . .
Dowód. Zauważmy, że rodzina zbiorów postaci jak w (†) jest ciałem i zawiera cylindry
postaci [ϕ]. ▲

Zdefiniujemy teraz funkcję zbioru ν : C → [0, 1] wzorem

ν(C) =
|C ′|
2n

,

gdzie C jest zapisany w postaci (†). Nietrudno sprawdzić, że wielkość ν(C) nie zależy od
sposobu przedstawienia zbioru C oraz że ν jest addytywną funkcją zbioru.
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Twierdzenie 4.5.4. Funkcja ν rozszerza się jednoznacznie do miary na Bor(K). Miara ta
(oznaczana w dalszym ciągu przez ν) ma następującą własność: dla każdego B ∈ Bor(K) i
ε > 0 istnieje zbiór C ∈ C, taki że ν(B △ C) < ε.

Dowód. Zauważmy, że ν, rozpatrywana na ciele C jest ciągła z góry na zbiorze pustym, bo
jeśli Cn ∈ C i Cn ↓ ∅ to Cn = ∅ dla dużych n. Jest to konsekwencja zwartości przestrzeni K.
Dlatego też ν jest przeliczalnie addytywna na C i rozszerza się jednoznacznie na σ(C), patrz
Twierdzenie 1.7.3, przy czym σ(C) = Bor(K), jako że zbiory z C są otwarte oraz każdy
zbiór otwarty jest sumą przeliczalną zbiorów z C. Własność rozszerzenia miary wynika z
Twierdzenia 1.4.3. ▲

Miara ν skonstruowana powyżej spełnia wzór

ν([ϕ]) =
1

2|dom(ϕ)|
,

dla cylindrów [ϕ]. Jak widać ν =
⊗
n µ, gdzie µ jest miarą na {0, 1} wspomnianą na począt-

ku tej części. Zauważmy, że ν znika na punktach , a więc także na zbiorach przeliczalnych.
Zbiór Cantora K z miarą ν jest naturalnym modelem probabilistycznym dla “nieskończo-
nego ciągu niezależnych rzutów symetryczną monetą”; por. Problemy 6.
Wspomnijmy na koniec, że miara ν jest ściśle związana ze strukturą grupową zbioru

Cantora K. Przypomnimy, że zbiór {0, 1} jst grupą (dodawania mod 2). Oznaczając to
działanie przez ⊕ możemy zdefiniować

x⊕ y = (x(n)⊕ y(n))n ∈ K,
dla x, y ∈ K. W ten sposób K jest grupą z działaniem ⊕. Mamy x⊕ x = 0, czyli −x = x
w tej grupie. Ponadto działanie ⊕ jest ciągłe; jeżeli xn → x i yn → y to xn ⊕ yn → x⊕ y,
co wynika natychmiast z natury zbieżności w K. Mówimy w takim przypadku, że grupa K
jest grupą topologiczną. Z ciągłości działania grupowego wynika, ze translacja x⊕B zbioru
borelowskiego B też jest zbiorem borelowskim (patrz Problem 6.E) oraz ν(x⊕B) = ν(B);
mówimy że ν jest miarą niezmienniczą na grupie, albo miarą Haara grupy.
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6. Zadania

4.6.1 Niech f : R → R+ będzie funkcją borelowską. Wykazać, że zbiór pod jej wykresem
{(x, y) : 0 ¬ y ¬ f(x)} jest borelowskim podzbiorem płaszczyzny.
4.6.2 Niech f : X → R+ będzie nieujemną funkcją mierzalną na przestrzeni (X,Σ, µ); niech
P = {(x, t) : 0 ¬ t ¬ f(x)} będzie zbiorem pod wykresem funkcji. Sprawdzić, że P należy
do σ-ciała Σ⊗Bor(R) oraz wywnioskować z twierdzenia Fubiniego, że

µ⊗ λ(P ) =
∫
X
f dµ.

4.6.3 Zauważyć, że zbiór borelowski A ⊆ [0, 1]2 jest płaskiej miary zero wtedy i tylko wtedy,
gdy λ(Ax) = 0 dla prawie wszystkich x ∈ [0, 1].
4.6.4 Zauważyć, że jeśli zbiory borelowskie A,B ⊆ [0, 1]2 spełniają zależność λ(Ax) = λ(Bx)
dla wszystkich x to λ2(A) = λ2(B).

4.6.5 Obliczyć miarę Lebesgue’a zbiorów

A = {(x, y) : x ∈ Q lub y ∈ Q}; B = {(x, y) : x− y ∈ Q}.
4.6.6 Wychodząc ze znanego faktu, że izometrie płaszczyzny nie zmieniają pola prostokątów
wykazać, że płaska miara Lebesgue’a jest niezmiennicza na izometrie płaszczyzny.

4.6.7 Zauważyć, że płaska miara Lebesgue’a spełnia wzór λ2(Jr[B]) = r2λ2(B) dla B ∈
Bor(R2), gdzie Jr jest jednokładnością o skali r.
4.6.8 Wyprowadzić z tw. Fubiniego
(i) wzór na objętość stożka o wysokości h, który na podstawie ma zbiór borelowskiB ⊆ R2;
(ii) wzór na objętość kuli o promieniu r w R3 i R4.
4.6.9 Zauważyć, że λ⊗ λ nie jest miarą zupełną na L⊗ L.

4.6.10 Niech ν będzie miarą liczącą na wszystkich podzbiorach N. Podać przykład funkcji
f : N × N → R, dla której całki iterowane w twierdzeniu Fubiniego dają różne wyniki
skończone.
Wskazówka: Określić niezerowe wartości f(n, n) i f(n+ 1, n) dla n ∈ N.
4.6.11 Na kwadracie jednostkowym rozważyć funkcje

f(x, y) =
2xy

(x2 + y2)2
g(x, y) =

x2 − y2

(x2 + y2)2
,

f(0, 0) = g(0, 0) = 0. Zbadać całkowalność, istnienie całek iterowanych, ich równość i
odnieść te obserwacje do twierdzenia Fubiniego.

4.6.12 Wykazać, że dla całkowalnej funkcji f : [0, 1]2 → R zachodzi wzór∫ 1
0

∫ x
0
f(x, y) dλ(y) dλ(x) =

∫ 1
0

∫ 1
y
f(x, y) dλ(x) dλ(y).

4.6.13 Niech A będzie σ–ciałem na [0, 1], generowanym przez zbiory przeliczalne. Pokazać,
że przekątna ∆ = {(x, y) ∈ [0, 1]2 : x = y} nie należy do A⊗A.
4.6.14 Funkcja f : Rn → Rk jest borelowska jeśli f−1[B] ∈ Bor(Rn) dla B ∈ Bor(Rk). Tutaj
Bor(Rn) oznacza σ-ciało generowane przez otwarte podzbiory Rn. Sprawdzić, że
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(i) Bor(R2) jest generowane przez otwarte prostokąty U × V ;
(ii) Bor(Rn) jest generowane przez otwarte kostki U1 × U2 × . . .× Un;
(iii) każda funkcja ciągła f : Rn → R jest borelowska;
(iv) funkcja g = (g1, g2) : R → R2 jest borelowska wtedy i tylko wtedy gdy g1, g2 są
borelowskie.

4.6.15 Wywnioskować z poprzedniego zadania, że jeśli g1, g2 : R → R są mierzalne to g1 +
g2, g1 · g2 też są mierzalne.
4.6.16 Niech f : X → Y będzie odwzorowaniem mierzalnym pomiędzy przestrzeniami
(X,Σ, µ) i (Y,A), to znaczy f−1[A] ∈ Σ dla każdego A ∈ A. Sprawdzić, że wzór ν(A) =
µ(f−1[A]) definiuje miarę na A. Te miarę nazywamy obrazem µ przez f ; oznaczamy ν =
f [µ].

7. Problemy

4.7.A Przy założeniu hipotezy continuum można odcinek [0, 1] uporządkować relacją ≺ tak,
że każdy odcinek początkowy {a : a ≺ b} w tym porządku jest przeliczalny dla b ∈ [0, 1].
Zauważyć, że zbiór

Z = {(x, y) ∈ [0, 1]× [0, 1] : x ≺ y},

nie spełnia twierdzenia Fubiniego, a więc nie jest mierzalny na płaszczyźnie.

4.7.B Pokazać, że istnieje na płaszczyźnie zbiór A miary płaskiej zero, taki że A przecina
wszystkie prostokąty mierzalne miary dodatniej.
Wskazówka: Uogólnić najpierw tw. Steinhausa do postaci: jeśli A,B są miary dodatniej
to A−B zawiera liczbę wymierną.
4.7.C Niech ∆ = {(x, x) : x ∈ X} będzie przekątną. Udowodnić, że ∆ należy do P(X) ⊗
P(X) wtedy i tylko wtedy gdy |X| ¬ c.

4.7.D Niech

h : {0, 1}N → [0, 1], h(x) =
∞∑
n=1

x(n)
2n

.

Sprawdzić, że h jest funkcją ciągłą, a więc mierzalną względem σ–ciałaBor{0, 1}N i h[{0, 1}N] =
[0, 1].
Wykazać, że miara λ na [0, 1] jest obrazem miary Haara ν na {0, 1}N przez tę funkcję.
4.7.E Niech A ⊆ {0, 1}N będzie zbiorem tych x, w których pojawia się, choć raz, ustalony
skończony ciąg (ε1, ε2, . . . , εn) zer i jedynek. Wykazać, że ν(A) = 1.

4.7.F Udowodnić, że ν(x⊕A) = ν(A) dla każdego borelowskiego zbioru A w zbiorze Cantora
{0, 1}N.
Wskazówka: Sprawdzić najpierw wzór dla zbiorów C z ciała C zdefiniowanego w 4.5.
4.7.G Zbiór borelowski A ⊆ {0, 1} jest nazywany zdarzeniem resztowym jeżeli e⊕A = A dla
dowolnego e ∈ {0, 1}, dla którego e(n) = 0 dla prawie wszystkich n. Udowodnić, że ν(A) = 0
lub ν(A) = 1 dla każdego zdarzenia resztowego (jest tzw. prawo 0-1 Kołmogorowa).
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Wskazówka: Jeżeli A jest takim zdarzeniem to ν(A∩C) = ν(A)ν(C) dla każdego C ∈ C;
skorzystać z tego, że wielkość ν(A△ C) może być dowolnie mała.

4.7.H Niech X będzie zbiorem skończonym i niech µ będzie miarą probabilistyczną, okre-
ślona na wszystkich podzbiorach X ×X i znikającą na przekątnej. Udowodnić, że istnieją
rozłączne A,B ⊆ X, takie że µ(A×B) ­ 1/4.



ROZDZIAŁ 5

Miary znakowane
i twierdzenie Radona-Nikodyma

If people do not believe that mathematics
is simple, it is only because they do not
realize how complicated life is.
John von Neumann

Rozdział jest w całości poświęcony związkom, jakie mogą zachodzić pomiędzy dwiema
miarami określonymi na tym samym σ-ciele. Głównym wynikiem jest tutaj tytułowe twier-
dzenie Radona-Nikodyma1, należące do najważniejszych faktów z teorii miary. W ostatniej
części dokonamy, w charakterze małego podsumowania, przeglądu miar na prostej rzeczy-
wistej.

1. Miary znakowane

Niech Σ będzie ustalonym σ-ciałem podzbiorów przestrzeni X. Jeżeli µ i ν są miarami
określonymi na Σ, to µ+ ν też jest miarą na Σ — sprawdzenie przeliczalnej addytywności
µ + ν nie przedstawia trudności. W przypadku, gdy przynajmniej jedna z miar µ i ν jest
skończona można także rozważyć funkcję zbioru µ− ν na Σ. Taka funkcja zbioru nie musi
być miarą, jako że może przyjmować wartości ujemne. Jednakże µ−ν w dalszy ciągu spełnia
warunek przeliczalnej addytywności.

Definicja 5.1.1. Funkcję zbioru α : Σ → [−∞,∞], przyjmującą co najwyżej jedną z
wartości nieskończonych −∞,∞, nazywamy miarą znakowaną jeżeli α(∅) = 0 oraz

α

(⋃
n

An

)
=
∑
n

α(An),

dla każdego ciągu parami rozłącznych zbiorów An ∈ Σ.
Jak się okaże, każda miara znakowana daje przedstawić się jako różnica dwóch miar i

można takiego rozkładu dokonać w pewien kanoniczny sposób.

Twierdzenie 5.1.2 (rozkład Hahna). Jeżeli α jest miarą znakowaną na σ-ciele Σ podzbio-
rów X to istnieją rozłączne zbiory X+ i X−, takie że X = X+ ∪ X− oraz dla dowolnego
A ∈ Σ,
(i) jeżeli A ⊆ X+ to α(A) ­ 0;
(ii) jeżeli A ⊆ X− to α(A) ¬ 0.

1Otton Nikodym (1887-1974), matematyk polski, po wojnie w USA; Johann Radon (1887-1956) pra-
cował na Universität Breslau
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Dowód. Załóżmy dla przykładu, że α nie przyjmuje wartości −∞. Dla potrzeb dowodu
powiedzmy, że zbiór B ∈ Σ jest negatywny, jeżeli α(A) ¬ 0 dla każdego zbioru mierzalnego
A ⊆ B. Niech r = infB α(B), gdzie infimum jest liczone po wszystkich zbiorach negatyw-
nych.
Wtedy istnieje zbiór negatywny B taki, że α(B) = r. Istotnie, z określenia kresu dol-

nego (który, a priori, może być równy −∞) istnieje ciąg zbiorów negatywnych Bn, taki
że α(Bn) → r. Jak łatwo sprawdzić, zbiór B =

⋃
nBn jest także negatywny, a więc dla

każdego n

α(B) = α(Bn) + α(B \Bn) ¬ α(Bn),
co pokazuje, że α(B) = r (a w szczególności, że r > −∞). Niech X− = B i X+ = X \X−.
Wystarczy teraz upewnić się, że X+ jest pozytywny, to znaczy spełnia część (ii) tezy
twierdzenia.
Przypuśćmy, że E0 ⊆ X+ jest takim zbiorem mierzalnym, że α(E0) < 0. Wtedy E0 nie

może być negatywny bo inaczej mielibyśmy

α(B ∪ E0) = α(B) + α(E0) < α(B) = r,

co przeczyłoby definicji liczby r. Istnieje więc najmniejsza liczba naturalna k1 i E1 ⊆ E0 o
własności α(E1) ­ 1/k1. Teraz

α(E0 \ E1) = α(E0)− α(E1) < 0
i możemy powtórzyć nasze ostatnie rozumowanie: istnieje najmniejsza liczba k2 ∈ N, taka
że dla pewnego E2 ⊆ E0 \ E1, α(E2) ­ 1/k2. W ten sposób definiujemy ciąg parami
rozłącznych zbiorów mierzalnych En ⊆ E0 i ciąg liczb kn ∈ N, takich że α(En) ­ 1/kn dla
każdego n, przy czym kn jest najmniejszą liczbą naturalną o tej własności. Zauważmy, że
α(E) < ∞ dla każdego E ⊆ E0 (skoro α(E0) < 0) i dlatego, stosując tę uwagę do zbioru
E =

⋃
n­1En, wnioskujemy, że

α(E) =
∑
n

1/kn <∞,

co oznacza w szczególności, że limn 1/kn = 0. Dla zbioru F = E0 \E mamy α(F ) < 0 oraz
jeżeli A ⊆ F to, dla każdego n, A ⊆ E0 \ En, a zatem α(A) ¬ 1/(kn − 1) z minimalności
liczby kn. Oznacza to, że α(A) ¬ 0, czyli że F jest negatywnym zbiorem, a to stanowi
sprzeczność, gdyż znowu mielibyśmy α(F ∪B) < α(B) = r. ▲

Wniosek 5.1.3 (Rozkład Jordana). Jeżeli α jest miarą znakowaną na σ-ciele Σ podzbiorów
X to istnieją miary α+ i α− na Σ, takie że α = α+ − α−.
Dowód. Jeżeli X = X+ ∪X− jest rozkładem Hahna dla miary znakowanej α to wystarczy
zdefiniować

α+(A) = α(A ∩X+), α−(A) = −α(A ∩X−),
dla A ∈ Σ. Wtedy α+ i α− są przeliczalnie addytywne i nieujemne, a więc są miarami; dla
dowolnego A ∈ Σ,

α(A) = α(A ∩X+) + α(A ∩X−) = α+(A)− α−(A);
w ten sposób dowód został zakończony. ▲
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2. Absolutna ciągłość i singularność miar

Powróćmy do dwóch miar µ i ν, określonych na tym samym σ-ciele Σ podzbiorów
przestrzeniX. Następujące dwie definicje określają związki, jakie mogą zachodzić pomiędzy
tymi miarami.

Definicja 5.2.1. Mówimy, że miara ν jest absolutnie ciągła względem miary µ, jeżeli dla
wszystkich A ∈ Σ zachodzi implikacja

jeżeli µ(A) = 0 to ν(A) = 0.

Relację absolutnej ciągłości miar oznaczamy przez ν ≪ µ.

Definicja 5.2.2. Mówimy, że miara ν jest singularna względem miary µ, jeżeli istnieją
A,B ∈ Σ, takie że X = A ∪ B, A ∩ B = ∅, µ(A) = 0 i ν(B) = 0. Relację singularności
miar oznaczamy przez ν ⊥ µ.
Zauważmy, że obie własności są w pewnym sensie przeciwstawne, patrz Zadanie 5.5.

Przykład 5.2.3 Jeżeli ν dana jest przez całkę

ν(A) =
∫
A
f dµ

z nieujemnej funkcji mierzalnej f , por. Twierdzenie 3.3.5, to ν ≪ µ, bo całka po zbiorze
miary zero jest równa zero.
Prostym przykładem singularności miar jest λ ⊥ δx, gdzie δx jest deltą Diraca w punkcie

x ∈ R. ♦

Odnotujmy, że rozkład Jordana α = α+ − α− był tak zdefiniowany, że α+ ⊥ α−;
nietrudno sprawdzić, że jest to jedyny rozkład miary znakowanej na różnice dwóch miar
wzajemnie singularnych.

Definicja 5.2.4. Dla miary znakowanej α = α+ − α− przyjmujemy

|α| = α+ + α−;

a miarę |α| nazywamy absolutnym wahaniem miary znakowanej α.
Dla dwóch miar znakowanych α i β określonych na tym samym σ-ciele Σ przyjmujemy,

że α≪ β gdy |α| ≪ |β|; podobnie α ⊥ β jeżeli |α| ⊥ |β|.
Nietrudno jest wysłowić warunki |α| ≪ |β| i |α| ⊥ |β| w języku miar α+, α− oraz β+, β−,

patrz Zadanie 5.6.
Definicja absolutnej ciągłości miar ma swoje przełożenie na warunek, który trochę uza-

sadnia nazwę tej relacji.

Lemat 5.2.5. Jeżeli ν jest miarą skończoną na Σ to dla dowolnej miary µ na Σ warunek
ν ≪ µ jest równoważny warunkowi

(∗) (∀ε > 0)(∃δ)(∀A ∈ Σ)µ(A) < δ ⇒ ν(A) < ε.

Dowód. Dostateczność warunku (∗) jest oczywista. Załóżmy, że (∗) nie zachodzi; wtedy
istnieje ε > 0 oraz zbiory An ∈ Σ, takie że µ(An) < 1/2n i ν(An) ­ ε. Wtedy dla
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A = lim supnAn mamy µ(A) = 0, jako że

µ(A) ¬ µ(
∞⋃
k=n

Ak) ¬
∞∑
k=n

1/2k = 1/2n−1

dla każdego n. Z drugiej strony z ciągłości miary skończonej ν z góry możemy wywniosko-
wać, że ν(A) ­ ε, więc ν nie jest absolutnie ciągła względem µ. ▲

3. Twierdzenie Radona-Nikodyma

Tytułowe twierdzenie to po prostu odwrócenie komentarza z Przykładu 2: każda mia-
ra absolutnie ciągła jest dana przez całkę (przy dość ogólnych założeniach). Przed udo-
wodnieniem tego podstawowego i nieoczywistego faktu podamy pewien lemat techniczny,
potrzebny w głównym dowodzie.

Lemat 5.3.1. Niech µ i ν będą skończonymi miarami na Σ; załóżmy, że ν ̸= 0 i ν ≪ µ.
Wtedy istnieje P ∈ Σ, taki że µ(P ) > 0 i P jest pozytywny dla miary znakowanej ν − εµ,
to znaczy ν(B) ­ εµ(B) dla każdego mierzalnego B ⊆ P .
Dowód. Dla każdego n możemy rozważyć miarę znakowaną ν − (1/n)µ i odpowiadający
jej rozkład Hahna przestrzeni X = X+n ∪X−n jak w Twierdzeniu 5.1.2. Niech

A =
⋃
n

X+n , B =
⋂
n

X−n .

Wtedy B ⊆ X−n dla każdego n więc ν(B) − (1/n)µ(B) ¬ 0, co daje ν(B) = 0. Ponieważ
ν(X) > 0 i X = A∪B, więc ν(A) > 0 i także, z warunku ν ≪ µ, µ(A) > 0. Istnieje zatem
n, takie że µ(X+n ) > 0; wtedy ε = 1/n oraz P = X

+
n spełniają tezę. ▲

Twierdzenie 5.3.2 (Radona-Nikodyma). Niech (X,Σ, µ) będzie σ-skończoną przestrzenią
miarową i niech ν będzie taką miarą znakowaną na Σ, że |ν| jest σ-skończona. Jeżeli ν ≪ µ
to istnieje mierzalna funkcja f : X → R, taka że dla wszystkich A ∈ Σ

ν(A) =
∫
A
f dµ.

Dowód. Zauważmy przede wszystkim, że wystarczy udowodnić twierdzenie dla miary ν
nieujemnej — w ogólnym przypadku miary znakowanej zastosujemy tę wersję do ν+ i
ν−. Ponadto możemy dodatkowo założyć, że obie miary µ i ν są skończone — w przy-
padku σ-skończonym będziemy mogli zapisać X jako rozłączną sumę X =

⋃
nXn, gdzie

µ(Xn), ν(Xn) <∞ i zdefiniować odpowiednią funkcję na każdej części Xn z osobna.
Niech H będzie rodziną wszystkich mierzalnych funkcji h ­ 0, takich że dla każdego

A ∈ Σ zachodzi nierówność∫
A
h dµ ¬ ν(A).

Wykażemy, że w rodzinie H istnieje funkcja, w pewnym sensie, maksymalna i że spełnia
ona tezę twierdzenia. Niech

r = sup{
∫
X
h dµ : h ∈ H};
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wtedy istnieje ciąg hn ∈ H, taki że limn
∫
X hn dµ = r. Rozważmy funkcje gn , gdzie

gn = max
i¬n

hi.

Dowolny zbiór A możemy zapisać jako rozłączną sumę A =
⋃
i¬nAi, gdzie gn = hi na Ai;

wtedy ∫
A
gn dµ =

∑
i¬n

∫
Ai
hi dµ ¬

∑
i¬n

ν(Ai) = ν(A).

Pokazuje to, że także gn ∈ H; teraz biorąc granicę punktową f = limn gn mamy f ∈ H i∫
X f dµ = r z twierdzenia o zbieżności monotonicznej. Zauważmy, że

∫
X f dµ ¬ ν(X) <∞,

więc f jest funkcją skończoną ν-prawie wszędzie.
Aby przekonać się, że f jest poszukiwaną funkcją sprawdzimy, że miara ν0, dana wzorem

ν0(A) = ν(A)−
∫
A
f dµ

dla A ∈ Σ jest tożsamościowo równa zeru. W przeciwnym przypadku, gdy ν0(X) > 0, na
mocy Lematu 5.3.1, istnieje ε > 0 i P ∈ Σ, takie że

εµ(P ∩ A) ¬ ν0(P ∩ A) = ν(P ∩ A)−
∫
P∩A

f dµ,

dla wszystkich A ∈ Σ. Rozważmy funkcję g = f + εχP i A ∈ Σ; korzystając z ostatniej
nierówności, mamy∫

A
g dµ =

∫
A
f dµ+ εµ(P ∩ A) ¬

¬
∫
A
f dµ+ν(P∩A)−

∫
P∩A

f dµ =
∫
A\P

f dµ+ν(P∩A) ¬ ν(A\P )+ν(P∩A) = ν(A).

Stąd g ∈ H, ale
∫
X g dµ >

∫
X f dµ = r, co jest sprzecznością z definicją liczby r. ▲

Twierdzenie nie musi zachodzić dla miar µ, które nie są σ-skończone, patrz Zadanie 5.7.
Funkcja f spełniająca tezę twierdzenia Radona-Nikodyma bywa oznaczana przez

f =
dν
dµ
,

funkcja ta nosi nazwę pochodnej Radona-Nikodyma miary ν względem miary µ. Oznaczenie
na tę pochodną jest przydatne w zapamiętywaniu niektórych wzorów, patrz Zadania 5.9
i 5.3.2 poniżej. Zauważmy, że pochodna jest wyznaczona niejednoznacznie, ale ν-prawie
wszędzie.

Wniosek 5.3.3. Dla miar µ i ν jak w Twierdzeniu 5.3.2, wzór∫
X
g dν =

∫
X
g · dν
dµ
dµ,

zachodzi dla każdej ν-całkowalnej funkcji g.

Dowód. Dla g = χA wzór jest konsekwencją definicji pochodnej RN. Z addytywności całki
łatwo wywnioskować wzór dla funkcji prostych. Z twierdzenia o zbieżności monotonicz-
nej otrzymamy tezę dla funkcji nieujemnych itd. (czytelnik sam uzupełni szczegóły, por.
Zadanie 5.8). ▲
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Następujący prosty wniosek jest wykorzystywany w rachunku prawdopodobieństwa do
definiowania tak zwanych warunkowych wartości oczekiwanych.

Wniosek 5.3.4. Niech (X,Σ, µ) będzie σ-skończoną przestrzenią miarową i niech Σ0 ⊆ Σ
będzie dowolnym σ-ciałem. Wtedy dla każdego A ∈ Σ istnieje Σ0-mierzalna funkcja f , taka
że

µ(A ∩B) =
∫
B
f dµ,

dla wszystkich B ∈ Σ0.
Dowód. Wystarczy zastosować Twierdzenie 5.3.2 do miary µ na Σ0 i ν danej wzorem
ν(B) = µ(A ∩B) dla B ∈ Σ0. ▲
Z twierdzenia Radona-Nikodyma wynika następujące twierdzenie o rozkładzie miar.

Twierdzenie 5.3.5. Niech µ i ν będą σ-skończonymi miarami, określonymi na tym samym
σ-ciele. Wtedy istnieje rozkład ν = νa + νs, gdzie νa ≪ µ i νs ⊥ µ.
Dowód. Mamy ν ¬ µ + ν więc tym bardziej ν ≪ µ + ν; niech f będzie pochodną RN
miary ν względem miary µ + ν. Zauważmy, że wtedy 0 ¬ f ¬ 1 ν-prawie wszędzie. Niech
X1 = {x : f(x) < 1} i X2 = {x : f(x) = 1}. Ponieważ

ν(X2) =
∫
X2
f dµ+

∫
X2
f dν = µ(X2) + ν(X2),

więc µ(X2) = 0. Definiujemy

νa(A) = ν(A ∩X1), νs(A) = ν(A ∩X2) dla A ∈ Σ.
Wtedy oczywiście ν = νa+νs i νs ⊥ µ, jako że νs jest skupiona na X2. Pozostaje sprawdzić,
że µa ≪ µ. Niech µ(A) = 0. Wtedy

νa(A) = ν(A ∩X1) =
∫
A∩X1

f dµ+
∫
A∩X1

f dν =
∫
A∩X1

f dν.

Stąd ∫
A∩X1
(1− f) dν = 0,

co implikuje νa(A) = ν(A ∩X1) = 0, jako że 1− f > 0 na zbiorze X1. ▲

4. Miary na prostej rzeczywistej

Wszystko sprowadza się do prostej rzeczywistej, także całkowanie.

Twierdzenie 5.4.1. Niech f : X → R będzie mierzalną funkcją na przestrzeni miarowej
(X,Σ, µ). Wtedy wzór ν(B) = µ(f−1[B]) definiuje miarę borelowską na R, por. Zadanie 16
z poprzedniego rozdziału.
Dla dowolnej borelowskiej funkcji g : R→ R zachodzi wzór∫

X
g ◦ f dµ =

∫
R
g dν(x),

(o ile całki mają sens liczbowy).
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Dowód. Patrz Zadanie 17 z tego rozdziału. ▲

W tej części dokonamy przeglądu miar ν określonych na σ-ciele Bor(R), które są lokalnie
skończone, to znaczy przyjmują skończone wartości na każdym przedziale. Zauważmy, że
taka miara ν jest automatycznie σ-skończona. Własność lokalnej skończoności jest jednak
istotnie silniejsza: biorąc

ν =
∑
q∈Q

δq

możemy łatwo określić miarę σ-skończoną, która przyjmuje wartość ∞ na każdym niepu-
stym przedziale.
Jeżeli ν ≪ λ to Twierdzenie 5.3.2 i wzór w 5.3.3 pozwalają zredukować całkę względem

ν do klasycznej całki Lebesgue’a. Wiele podstawowych miar probabilistycznych na prostej
jest absolutnie ciągłych względem λ; na przykład rozkład normalny (miara Gaussa), czyli
podstawowa miara probabilistyczna, jest zadana jako

ν(A) =
1√
2π

∫
A
e−x

2/2 dλ(x).

W ogólnym przypadku, każdą ν możemy przedstawić jako ν = νa+ νs, gdzie, zgodnie z
Twierdzeniem 5.3.5, νa ≪ λ i νs ⊥ λ. Rozważmy w dalszym ciągu przypadek ν ⊥ λ. Taka
miara ν może być dodatnia tylko na przeliczalnej ilości punktów. Możemy więc napisać

ν =
∑
n

cnδtn + ν
′,

dla pewnych cn ­ 0, pewnych punktów tn ∈ R, gdzie miara ν ′ spełnia już warunek µ′{t} = 0
dla każdego t. Klasycznym przykładem miary skupionej na zbiorze przeliczalnym jest roz-
kład Poissona ν, czyli miara probabilistyczna skupiona na liczbach całkowitych nieujemnych
i spełniająca, dla ustalonego parametru s ­ 0, warunek

ν{n} = e−ssn

n!
.

Zauważmy, że dla miary postaci µ =
∑
n cnδtn , całka redukuje się do sumy szeregu:∫

R
g dµ =

∑
n

cng(tn).

Pozostałe miary mają tę własność, że znikają na punktach (czyli są bezatomowe, por.
Zadanie 5.14), ale są skupione na zbiorze miary Lebesgue’a zero. Takie miary rzeczywiście
istnieją, jak mogliśmy przekonać się w 4.5.
Wszystkie miary lokalnie skończone na prostej można wygenerować w opisany poniżej

sposób. Zacznijmy od prostej uwagi.

Lemat 5.4.2. Jeżeli µ i ν są miarami na Bor(R) i dla każdego a < b mamy

µ[a, b) = ν[a, b) <∞,
to µ = ν.

Dowód. Rodzina

{B ∈ Bor(R) : B ⊆ [0, 1], µ(B) = ν(B)}
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jest klasą monotoniczną więc µ(B) = ν(B) dla wszystkich borelowskich podzbiorów [0, 1)
z Twierdzenia 1.7.2. Tę uwagę można odnieść do każdego odcinka postaci [n, n+ 1). Osta-
tecznie, dla B ∈ Bor(R) mamy

µ(B) =
∑
n

µ(B ∩ [n, n+ 1)) =
∑
n

ν(B ∩ [n, n+ 1)) = ν(B).

▲

Niech F : R→ R będzie funkcją niemalejącą; przyjmijmy
λF ([a, b)) = F (b)− F (a),

dla a < b. Tę definicję można w oczywisty sposób rozszerzyć na elementy pierścienia prze-
działów, rozważanego w rodziale 1. Jesli funkcja zbioru λF ma być przeliczalnie addytywna
to konieczne jest, aby funkcja F była lewostronnie ciągła, ponieważ wtedy dla ciągu hn > 0,
hn → 0

F (x)− F (x− hn) = λF [x− hn, x)→ 0,
jako że przekrój

⋂
n[x − hn, x) jest pusty. Jak się okazuje dla funkcji lewostronnie ciągłej

F , funkcja zbioru λF jest przeliczalnie addytywna na pierścieniu odcinków i rozszerza się
jednoznacznie do miary borelowskiej na prostej, co można wykazać analogicznie, jak w
przypadku miary Lebesgue’a. Istnieje jednak w tej chwili znacznie krótsza droga.

Twierdzenie 5.4.3. Dla każdej lewostronnie ciągłej niemalejącej funkcji F : R → R
istnieje jedyna miara (Lebesgue’a-Stieltjesa) λF określona na Bor(R), taka że

λF [a, b) = F (b)− F (a) dla a < b.

Dowód. Załóżmy, dla ustalenia uwagi, że

M = lim
x→∞

F (x) =∞, K = lim
x→−∞

F (x) = −∞.

Niech funkcja h będzie zdefiniowana wzorem

h(y) = sup{x : F (x) ¬ y.}
Wtedy warunek a ¬ h(y) jest równoważny warunkowi F (a) ¬ y na mocy lewostronnej
ciągłości F , natomiast warunek h(y) < b oznacza y < F (b). Tym samym dla a < b mamy

h−1 [[a, b)] = [F (a), F (b)).

Funkcja h : R→ R jest niemalejąca, a wiec borelowska, patrz Zadanie 5.11. Możemy więc
rozważyć obraz miary

λF = h[λ], gdzie λF (B) = λ(h−1[B]),

dla B ∈ Bor(R), patrz Zadanie 6.16. Wtedy λF spełnia żądane równanie. Jedyność otrzy-
mujemy natychmiast z Lematu 5.4.2. ▲

Zauważmy, że każda miara lokalnie skończona µ na prostej jest postaci µ = λF dla
pewnej funkcji F — wystarczy przyjąć, że F (x) = µ[0, x) dla x ­ 0 i F (x) = −µ[x, 0) poza
tym, por. Zadanie 5.12. Należy zaznaczyć, że wszędzie tutaj stosowaliśmy zasadę rozwa-
żania odcinków postaci [a, b) przy definiowaniu miar postaci λF ; trzeba mieć świadomość,
że równie dobrze można rozważać wzór postaci λF (a, b] = F (b) − F (a) — wtedy F jest
oczywiście prawostronnie ciągła.
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W niektórych przypadkach całka względem miary λF wyraża się w prosty sposób.

Twierdzenie 5.4.4. Jeżeli funkcja niemalejąca F ma ciągłą pochodną to∫
R
g dλF =

∫
R
g · F ′ dλ,

dla każdej λF -całkowalnej funkcji g.

Dowód. Jeżeli g = χ[a,b) dla a < b to po lewej stronie wzoru mamy λF [a, b) = F (b)−F (a),
a po prawej∫

R
g · F ′ dλ =

∫ b
a
F ′(x) dx,

czyli tyle samo. Mamy F ′ ­ 0 i możemy zdefiniować miarę µ wzorem

µ(B) =
∫
B
F ′ dλ, B ∈ Bor(R).

Jak dotąd sprawdziliśmy, że µ = λF na odcinkach, a więc µ = λF z Lematu 5.4.2. Innymi
słowy, wzór z twierdzenia jest więc spełniony dla każdej funkcji g = χB, gdzie B ∈ Bor(R).
Dalej rozszerzamy wzór standardowo na funkcje proste oraz mierzalne (por. dowód 5.3.2).
▲
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5. Zadania

5.5.1 Zauważyć, że rozkład Hahna X = X+ ∪ X− dla miary znakowanej κ jest ”jedno-
znaczny z dokładnością do zbiorów miary zero” (co to znaczy?). Czy rozkład α na różnicę
dwóch miar jest jedyny?

5.5.2 Zauważyć, że jeśli miara znakowana ν przyjmuje tylko wartości rzeczywiste, to jest
ograniczona.

5.5.3 Niech f będzie taką funkcją mierzalną, że przynajmniej jedna z funkcji f+, f− jest
µ–całkowalna i niech ν(A) =

∫
A f dµ dla zbiorów A ∈ Σ (tutaj µ jest miarą na Σ). Zapisać

ν+, ν− oraz |ν| za pomocą całek.
5.5.4 Zauważyć, że dla miary znakowanej ν, |ν|(A) = 0 wtedy i tylko wtedy gdy ν(B) = 0
dla każdego B ⊆ A (A,B ∈ Σ).
5.5.5 Zauważyć, że jeżeli ν ≪ µ i ν ⊥ µ to ν = 0.
5.5.6 Zauważyć, że ν ≪ µ wtedy i tylko wtedy gdy ν+, ν− ≪ µ i że podobną własność ma
relacja singularności miar.

5.5.7 Twierdzenie RN nie musi zachodzić dla µ, które nie są σ–skończone. Niech Σ będzie
σ–ciałem generowanym przez przeliczalne podzbiory [0, 1]; rozważyć miarę liczącą µ na Σ
oraz zerojedynkową miarę ν na Σ.

5.5.8 Uzupełnić szczegóły dowodu Wniosku 5.3.2 według podanego szkicu.

5.5.9 Niech µ, ν będą σ–skończonymi miarami na Σ, takimi że ν ≪ µ i µ ≪ ν. Wykazać,
że prawie wszędzie zachodzi zależność

dν
dµ
= 1/

dµ
dν
.

5.5.10 Niech µ, ν będą miarami σ–skończonymi, ν ≪ µ i niech funkcja f = dν
dµ będzie

wszędzie dodatnia. Sprawdzić, że µ≪ ν.

5.5.11 Niech (X,Σ, µ) będzie przestrzenią probabilistyczną i niech A będzie σ–ciałem za-
wartym w Σ. Wykazać, że dla każdej Σ–mierzalnej funkcji całkowalnej f : X → R istnieje
A–mierzalna funkcja g, taka że dla każdego A ∈ A∫

A
g dµ =

∫
A
f dµ.

(Taka g = E(f |A) nazywa się w probabilistyce warunkową wartością oczekiwaną.)
5.5.12 Dystrybuantą miary probabilistycznej µ na Bor(R) nazywamy funkcję Fµ : R → R,
daną wzorem Fµ(x) = µ(−∞, x) dla x ∈ R. Sprawdzić, że Fµ jest niemalejącą funkcją
lewostronnie ciągłą, przy czym limx→∞ Fµ(x) = 1.
Uwaga: Czasami przyjmuje się definicję Fµ(x) = µ(−∞, x]; jak wpływa to na własności
Fµ?

5.5.13 Wykazać, że dystrybuanta Fµ jest ciągła wtedy i tylko wtedy gdy µ znika na punktach.

5.5.14 Miara znikająca na punktach bywa nazywana miarą ciągłą. Wykazać, że probabili-
styczna miara µ na Bor(R) jest ciągła wtedy i tylko wtedy, gdy jest bezatomowa.
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5.5.15 Jak juz wiemy (!) na zbiorze trójkowym Cantora C istnieje miara probabilistyczna
µ, która znika na punktach. Niech F (x) = µ((−∞, x)) będzie dystrybuantą tej miary.
Zauważyć, że F jest funkcją ciągłą, oraz F [C] = [0, 1]. Wywnioskować stąd, że obraz zbioru
miary zero przez funkcję ciągłą nie musi być miary zero, a nawet nie musi być mierzalny.

5.5.16 Obliczyć (albo sprowadzić do znanej całki); podać uzasadnienia rachunków:
(i)

∫
R f(x) dµ gdzie µ = δ0, µ = δ0 + δ1, µ =

∑∞
n=1 δn (tutaj δx oznacza miarę probabili-

styczną skupioną w punkcie x).
(ii)

∫
[0,1] x

2 dλ;
(iii)

∫
[0,1] f dλ; gdzie f(x) = x dla x /∈ Q, f(x) = 0 dla x ∈ Q;

(iv)
∫
[0,2π] sinx dµ, gdzie µ(A) =

∫
A x
2 dλ(x);

(v)
∫
R f dλ; gdzie f(x) = x

2 dla x ∈ Q, f(x) = 0 dla x /∈ Q;
(vi)

∫
R 1/(x

2 + 1) dλ(x);
(vii)

∫
R cosx dµ, gdzie µ(A) =

∫
A 1/(x

2 + 1) dλ(x);
(viii)

∫
R cosx dµ, gdzie µ jest taka że µ(−∞, x) = arc tg x+ π/2;

(ix)
∫
[0,∞)[x] dµ, gdzie µ jest taka że µ[n, n+ 1) = n

−3;
(x)

∫
R(x− [x]) dµ, gdzie

µ =
∞∑
n=1

δn+1/n;

(xi)

lim
n→∞

∫
[0,1]

n2x+ 2
n2x+ n+ 3

dλ(x) lim
n→∞

∫
[0,∞]

n

xn2 + 3
dλ(x).

5.5.17 Niech f : X → R będzie mierzalną funkcją na przestrzeni miarowej (X,Σ, µ). Wtedy
wzór ν(B) = µ(f−1[B]) definiuje miarę borelowską na R, por. Zadanie 16 z poprzedniego
rozdziału (taka miara w probabilistyce nazywa się rozkładem zmiennej losowej).
Udowodnić, że

∫
X g ◦ f dµ =

∫
R g dν(x) (o ile całki mają sens).

Wskazówka: Rozważyć najpierw przypadek, gdy g jest funkcją charakterystyczną; potem
funkcje proste itd.

6. Problemy

5.6.A Niech (X,Σ, µ) będzie przestrzenią miarową. Dla dowolnego Z ⊆ X piszemy µ∗(Z) =
inf{µ(A) : A ∈ Σ, Z ⊆ A}. Zauważyć, że µ∗ jest miarą zewnętrzną (jest przeliczalnie
podaddytywna i monotoniczna), ale na ogół nie jest addytywna.
Udowodnić, że dla ustalonego Z ⊆ X wzór ν(A∩Z) = µ∗(A∩Z) definiuje miarę na σ–ciele
{A ∩ Z : A ∈ Σ} podzbiorów Z.
5.6.B Istnieje przestrzeń metryczna Z ⊆ [0, 1] i probabilistyczna miara ν na Bor(Z), taka
że ν(K) = 0 dla K ⊆ Z zwartych.
Wskazówka: Wziąć na początek Z ⊆ [0, 1] niemierzalny w sensie Lebesgue’a i miarę ν z
poprzedniego problemu.
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5.6.C Niech (X,Σ, µ) będzie przestrzenią probabilistyczną. Jak wiemy, A ∼ B ⇐⇒ µ(A△
B) = 0 definiuje relację równoważności. Niech B = {[A] : A ∈ Σ} oznacza rodzinę klas
abstrakcji tej relacji.
Zauważyć, że na B można wprowadzić naturalne działania

[A] ∨ [B] = [A ∪B], [A] ∧ [B] = [A ∩B], −[A] = [Ac].
Wtedy B staje się algebrą Boole’a (B,∨,∧, - , 0, 1) (to znaczy, że wprowadzone działania
maja takie same własności jak ”zwykłe” działania mnogościowe; 0 = [∅], 1 = [X]). Tak
zdefiniowana algebrę nazywamy algebrą miary.

5.6.D Sprawdzić, że algebra miary B jest przestrzenią metryczną, gdzie metrykę zadajemy
wzorem d([A], [B]) = µ(A△B). Udowodnić, że metryka ta jest zupełna.

5.6.E Algebra miary Lebesgue’a λ na [0, 1] jest przestrzenią ośrodkową.



ROZDZIAŁ 6

Przestrzenie funkcji całkowalnych

Moim największym odkryciem matema-
tycznym jest Stefan Banach.
Hugo Steinhaus

W rozdziale ostatnim wprowadzimy klasyczne przestrzenie Banacha postaci Lp(µ) i wy-
prowadzimy podstawowe ich własności. Oprócz tego rozważymy ogólne własności miar na
przestrzeniach euklidesowych i zastosujemy je do znalezienia zbiorów gęstych w przestrze-
niach funkcji całkowalnych.

1. Klasyczne nierówności

W podrozdziale wyprowadzimy klasyczne nierówności całkowe Cauchy’ego-Höldera oraz
Minkowskiego. Niech, po raz kolejny, (X,Σ, µ) będzie ustaloną przestrzenią miarową σ-
skończoną; dalej milcząco przyjmujemy, że wszystkie rozważane funkcje są mierzalne wzglę-
dem Σ.

Lemat 6.1.1. Dla dowolnych liczb dodatnich a, b, p, q, jeżeli 1/p+ 1/q = 1 to

ab ¬ ap

p
+
bq

q
.

Dowód. Rozważmy funkcję f(t) = tp−1 na odcinku [0, a]. Z założenia p > 1 więc istnieje
funkcja odwrotna do f dana wzorem g(s) = s1/(p−1). Zauważmy, że pola pod wykresami
funkcji f : [0, a]→ R i g : [0, b]→ R pokrywają kwadrat [0, a]× [0, b]. Stąd

ab ¬
∫ a
0
tp−1 dt+

∫ b
0
s1/(p−1) ds =

[
tp

p

]a
0

+
[
sq

q

]b
0

=
ap

p
+
bq

q
,

ponieważ 1 + 1/(p− 1) = p/(p− 1) = q. ▲

Definicja 6.1.2. Dla dowolnej funkcji (całkowalnej bądź nie) f : X → R i p ­ 1 wyrażenie

∥f∥p =
(∫
X
|f |p dµ

)1/p
nazywamy p-tą normą całkową funkcji.

Twierdzenie 6.1.3 (Nierówność Cauchy-ego-Höldera). Dla dowolnych funkcji f, g i liczb
p, q > 0, takich że 1/p+ 1/q = 1, zachodzi nierówność∫

X
|f · g| dµ ¬ ∥f∥p · ∥g∥q.
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Dowód. Oczywiście nierówność jest prawdziwa, gdy jedna z norm jest nieskończona. W
przypadku skończonym, dla dowolnego x ∈ X podstawmy

a =
|f(x)|
∥f∥p

, b =
|g(x)|
∥g∥q

do nierówności w Lemacie 6.1.1; wtedy otrzymamy wszędzie nierówność
|fg|

∥f∥p · ∥g∥q
¬ 1
p
· |f |

p

∥f∥pp
+
1
q
· |g|

q

∥g∥qq
.

Całkując tę ostatnią nierówność względem miary otrzymujemy∫
X |fg| dµ
∥f∥p · ∥g∥q

¬ 1
p
+
1
q
= 1,

co kończy dowód. ▲

Twierdzenie 6.1.4 (Nierówność Minkowskiego). Dla dowolnych funkcji f, g i liczby p ­ 1,
zachodzi nierówność

∥f + g∥p ¬ ∥f∥p + ∥g∥p.
Dowód. Nierówność oczywiście zachodzi dla p = 1 (patrz Twierdzenie 3.2.3). Dla p >
1 możemy dobrać liczbę q spełniającą warunwk 1/p + 1/q = 1. Wtedy, uwzględniając
(p− 1)q = p i stosując nierówność z 6.1.3,

∥f + g∥p =
∫
X
|f + g|p dµ ¬

¬
∫
X
|f | · |f + g|p−1 dµ+

∫
X
|g| · |f + g|p−1 dµ ¬

∥f∥p
(∫
X
|f + g|(p−1)q dµ

)1/q
+ ∥g∥p

(∫
X
|f + g|(p−1)q dµ

)1/q
=

= (∥f∥p + ∥g∥p)) ·
(∫
X
|f + g|p dµ

)1/q
= (∥f∥p + ∥g∥p)) · ∥f + g∥p/q.

Teraz, dzieląc (skrajne) strony nierówności przez ∥f +g∥p/qp , otrzymujemy nierówność Min-
kowskiego. Należy jednak zaznaczyć, że dla poprawności tego argumentu konieczne jest,
aby sprawdzić, że jeśli ∥f∥p, ∥g∥p <∞ to ∥f + g∥p <∞, patrz Zadanie 6.1. ▲

2. Przestrzenie Banacha funkcji całkowalnych

Niech E będzie przestrzenią liniową nad ciałem liczb rzeczywistych lub zespolonych.
Oznacza to, że w E określone jest działanie dodawania (wektorów) oraz mnożenia wektorów
przez skalary z ciała, przy czym zachowane są aksjomaty dobrze znane z algebry liniowej
przestrzeni euklidesowych.

Definicja 6.2.1. Funkcję ∥ · ∥ : E → R+ nazywamy normą jeżeli dla dowolnych x, y ∈ E
i c z ciała skalarów zachodzą zależności
(i) ∥x∥ = 0 wtedy i tylko wtedy gdy x = 0;
(ii) ∥c · x∥ = |c| · ∥x∥;
(iii) ∥x+ y∥ ¬ ∥x∥+ ∥y∥.
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Warunek (ii) w definicji nazywa się jednorodnością, a warunek (iii) oczywiście nierów-
nością trójkąta. W każdej przestrzeni unormowanej (E, ∥ · ∥) możemy zdefiniować metrykę
wzorem

ρ(x, y) = ∥x− y∥,
dla x, y ∈ E. Zauważmy, że tak właśnie definiowana jest metryka w przestrzeni euklidesowej
Rn, gdzie norma euklidesowa zadana jest wzorem

∥x∥ =

∑
i¬n
|x|2

1/2 .
Definicja 6.2.2. Przestrzeń unormowaną (E, ∥·∥) nazywamy przestrzenią Banacha, jeżeli
metryka wyznaczona przez normę jest zupełna.

Wspomniana zupełność oznacza, że dla ciągu xn wektorów z E, spełniającego warunek
Cauchy’ego

lim
n,k→∞

∥xn − xk∥ = 0,

istnieje x ∈ E, taki że ∥xn − x∥ → 0 (czyli granica tego ciągu). Przestrzenie euklidesowe
są więc przestrzeniami Banacha, ale w analizie funkcjonalnej rozważa się wiele przestrzeni
Banacha nieskończenie wymiarowych, na ogół złożonych z pewnych funkcji. Na przykład
norma ∥f∥ = supt |f(t)| czyni z przestrzeni funkcji ciągłych C[0, 1] przestrzeń Banacha.
Naszym celem będzie wprowadzenie przestrzeni Banacha funkcji całkowalnych.
Funkcja ∥ · ∥p zdefiniowana w 6.1.2 nie bez powodu nosi nazwę p-tej normy: nierówność

Minkowskiego 6.1.4 to po prostu nierówność trójkąta dla ∥ · ∥p. Jednorodność ∥ · ∥p wynika
natychmiast z własności całki. Jedyny problem, to taki, że, formalnie rzecz biorąc, ∥ ·∥p nie
spełnia pierwszego aksjomatu normy, jako że ∥f∥p = 0 oznacza jedynie, że f = 0 prawie
wszędzie. Aby pokonać tę przeszkodę dokonujemy następującego zabiegu.

Definicja 6.2.3. Dla ustalonej przestrzeni miarowej (X,Σ, µ) symbolem Lp(µ) oznaczamy
przestrzeń wszystkich funkcji mierzalnych f : X → R, dla których ∥f∥p <∞. Przyjmujemy
przy tym zasadę, że utożsamiamy elementy Lp(µ) równe prawie wszędzie.

Formalnie rzecz biorąc, Lp(µ) nie składa się więc z funkcji, ale z klas abstrakcji relacji
równoważności

f = g prawie wszędzie.

Powszechnie stosuje się jednak umowę, że elementy Lp(µ) nazywamy po prostu funkcjami;
nie prowadzi to do większych niejasności. Tym samym Lp(µ) jest przestrzenią unormowa-
ną z p-normą całkową. Lp(µ) bywa oznaczana też Lp(X,Σ, µ) lub, w innych przypadkach,
Lp(X). Na przykład piszemy najczęściej Lp[0, 1] i Lp(R) dla odpowiednich przestrzeni cał-
kowych względem miary Lebesgue’a na [0, 1] lub R.
Twierdzenie 6.2.4. Przestrzeń Lp(µ) z normą ∥ · ∥p jest przestrzenią Banacha.
Dowód. Rozważmy p = 1. Niech fn ∈ L1(µ) będzie ciągiem Cauchy’ego, to znaczy∫

X
|fn − fk| dµ→ 0,
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gdy n, k →∞. Wtedy dla ε > 0 z nierówności Czebyszewa∫
X
|fn − fk| dµ ­ ε · µ{x : |fn(x)− fk(x)| ­ ε},

wynika, że ciąg fn jest Cauchy’ego według miary. Z Twierdzenia 2.4.6 istnieje więc rosnący
ciąg liczb naturalnych nk i funkcja f , taki że fnk → f prawie wszędzie. Z kolei z lematu
Fatou ∫

X
|f | dµ ¬ lim inf

k

∫
X
|fnk | dµ <∞,

jako że z warunku Cauchy’ego wynika oczywiście ograniczoność ciągu całek
∫
X |fn| dµ.

Stosując jeszcze raz lemat Fatou otrzymujemy∫
X
|f − fnk | dµ =

∫
X
lim inf
j
|fnj − fnk | dµ ¬ lim infj

∫
X
|fnj − fnk | dµ ¬ ε,

dla dostatecznie dużych k. Ostatecznie, ponieważ∫
X
|f − fn| dµ ¬

∫
X
|f − fnk | dµ+

∫
X
|fnk − fn| dµ,

więc istotnie f jest granicą ciągu fn w przestrzeni Lp(µ).
Dowód dla p > 1 jest dość automatyczną modyfikacją przedstawionego argumentu,

patrz Zadanie 6.2 ▲

Oprócz rzeczywistych przestrzeni funkcji całkowalnych rozważa się ich odpowiedniki
zespolone. Dla przestrzeni (X,Σ, µ) i funkcji f : X → C, powiemy, że f jest funkcją
mierzalną gdy f−1[B] ∈ Σ dla każdego borelowskiego podzbioru C (przypomnijmy, że C
mozna utożsamiać z R × R). Możemy taką funkcję przedstawić w postaci f = f1 + i · f2
dla funkcji rzeczywistych f1, f2 : X → R. Nietrudno sprawdzić, że f jest mierzalna wtedy i
tylko wtedy gdy f1, f2 sa mierzalne, patrz Zadanie 6.5. Dla funkcji f : X → C mierzalnej jej
moduł |f | =

√
f 21 + f 22 jest więc też mierzalny. Funkcja f jest całkowalna przy niezmienionej

definicji:
∫
X |f | dµ <∞, natomiast wzór∫
X
f dµ =

∫
X
f1 dµ+ i ·

∫
X
f2 dµ

można przyjąć za definicję całki. Klasyczne nierówności z podrozdziału 6.1 i Twierdzenie
6.2.4 pozostają prawdziwe dla funkcji zespolonych.

3. Jednakowa całkowalność

Jak widzieliśmy w dowodzie Twierdzenia 6.2.4 zbieżność ciągu fn do funkcji f w L1(µ)
pociąga za sobą zbieżność według miary. Prosty przykład

fn = n · χ[0,1/n]
pokazuje, że zbieżność według miary jest jednak istotnie słabsza niż ta w L1(µ). W przy-
padku miary skończonej często stosuje się następujące kryterium zbieżności w L1(µ).
Przypomnijmy, że dla funkcji całkowalnej f : X → R na przestrzeni miarowej (X,Σ, µ),

wzór ν(A) =
∫
A |f | dµ określa miarę ν i ν ≪ µ. Dlatego na mocy Lematu 5.2.5 mamy

warunek

(∀ε > 0)(∃δ > 0)(∀A ∈ Σ)
[
µ(A) < δ ⇒

∫
A
|f | dµ < ε

]
.
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O ciągu funkcji calkowalnych fn mówimy, że jest on jednakowo całkowalny gdy powyższy
warunek jest spełniony jednostajnie po n, to znaczy

(∀ε > 0)(∃δ > 0)(∀A ∈ Σ)(∀n)
[
µ(A) < δ ⇒

∫
A
|fn| dµ < ε

]
.

Twierdzenie 6.3.1. Jeżeli µ(X) <∞ to ciąg fn jest zbieżny w L1(µ) wtedy i tylko wtedy
gdy ciąg fn zbiega według miary oraz funkcje fn są jednakowo całkowalne

Dowód. Niech
∫
X |fn − f | dµ→ 0 dla fn, f ∈ L1(µ). Jak poprzednio,∫

X
|fn − f | dµ ­ ε · µ{x : |fn(x)− f(x)| ­ ε},

dla każdego ε > 0, co dowodzi, że fn
µ−→ f . Sprawdźmy zatem jednakową całkowalność.

Dla ustalonego ε > 0 mamy
∫
X |fn − f | dµ < ε dla n ­ n0. Możemy dobrać δ > 0, takie że

dla wszystkich funkcji h ∈ {f, f1, . . . , fn0} zachodzi
∫
A |h| dµ < ε jeśli tylko µ(A) < δ. Dla

n > n0 mamy z kolei∫
A
|fn| dµ ¬

∫
A
|fn − f | dµ+

∫
A
|f | dµ ¬ 2ε,

co pokazuje, że ciąg fn jest jednakowo całkowalny.
Udowodnimy przeciwną implikację. Ustalmy ε > 0 i niech

An,k = {x : |fn(x)− fk(x)| ­ ε}.

Wtedy dla dowolnej liczby δ > 0 mamy µ(An,k) < δ dla dużych n, k i dlatego∫
X
|fn − fk| dµ =

∫
An,k

|fn − fk| dµ+
∫
X\An,k

|fn − fk| dµ ¬

¬
∫
An,k

|fn| dµ+
∫
An,k

|fk| dµ+ ε · µ(X),

co, z warunku jednakowej całkowalności, pociąga za sobą
∫
X |fn− fk| dµ→ 0. Ciąg fn jest

ciągiem Cauchy’ego w L1(µ), a więc jest zbieżny (patrz twierdzenie 6.2.4). ▲

4. Miary na przestrzeniach euklidesowych

W tym podrozdziale omówimy kilka własności miar na przestrzeniach euklidesowych.
Jak sie za chwilę okaże, niektóre własności miary Lebesgue’a przysługują wszystkim takim
miarom i jest to raczej zasługa struktury σ-ciała zbiorów borelowskich niż samej konstrukcji
miary. Część tych faktów w istocie wymaga jedynie założenia metryczności przestrzeni i
w tej częsci ustalimy przestrzeń metryczną (X, d) — w przypadku, gdy X = Rn metryka
euklidesowa d dana jest wzorem

d(x, y) =
√∑
k¬n
(xk − yk)2.

Jak poprzednio piszemy Br(x) aby oznaczyć kulę Br(x) = {y : d(x, y) < r}. Zbiór U
nazywamy otwartym gdy dla każdego x ∈ U istnieje δ > 0, taka że Bδ(x) ⊆ U ; analogicznie
definiujemy zbiory domknięte i σ-ciało Bor(X).
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Lemat 6.4.1. W przestrzeni metrycznej (X, d) każdy zbiór domknięty F mozna zapisać
w postaci F =

⋂
n Vn, gdzie zbiory Vn ⊆ X sa otwarte. Każdy zbiór otwarty w X jest

przeliczalną sumą zbiorów domkniętych.

Dowód. Niech Vn będzie zbiorem tych x ∈ X, dla których istnieje a ∈ F , takie że d(x, a) <
1/n. Z własności metryki łatwo sprawdzić, że zbiór Vn jest otwarty. Oczywiście F ⊆ Vn
dla każdego n. Jeżeli x ∈ ⋂n Vn to dla każdego n istnieje an ∈ F , taki że d(an, x) < 1/n.
Oznacza to, że an → x i, z domkniętości F , x ∈ F . Drugie stwierdzenie wynika z praw de
Morgana. ▲

Twierdzenie 6.4.2. Niech µ będzie skończoną miarą na σ-ciele Bor(X) w przestrzeni
metrycznej X. Wtedy dla każdego B ∈ Bor(X) zachodzą zależności

(∗) µ(B) = sup{µ(F ) : F ⊆ B} = inf{µ(V ) : B ⊆ V },

gdzie F oznacza zawsze zbiór domknięty, a V zbiór otwarty.

Dowód. Oznaczmy przez A rodzinę tych B ∈ Bor(X), dla których spełniony jest warunek
(*). Jeżeli zbiór F jest domknięty to F =

⋂
n Vn dla pewnych zbiorów otwartych, patrz

Lemat 6.4.1, przy czym możemy założyć, że Vn ↓ F . Z ciągłości z góry miary skończonej
wynika, że µ(Vn)→ µ(F ). Stąd natychmiast wynika , że F ∈ A.
Wystarczy teraz wykazać, że A jest σ-ciałem, aby upewnić się że A = Bor(X). Jeżeli

A ∈ A to dla każdego ε > 0 istnieją zbiór otwarty V i domknięty F , takie że F ⊆ A ⊆ V i
µ(V \ F ) < ε. Wtedy

V c ⊆ Ac ⊆ F c i µ(F c \ V c) = µ(V \ F ) < ε,

co pokazuje, że Ac ∈ A.
Biorąc An ∈ A i A =

⋃
nAn, pokażemy, że A ∈ A. Dla ε > 0 i każdego n z warunku

An ∈ A istnieją zbiory domkniete Fn ⊆ An i otwarte Vn ⊇ An o własności µ(Vn\Fn) < ε/2n.
Niech V =

⋃
n Vn i niech F =

⋃
n¬N Fn, gdzie liczba N jest tak dobrana, że

µ(
⋃
n

Fn) < µ(
⋃
n¬N

Fn) + ε;

takie N istnieje na mocy ciągłości z dołu miary. Wtedy zbiór V ⊇ A jest otwarty (jako
suma zbiorów otwartych), a zbiór F ⊆ A jest domknięty (jako suma skończonej ilości takich
zbiorów). Ponadto,

µ(V \ F ) ¬ µ(
⋃
n

Vn \
⋃
n

Fn) + µ(
⋃
n

Fn \ F ) ¬
∑
n

ε/2n + ε = 2ε.

W ten sposób otrzymujemy A ∈ A i dowód został zakończony. ▲

Twierdzenie 6.4.3 (Łuzina). Niech g będzie funkcją borelowską na przestrzeni metrycznej
X. Wtedy dla dowolnej miary skończonej na Bor(X) i ε > 0 istnieje zbiór domknięty
F ⊆ X, taki że µ(X \ F ) < ε i g jest funkcją ciągłą na zbiorze F .

Dowód. Sprawdźmy najpierw, ze twierdzenie zachodzi dla funkcji prostej. Istotnie, jeżeli

g =
∑
i¬n

ai · χBi ,
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gdzie zbiory borelowskie Bi sa parami rozłączne to z Twierdzenia 6.4.1 dla każdego i ¬ n
istnieje zbiór domknięty Fi ⊆ Bi, przy czym µ(Bi \ Fi) < ε/n. Wtedy można przyjąć
F =

⋃
i¬n Fi; funkcja g jest ciągła na tym zbiorze (jako że zbiory Fi są parami rozłączne).

Rozważmy funkcję nieujemną g i ε > 0. Wtedy istniejeX0 ∈ Bor(X) taki że µ(X\X0) <
ε/2 i funkcja g jest ograniczona na X0. Istnieje zatem ciąg funkcji prostych gn zbieżny
jednostajnie do g na zbiorzeX0, patrz Twierdzenie 2.2.3. Z pierwszej części dowodu możemy
dobrać zbiory domknięte Fn, takie że

µ(X0 \ Fn) < ε/2n+1

i gn jest ciągła na Fn. Biorąc F =
⋂
n Fn mamy

µ(X \ F ) ¬ µ(X \X0) + µ(X0 \ F ) ¬ ε/2 +
∑
n

ε/2n+1 = ε.

Ponadto na zbiorze F wszystkie funkcje gn są ciągłe i zbieżne jednostajnie do g — dlatego
g jest ciągła na F .
Przypadek ogólny funkcji g : X → R wynika łatwo przez rozkład g = g+ − g−. ▲
Miarę µ zdefiniowaną na Bor(Rn) nazwiemy lokalnie skończoną jeżeli

µ([−k, k]n) <∞
dla każdego k, por. 4. Dla miar lokalnie skończonych mamy następujący wniosek z poprzed-
niego twierdzenia.

Wniosek 6.4.4. Niech µ będzie miarą borelowską lokalnie skończoną na przestrzeni eukli-
desowej Rn i niech B ∈ Bor(Rn) będzie zbiorem miary µ skończonej.
(a) Dla każdego ε > 0 istnieje zbiór zwarty F i otwarty V , takie że F ⊆ B ⊆ V i
µ(V \ F ) < ε.
(b) Jeżeli funkcja g : B → R jest borelowska to dla ε > 0 istnieje zbiór zwarty F ⊆ A,
taki że µ(A \ F ) < ε i g jest ciągła na F .

Dowód. Skoro µ(B) < ∞ to µ(B ∩ [−k, k]n) jest dla dużych k bliskie µ(A) i dlatego
zagadnienie redukuje się do zbioru ograniczonego B; możemy teraz zastosować poprzed-
nie twierdzenie do przestrzeni metrycznej postaci [−k, k]n; przypomnijmy, że podzbiory
domknięte i ograniczone w przestrzeniach euklidesowych są zwarte. ▲

Wniosek 6.4.5. Niech µ będzie miarą lokalnie skończoną na Rn i niech V będzie rodziną
zbiorów otwartych, spełniającą warunki
(i) V1 ∪ V2 ∈ V dla V1, V2 ∈ V;
(ii) dla każdego otwartego U ⊆ Rn istnieją Vk ∈ V, takie że U =

⋃
k Vk.

Wtedy dla każdego B ∈ Bor(Rn) miary µ skończonej i ε > 0 istnieje V ∈ V, taki że
µ(B △ V ) < ε.

Dowód. Dla ε > 0 dobierzmy zbiór otwarty U ⊇ B, taki że µ(U \ B) < ε/2. Z założenia
wynika, że istnieje wstępujący ciąg Vn ∈ V , taki że U =

⋃
n Vn. Wtedy µ(Vn)→ µ(U) więc

dla dużych n mamy µ(U \ Vn) < ε/2 i

µ(B △ Vn) ¬ µ(U \ Vn) + µ(U \B) < ε/2 + ε/2 = ε.

▲
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5. Zbiory gęste w L1

W przestrzeni Banacha E z normą ∥ · ∥ zbiór D ⊆ E jest gęsty jeżeli dla każdego
x ∈ E i ε > 0 istnieje d ∈ D, taki że ∥d − x∥ < ε. Inaczej mówiąc każdy x ∈ E jest
granicą pewnego ciągu dn ∈ D. Przestrzeń Banacha jest ośrodkowa gdy zawiera zbiór
gęsty przeliczalny. Poniżej rozważamy przestrzenie postaci L1(µ), ale wyniki naturalnie
uogólniają się na przestrzenie Lp(µ).

Lemat 6.5.1. Funkcje proste całkowalne stanowią zbiór gęsty w L1(µ).

Dowód. Niech f ∈ L1(µ) będzie funkcją nieujemną. Wtedy istnieje ciag funkcji prostych
sn zbieżny monotonicznie i prawie wszędzie do f . Otrzymujemy∫

X
(f − sn) dµ→ 0,

więc ∥f − sn∥1 → 0. ▲

Twierdzenie 6.5.2. W przestrzeni L1(µ) funkcji całkowalnych względem lokalnie skoń-
czonej miary µ na n-wymiarowej przestrzeni euklidesowej funkcje ciągłe stanowią zbiór
gęsty.

Dowód. (1) Niech g = χV , gdzie V jest otwartą kostką postaci

V = (a1, b1)× . . .× (an, bn).

Nietrudno pokazać, że dla każdego δ > 0 istnieje funkcja ciągła g : Rn → [0, 1], taka że
g(x) = 1 dla x ∈ Vδ i g(x) = 0 dla x /∈ V , gdzie

Vδ = (a1 + δ, b1 − δ)× . . .× (an + δ, bn − δ).

Wtedy χV − g = 0 poza zbiorem V \ Vδ i dlatego

∥χV − g∥1 ¬ µ(V \ Vδ)→ 0 dla δ → 0.

Zauważmy, że stąd wynika, że funkcje ciągłe aproksymują też χV w przypadku, gdy V jest
skończoną sumą otwartych kostek.
(2) Niech χB ∈ L1(µ), czyli µ(B) <∞. Na mocy Wniosku 6.4.5 dla ε > 0 istnieje zbiór

V , będący skończoną sumą kostek i taki że µ(B △ V ) < ε. Wtedy

∥χB − χV ∥ = µ(B △ V ) < ε.

Dlatego z (1) wynika, że funkcje ciągłe aproksymują funkcję χB w normie ∥ · ∥1.
(3) Jeżeli s =

∑
i¬k aiχAi jest całkowalną funkcją prostą to z (2) dla każdego i ¬ k

istnieje funkcja ciągła gi, taka że

∥gi − χAi∥1 < ε/(kM),

dla danego ε > 0, gdzie M = maxi¬k(|ai|+ 1). Wtedy funkcja g =
∑
i¬k aigi jest ciągła i

∥g − s∥1 ¬
∑
i¬k

∫
|ai∥χAi − gi| dµ ¬ ε.

(4) Ostatecznie, dla funkcji f ∈ L1(µ) tezę otrzymujemy z Lematu 6.5.1 ▲
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W istocie można pokazać, że funkcje klasy C∞ (mające wszystkie pochodne cząstkowe
ciągłe) leżą gęsto w L1(µ) dla µ jak w twierdzeniu powyżej — należy tylko sprawdzić tę
mocniejszą własność w części (1) dowodu.

Twierdzenie 6.5.3. Dla każdej miary lokalnie skończonej µ na Rn przestrzeń Banacha
L1(µ) jest ośrodkowa.

Dowód. Niech V bedzie rodziną wszystkich skończonych sum kostek otwartych postaci
V = (a1, b1)× . . .× (an, bn),

gdzie ai, bi ∈ Q. Wtedy V jest rodziną przeliczalną. Z Wniosku 6.4.5 wynika, że jeżeli
µ(B) < ∞ to dla każdego ε > 0 istnieje V ∈ V , µ(V △ B) < ε. Dlatego rozumując jak w
dowodzie Twierdzenia 6.5.2 mozna sprawdzić, że rodzina funkcji postaci∑

i¬k
qiχVi , gdzie qi ∈ Q, Vi ∈ V

stanowi zbiór gęsty w L1(µ). ▲
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6. Zadania

6.6.1 Sprawdzić, że |a + b|p ¬ 2p/q(|a|p + |b|p), gdzie 1/p + 1/q = 1; wynioskować stąd, że
Lp(µ) jest przestrzenią liniową.

6.6.2 Sprawdzić, że następujące fakty dowodzi się analogicznie jak dla L1(µ) (p ­ 1)
(i) Lp(µ) jest zupełna;
(ii) funkcje proste leżą gęsto w Lp(µ);
(iii) C[0, 1] leży gęsto w Lp[0, 1].

6.6.3 Ustalić, czy zachodzą jakieś inkluzje pomiędzy Lp(R) dla różnych p. A jak jest w
przypadku Lp[0, 1]?

6.6.4 Ustalić, które z poniższych stwierdzeń są prawdziwe zawsze, a które w przypadku
µ(X) <∞; fn jest tutaj ciągiem funkcji mierzalnych.
(i) jeśli fn są całkowalne i zbieżne jednostajnie do f to fn zbiegają w L1;
(ii) jeśli fn są całkowalne i zbieżne niemal jednostajnie do f to fn zbiegają w L1;
(iii) jeśli 0 ¬ f1 ¬ f2 ¬ . . . i supn

∫
fn dµ <∞ to granica jest całkowalna;

(iv) jeśli fn zbiegają w L1(µ) to pewien podciąg zbiega prawie wszędzie;
(v) jeśli fn są całkowalne i zbieżne do 0 prawie wszędzie to fn są jednakowo całkowalne;
(vi) jeśli |fn| ¬ g, gdzie

∫
g dµ <∞ to fn są jednakowo całkowalne;

(vii) jeśli |fn| ¬ g,
∫
g dµ <∞, fn zbiegają prawie wszędzie to fn zbiegają w L1(µ)

(viii) jeśli fn ∈ L2(µ) ∩ L1(µ) i fn zbiegają w L1(µ) to fn zbiegają w L2(µ); na odwrót?
(ix) (viii) przy dodatkowym założeniu, że fn są wspólnie ograniczone.

6.6.5 Zauważyć, że dla funkcji f : X → C, f = f1 + i · f2, jej mierzalność jest równoważna
mierzalności części rzeczywistej f1 i urojonej f2. Ponadto, f jest całkowalna wtedy i tylko
wtedy gdy f1, f2 są całkowalne.

6.6.6 Dla funkcji f : X → R na przestrzeni miarowej (X,Σ, µ) oznaczmy przez ||f ||∞ jej
istotne supremum, to znaczy

||f ||∞ = inf{sup
X\A
|f | : µ(A) = 0}.

Wykazać, że || · ||∞ jest normą zupełną na przestrzeni L∞(µ), złożonych z tych funkcji, dla
których ||f ||∞ <∞, po utożsamieniu funkcji równych prawie wszędzie.
6.6.7 Wykazać, że dla f ∈ L∞[0, 1] zachodzi wzór limp→∞ ||f ||p = ||f ||∞.
6.6.8 Sprawdzić, że przestrzeń L∞[0, 1] nie jest ośrodkowa.

6.6.9 O mierze µ powiemy że jest ośrodkowa jeśli L1(µ) jest ośrodkową przestrzenią Bana-
cha. Wykazać, że µ jest ośrodkowa wtedy i tylko wtedy gdy istnieje przeliczalna rodzina
S ⊆ Σ że dla każdego A ∈ Σ

inf{µ(A△ S) : S ∈ S} = 0.

7. Problemy

6.7.A Niech (X,Σ, µ) będzie bezatomową przestrzenią probabilistyczną. Wykazać, że ist-
nieje mierzalna funkcja f : X → [0, 1], taka że f [µ] = λ.
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Wskazówka: Wystarczy zbudować g : X → {0, 1}N, taką że g[µ] = ν, gdzie ν jest miarą
Haara na zbiorze Cantora. Wybrać dla każdego n rozłączne zbiory Aε ∈ Σ, ε ∈ {0, 1}n, tak
że µ(Aε) = 2−n i Aε⌢0 ∪ Aε⌢1 = Aε.
6.7.B Wykazać, że jeśli (X1,Σ1, µ1) i (X2,Σ2, µ2) są dwiema ośrodkowymi bezatomowy-
mi przestrzeniami probabilistycznymi, to odpowiadające im algebry Boole’a A1 i A2 są
izomorficzne w następującym sensie: istnieje zachowująca działania boolowskie bijekcja
g : A1 → A2, która jest izometrią A1, A2 jako przestrzeni metrycznych.
Wskazówka: Wybrać Aε ∈ Σ1, takie jak w problemie A oraz takie że rodzina S1 wszyst-
kich sum skończonych Aε, ε ∈ {0, 1}n, n ∈ N jest gęsta. Analogicznie wybrać taką rodzinę
Bε ∈ Σ2.
Określić g([Aε]) = [Bε] i przedłużyć g na S1 z zachowaniem działań; wtedy g jest izometrią
i przedłuża się na domknięcie dziedziny.

6.7.C Wykazać, że dla przestrzeni miarowych z poprzedniego problemu Lp(µ1) jest liniowo
izometryczne z Lp(µ2) (gdzie 1 ¬ p ¬ ∞).
Wskazówka: Określić odwzorowanie liniowe T : Lp(µ1) → Lp(µ2) najpierw na funk-
cjach prostych, korzystając z poprzedniego zadania. Wykorzystać fakt, że izometrię można
przedłużać na domknięcie dziedziny.

6.7.D (dla znających ultrafiltry). Niech F będzie dowolnym ultrafiltrem niegłównym na N.
Udowodnić, że zbiór Z ⊆ {0, 1}N, gdzie

Z = {χF : F ∈ F},
jest zbiorem niemierzalnym względem miary Haara.
Wskazówka: Taki zbiór jest zdarzeniem resztowym więc gdyby był mierzalny, to miałby
miare 0 bądź 1; rozważyć przesunięcie Z o element 1 (względem działania grupowego).

6.7.E Ile jest różnych miar (skończonych, σ–skończonych, dowolnych) na σ–ciele Bor(R)?
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