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ROZDZIAYL, 0

Wiadomosci wstepne

Young man, in mathematics you don’t un-
derstand things. You just get used to them.
John von Neumann

1. O czym i dla kogo jest ten tekst?

Niniejszy skrypt zawiera podstawowy wyktad z teorii miary i catki i obejmuje materiat,
ktory w Instytucie Matematycznym UWr jest trescig semestralnego wyktadu, noszacego
obecnie taka nazwe, jak tytul skryptu (poprzednio obowiazywala tradycyjna nazwa Funk-
cje rzeczywiste). Skrypt winien by¢ dostepny dla kazdego studenta II roku matematyki
badz informatyki — do zrozumienia wigkszosci zagadnien wystarcza dobra znajomosé ra-
chunku rézniczkowego i catkowego funkcji jednej zmiennej oraz teorii mnogosci w zakresie
podstawowym. W miejscach, gdzie potrzebna jest glebsza znajomos¢ zagadnien teoriom-
nogosciowych, czytelnik zostanie kazdorazowo ostrzezony. Skrypt pisany jest z mysla o
studentach, ktoérzy nie stuchali jeszcze wyktadu z topologii — niezbedne elementy topologii
przestrzeni euklidesowych beda wprowadzane w miare potrzeb.

Jest wiele ksiazek w jezyku angielskim i kilka po polsku, traktujacych o podstawach
teorii miary i catki; ponizej wymieniam jedynie te, do ktérych zagladatem w trakcie pisania
skryptu:

[1] P. Billingsley, Prawdopodobieristwo i miara, PWN, Warszawa (1987).

[2] P. Halmos, Measure theory, Springer, New York (1974).

[3] D.H. Fremlin, Measure theory vol. 1: The Irreducible minimum, Torres Fremlin, Col-
chester (2000).

[4] D.H. Fremlin, Measure theory vol. 2: Broad foundations, Torres Fremlin, Colchester
(2000).

[5] S. Lojasiewicz, Wstep do teorii funkcji rzeczywistych, PWN, Warszawa (1976).

Prezentowane w skrypcie podejécie do wprowadzenia miary i catki jest jak najbardziej
standardowe i unika eksperymentow formalnych. Dlatego wiele koncepcji zostalo wprost
zaczerpnietych z klasycznej ksigzki Halmosa, a wiele dowodow korzysta z eleganckiego po-
dejscia, zaprezentowanego przez podrecznik Billingsleya. Mam jednak nadzieje, ze ponizszy
wyktad, dzieki stosownemu wyborowi zagadnien i sposobowi prezentacji, bedzie przydatny
i, do pewnego stopnia, oryginalny. W moim przeswiadczeniu skrypt zawiera zagadnienia,
ktore winien dobrze opanowac¢ kazdy dobry student matematyki, niezaleznie od tego, jaka
bedzie droga jego specjalizacji na wyzszych latach studiow.
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Kazdy rozdziat konczy lista zadan oraz lista probleméw. Zadania maja stanowi¢ inte-
gralng czes¢ wyktadu, komentowaé twierdzenia, dostarczac¢ przyktadow, zachecaé¢ do prze-
prowadzania samodzielnych rozumowan. Problemy to zagadnienia, ktére albo (tylko chwilo-
wym) stopniem trudnosci, albo tez tematyka wykraczaja poza poziom podstawowy wykta-
du; w kazdym razie problemy mozna pominaé przy pierwszej lekturze. Niektore problemy
wymagaja znajomosci indukeji pozaskonczonej; w innych przypadkach rozréznienie pomie-
dzy problemem a zadaniem jest czysto umowne. Wiele zadan nalezy do klasyki tematu i
mozna je znalez¢ w cytowanych podrecznikach. Inne powstaty w wyniku moich wtasnych
doswiadczen z uczeniem studentéw matematyki we Wroctawiu badz zostaly zaczerpnicte z
internetu, w szczegolnosci z forum dyskusyjnego ASK AN ANALYST, ktore byto prowadzone
na nieistniejagcym juz portalu TOPOLOGY ATLAS.

2. Troche teorii mnogosci

Bedziemy najczesciej prowadzi¢ rozwazania, dotyczace podzbioréw jakies ustalonej prze-
strzeni X'; rodzine wszystkich podzbioréw zbioru X nazywamy zbiorem potegowym i ozna-
czamy zazwyczaj przez P(X). Oprécz zwyktych operacji AU B, AN B, A\ B, okre$lonych
dla A, B C X, mozemy méwié¢ o dopetnieniu A° = X \ A zbioru A. Przypomnijmy, ze
operacja roznicy symetrycznej zbioréw jest okreslona jako

AANB=(A\B)U(B\A)=(AUB)\ (ANDB).

Podstawowymi beda dla nas operacje mnogosciowe wykonywane na ciggach zbiorow.
Jesli dla kazdej liczby naturalnej n € N wybraliSmy pewien podzbiér A, przestrzeni X to
(A,), nazwiemy ciagiem podzbioréw X i dla takiego ciagu definiujemy przekréj M°2; A, i
sume U2, A, przez warunki

x € ﬂ A, wtedy i tylko wtedy gdy = € A,, dla kazdego n € N;

n=1

x € U A, wtedy i tylko wtedy gdy istnieje n € N takie ze x € A,.
n=1

PrzyKrAD 0.2.1 Rozwazajac podzbiory postaci (a,b) = {x € R : a < x < b} mozemy
napisac

VO =0, (\(=1/n1/m) = {0} UJ/mm) = 0.00)

co jest oczywiste, nieprawdaZ?H &

Oczywiscie umiejetnosé formalnego zapisania tego typu definicji za pomoca kwantyfi-
katoréw (oraz ich zrozumienia) jest jak najbardziej pozadana, ale warto zwréci¢ uwage na
to, ze Scistos¢ i precyzja matematyczna nie ktoci sie z uzyciem jezyka potocznego.

Loczywistosé jest kategoria psychologiczna; w praktyce matematycznej umawiamy sie, ze kazdy fakt

oczywisty ma swéj dowdd i bedzie okazany na zadanie oponenta badz egzaminatora
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LEMAT 0.2.2. Dla dowolnego ciggu zbiorow A, w ustalonej przestrzeni X zachodzg prawa
de Morgana

Dowdd. Aby udowodni¢ wzér (i) zauwazmy, ze x € (oo, A,)¢ wtedy i tylko wtedy gdy «
nie nalezy do zbioru N°2; A, co jest réwnowazne temu, ze x ¢ Ay dla pewnego k, a to jest
tozsame ze stwierdzeniem, ze x € Up~; AS.

Wzor (ii) mozna wyprowadzi¢ z (i) 1 oczywistej zaleznosci (A°)¢ = A:

as-[(0%)] - O] - (9a)

Podamy teraz pewne definicje i oznaczenia, ktére beda bardzo przydatne w dalszym
ciagu. Niech (4,), bedzie ciagiem zbioréw w ustalonej przestrzeni X. Taki ciag nazywamy
rosngcym jesli A, C A,4, dla kazdego n; analogicznie ciag jest malejgcy gdy A, 2 A1
dla wszystkich n. Bedziemy pisac

A

o0
A, T A aby zaznaczy¢, ze ciag (A, )n jest rosnacy i A = U A,

n=1

A, | A aby zaznaczy¢, ze ciag (Ay), jest malejacy i A = () A,.
n=1

Tego typu zbieznosé¢ zbioréw moze by¢ uogdlniona w sposdb nastepujacy.

DEFINICJA 0.2.3. Dla ciggu zbioréw (A,), zbiory

limsup A,, = ﬂ U Ag, liminf A, = U ﬂ Apg,
n—00 n=1k=n e n=1k=n
nazywamy, odpowiednio, granica gérng i granica dolna ciggu (Ay)n-
Moéwimy, ze cigg (A,), jest zbiezny do zbioru A, piszgc A = lim, A, gdy
A=limsup A, = ligicgf A,.
Innym waznym pojeciem jest przeliczalno$é¢ zbioréw. Przypomnijmy, ze dwa zbiory X i
Y sa réwnoliczne jezeli istnieje bijekcja f : X — Y (czyli funkcja wzajemnie jednoznaczna),
odwzorowujaca X na Y. Zbior X nazywamy przeliczalnym jezeli X jest skonczony lub tez
X jest rownoliczny ze zbiorem liczb naturalnych N. Inaczej mowigc zbior jest przeliczal-
ny jezeli jest rownoliczny z pewnym podzbiorem N. Najbardziej intuicyjnym wyrazeniem
przeliczalnosci bedzie nastepujaca uwaga: niepusty zbior przeliczalny X mozna zapisa¢ w
postaci X = {x,, : n € N} (wyliczy¢ wszystkie jego elementy; tutaj nie zaktadamy, ze x,, sa
parami rézne). Przypomnijmy sobie nastepujace wlasnosci zbioréw przeliczalnych (dowdd
ponizej jest ledwie naszkicowany).

TWIERDZENIE 0.2.4.
(i) Zbior N x N jest przeliczalny.
(i1) Jesli zbiory X @'Y sq przeliczalne to zbiory X UY i X XY tez sq przeliczalne.
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(i11) Jesli zbiory X1, Xo, ... sq przeliczalne to zbior X = U2, X, jest przeliczalngﬂ
(iv) Zbior liczb wymiernych Q jest przeliczalny.

(v) Zbior {(p,q) : p < q,p,q € Q} (wszystkich przedzialow na prostej o koticach wy-
miernych) jest przeliczalny.

(vi) Ani zbior liczb rzeczywistych R, ani tez Zaden jego niepusty przedzial (a,b) C R nie
jest przeliczalny.

Dowéd. Dowdd (i) wynika stad, ze ciag

(1,1),(1,2), (2,1), (1,3), (2,2), (3, 1), ...

w ktoérym wyliczamy wszystkie pary o sumie 2, nastepnie wszystkie pary o sumie 3 itd.,
zawiera wszystkie elementy zbioru N x N.

W czedei (ii) dowdd przeliczalnosei X U'Y zostawiamy czytelnikowi, natomiast przeli-
czalno$é X x Y wynika tatwo z (i).

W (iii) na mocy zalozenia mozemy napisa¢ X,, = {a} : k € N} dla kazdego n. W ten
sposéb otrzymamy zbior X = {z} : n,k € N} ponumerowany za pomoca N x N, a to na
mocy (i) uzasadnia jego przeliczalnosé.

Przeliczalno$é Q wynika tatwo z (i) i pierwszej czesei (ii).

Z wielu réznych sposobéw wykazania nieprzeliczalno$ci R wspomnimy nastepujacy:
niech z,, bedzie dowolnym ciagiem liczb rzeczywistych; wykazemy, ze R # {x, : n € N}.
Wybierzmy dowolne liczby a; < by, takie ze przedzial [aq,b;] nie zawiera liczby . Za-
uwazmy, ze istnieja liczby ag, by takie ze a; < as < by < by i x3 ¢ [ag,bs]. Postepujac
analogicznie zdefiniujemy zstepujacy ciag niezdegenerowanych przedziatéw [a,, b,] tak ze
T1,%2, ..., Ty & [an,by]. Rzecz w tym, ze istnieje liczba y € N°2[an, by] — na mocy aksjo-
matu Dedekinda mozna przyja¢ y = sup,, a,,. Ostatecznie y # x,, dla kazdego n i to konczy
dowdd. Latwo ten argument zmodyfikowaé, aby pokazaé¢ ze zaden niepusty przedziat (a, b)
na prostej nie jest przeliczalny. A

Tradycyjnie moc zbioru R oznaczana jest przez ¢ i nosi nazwe continuum. W teorii
mnogosci dowodzi sie, ze rodzina P(N) wszystkich podzbior6w N jest réwnoliczna z R,
czyli ze P(N) tez jest mocy c.

3. Odrobina topologii

W tym miejscu wprowadzimy podstawowe pojecia topologiczne na prostej rzeczywiste;j.
Przypomnijmy, ze o zbiorze R, oprocz zwyktych aksjomatéw opisujacych wtasnosci dziatan
+ 1 - oraz wlasnosci porzadku, zaktadamy nastepujacy aksjomat Dedekinda: Kazdy niepusty
i ograniczony z gory zbior A C R ma najmniejsze ograniczenie gorne (ktére oznaczamy
sup A).

DEFINICIA 0.3.1. Zbior U C R jest otwarty jeZeli dla kazdego x € U istnieje liczba 6, taka
ze (v —0,x4+0) CU.

Zbior F C R nazywamy domknietym jesli zbior R\ F' jest otwarty, to znaczy jesli dla
kazdego x ¢ F istnieje § > 0, taka ze (x — §,x + ) N F = 0.

2dla wielbicieli teorii ZF: ten fakt wymaga pewnika wyboru
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PRZYKEAD 0.3.2 Jest rzecza oczywisty, ale godng odnotowania, ze zbiory () i R sg otwarte,
a wiec sa takze domkniete. Dowolny przedzial postaci (a,b) jest otwartym podzbiorem
prostej; istotnie, jesli z € (a,b) to wystarczy przyja¢ 6 = min{z — a,b — x}. Z podobnych
powodéw otwartymi sa potproste postaci (a,00), (—o0, b).

Przedzial postaci [a, b] jest domknietym zbiorem w sensie powyzszej definicji, dlatego
ze R\ [a,b] = (—o0,a) U (b,00) jest zbiorem otwartym. Tym samym terminy ‘otwarty’ i
‘domkniety’ rozszerzaja potoczne okreslenia stosowane dla przedziatow.

Przedzial postaci [a,b) dla a < b nie jest ani otwarty, jako ze nie spelia definicji
otwartoéci dla z = a, ani tez domkniety.

Nietrudno wywnioskowaé z definicji, ze zbiér jest otwarty wtedy i tylko wtedy gdy jest
suma pewnej rodziny przedziatow. W istocie mamy nastepujace

TWIERDZENIE 0.3.3. Kazdy niepusty zbior otwarty U C R jest postaci

U= U (@n, by)
n=1

dla pewnych liczb wymiernych a,, by,.

Dowdd. Dla kazdego x € U istnieje 6 > 0, taka ze (z — 9,2 +9) C U. Korzystajac z gestosci
zbioru Q mozemy znalezé a,, b, € Q, takie ze v — § < a, < © < b, < x + 0, a wtedy
zr € (ag,b,) € U. W ten sposéb zdefiniowalismy rodzine przedziatéw {(a,,b,) : © € U}
o koficach wymiernych. Rodzina ta jest przeliczalna na mocy Twierdzenia [0.2.4](v); jesli
(Pn, qn) jest numeracja wszystkich elementéw tej rodziny to otrzymamy U = US> (P, Gn),
poniewaz dla dowolnego x € U mamy x € (ay, b,) = (pn, ¢,) dla pewnego n. A

Nieco inna metoda mozna wykazaé¢ nastepujaca wersje Twierdzenia[0.3.3} kazdy otwarty
podzbidr R jest przeliczalng sumg przedzialéw parami rozlgeznych, patrz Zadanie [4][T1]

Na koniec wspomnimy jeszcze o specjalnej wtasnosci odcinkéw domknietych, ktéra w
topologii jest nazywana zwartoscig.

TWIERDZENIE 0.3.4. Jezeli [a,b] C Us",(an,b,) to istnieje n € N, takie Ze [a,b] C
im1(ai, by).

Dowéd. Niech S bedzie zbiorem tych liczb s € [a, b], dla ktérych odcinek [a, s] pokrywa sie
skoniczona iloscig przedzialow (a,, b,). Wtedy S # () poniewaz a € S. Zbiér S jako niepusty
i ograniczony z gory podzbiér prostej ma kres gérny, niech ¢ = sup S. Wtedy t € [a, b] wiec
t € (a;,b;) dla pewnego i. Poniewaz a; < t wiec istnieje s € S, taki ze a; < s < t. Oznacza
to, ze odcinek [a, s] pokrywa sie skonczona iloscig przedzialow (a,,b,), a zatem réowniez
odcinek [a,t] ma taka sama wlasno$¢é — wystarczy do poprzedniego pokrycia skonczonego
dotaczy¢ (a;, b;). W ten sposob sprawdzilismy, ze t € S. Gdyby t < b to biorac s takie ze
t < s < b; otrzymaliby$Smy s € S z powodu jak wyzej, a to jest sprzeczne z definicjg kresu
gornego. Tym samym ¢ = b i to wlasnie nalezato wykazac¢. A

WNIOSEK 0.3.5. Niech F' bedzie domknietym i ograniczonym podzbiorem prostej. Jezeli
F C U2 (ay,by,) to istnieje n € N, takie ze F' C U (a;, b;).

Dowdd. Mamy F C [a,b] dla pewnych a, b, jako ze F' jest zbiorem ograniczonym. Ponadto
R\ F jest zbiorem otwartym wiec R\ F' = U,,(pn, ¢») dla pewnych (p,, ¢,), patrz Twierdzenie
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[0.3.3] Teraz wystarczy zastosowa¢ Twierdzenie do pokrycia odcinka [a, b] odcinkami
(A, bn) 1 (Pns Gn)- A

Moéwige w jezyku topologii kazdy domkniety i ograniczony podzbiér R jest zwarty.
Zwarto$¢ mozna wystowié tez w jezyku ciagéw — patrz Problem [5]D.
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4. Zadania

0.4.1 Obliczy¢
(i) Mz (0,1/n); MRz (=1/n,1/n); UpZy[1/n, n);
(i3) Moy (n,n + 3); UpZy(n,n + 3);

(ZZZ) ﬂfzozl(na 2”)7 UZO:1 (TL - TL2, 1/“)

0.4.2 Dla ciagéw zbioréow A, z poprzedniego zadania obliczy¢ limsup,, A, i liminf, A,,.

0.4.3 Zapisa¢ przedzial domkniety postaci [a, b] C R jako przekrdj ciagu przedziatéw otwar-
tych. Podobnie zapisaé¢ przedzial otwarty (a,b) jako sume przedziatéw domknietych.

0.4.4 Wykazaé¢, ze w powyzszym zadaniu nie mozna zamieni¢ miejscami okreslen ‘otwarty’
i ‘domkniety’.
0.4.5 Zapisa¢ trojkat T = {(z,y) € R? : 0 < z < 1,0 < y < z} jako sume prostoka-

tow. Zauwazy¢, ze wystarczy wysumowaé przeliczalnie wiele prostokatow, aby taki trojkat
uzyskac.

0.4.6 Zauwazy¢, ze x € limsup,, A, wtedy i tylko wtedy gdy « € A,, dla nieskonczenie wielu
n; podobnie x € liminf, A, <= x € A,, dla prawie wszystkich n.

0.4.7 Uzasadni¢ nastepujace zaleznosci
(1) o2y An Climinf, A, C limsup,, 4, C U2, A;
(1) (liminf, A,)¢ = limsup,, AS, (limsup,, A,,)¢ = liminf,, AS;
(111) liminf, (A, N B,) = liminf,, A, Nliminf, B,;
(iv) liminf, (A, U B,) D liminf, A, Uliminf, B, i réwno$¢ na ogét nie zachodzi.
Zapisaé zaleznosci dla granicy gérnej lim sup, analogiczne do (iii)—(iv).

0.4.8 Sprawdzi¢, ze dla danego ciggu zbioréw A, przyjmujac By = Ay, B, = A, \ Uj<, 4;
dla n > 1, otrzymujemy U,;>; A, = U~ By, przy czym zbiory B, sa parami roztaczne.
0.4.9 Udowodnié, ze lim, A, = A <= lim, (A, A A) = 0.

0.4.10 Wykaza¢, ze kazda rodzina parami roztacznych przedziatéw na prostej jest przeliczal-

na.

0.4.11 Niech U C R bedzie zbiorem otwartym. Dla z,y € U definiujemy x ~ y jesli istnieje
przedzial (a,b), taki ze x,y € (a,b) C U. Sprawdzié, ze ~ jest relacja réwnowaznosci, a jej
klasy abstrakcji sa przedziatami otwartymi. Wywnioskowa¢ stad i z zadania poprzedniego,
ze kazdy otwarty podzbiér prostej jest suma ciggu parami roztacznych przedziatow.

0.4.12 Sprawdzi¢, ze przekrdj skonczonej ilosci zbioréow otwartych jest otwarty.

5. Problemy

0.5.A Udowodni¢ nastepujacy “warunek Cauchy’ego”: cigg zbioréw A, jest zbiezny wte-
dy i tylko wtedy gdy dla dowolnych ciggéw liczb naturalnych (n;);, (k;); rozbieznych do
nieskoriczonosci mamy N2, (A, A Ag,) = 0.

0.5.B Udowodni¢, ze dowolny ciag zbioréw A, € P(N) ma podciag zbiezny.
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0.5.C Podaé przyktad ciagu A, € P(R), ktéry nie ma podciagu zbieznego. UWAGA: moze
by¢ trudne; lepiej zastapi¢ R innym zbiorem tej samej mocy.

0.5.D Udowodni¢, ze jesli F' jest domknietym i ograniczonym podzbiorem R to dla kazdego
cilagu z,, € F' istnieje podciag tego ciagu zbiezny do pewnego = € F'.
WSKAZOWKA: Aby x € F byl granicg pewnego podciggu x,, potrzeba i wystarcza by dla
kazdego § > 0 w (x—0, x+0) znajdowalo sie nieskonczenie wiele wyrazéw ciagu x,,. Przyjac,
ze zaden x € I’ nie ma tej wlasnosci i zastosowaé¢ Twierdzenie [0.3.5]

0.5.E Udowodnié¢, ze moc zbioru P(N) jest rowna mocy zbioru R.



ROZDZIAL 1

Rodziny zbioréw i miary

TQUTWY XPNUQTWY UnNTpwy avTlpwrwo
Czlowiek jest miarg wszechrzeczy (istniejgcych,
Ze istniejq 1 nieistniejgcych, Ze nie istniejq).
Protagoras z Abdery
W rozdziale tym wprowadzimy podstawowe pojecia teorii miary, a nastepnie udowod-
nimy twierdzenie, pozwalajace konstruowa¢ miary z funkcji zbioru okreslonych na pier-
Scieniach. Konstrukcja ta bedzie zilustrowana wprowadzeniem miary Lebesgue’a na prostej
rzeczywistej. Nowoczesna teoria miary i calki zaczeta si¢ od prac Henri Lebesgue’a na po-
czatku dwudziestego wieku i dlatego jego nazwisko bedzie tu odmieniane przez wszystkie
przypadki.

1. Rodziny zbioréw

W tym podrozdziale, jak i w wielu nastepnych, bedziemy rozwazaé¢ rodziny podzbioréw
ustalonej niepustej przestrzeni X; przypomnijmy, ze P(X) oznacza rodzine wszystkich
podzbiorow X.

DEFINICJA 1.1.1. Méwimy, Ze rodzina R C P(X) jest pierscieniem zbioréw jezeli
(i) D e R;
(i1) jezeli A,B € R to AUB, A\ B€R.

Rodzina R jest ciatem zbioréw jezeli R jest pierscieniem zbiorow oraz X € R.

Powyzsza terminologia nawiazuje nieco do pojeé algebraicznych (pierScienie i ciata w
algebrze to struktury, w ktorych wykonalne sa pewne dziatania) — ta analogia jest nieco
powierzchowna (ale patrz Zadanie . Poniewaz nie bedzie to prowadzi¢ do nieporozu-
mien, w dalszym ciagu bedziemy po prostu méwic, ze dana rodzina R jest pierécieniem lub
ciatem.

Zauwazmy, ze w pierécieniu R mozemy wykonywaé operacje réznicy symetrycznej i
przekroju; istotnie, jezeli A,B € R to A A B € R, co wynika bezposrednio z aksjomatu
(ii) w Definicji [1.1.1} ponadto AN B = A\ (A\ B) € R. Zauwazmy tez, ze na to, aby
rodzina R byta ciatem potrzeba i wystarcza zeby () € R oraz AU B, A° € R dla dowolnych
A, B € R. Dostateczno$é¢ tych warunkéw wynika z tozsamosci X = ()° oraz

A\B=ANB*=(A°UB)".

Jezeli dana rodzina zbioréw R jest zamknieta na sumy dwoch swoich elementéw to prosta
indukcja pokaze, ze U, A; € R dla dowolnego n i A; € R. Mozemy wiec powiedzie¢, ze
cialo zbiorow to rodzina zamknigta na wszystkie skoniczone operacje mnogosciowe.
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DEFINICJA 1.1.2. Méwimy, Ze rodzina R C P(X) jest o—pierécieniem zbioréw jezeli R jest
pierscieniem zamknietym na przeliczalne sumy, to znaczy spetniajgcym warunek ;2 A, €
R dla dowolnego ciggu A, € R.

Jezeli R jest o—pierscieniem 1 X € R to R nazywamy o—ciatem.

Zauwazmy, ze w o—ciele R wykonywalne sa wszystkie przeliczalne operacje mnogoscio-
we, na przyktad jezeli A, € R to N2, A, € R na mocy Lematu [0.2.2] oraz

limsup A, liminf A, € R,
n n
jako ze rodzina R jest zamknieta na przeliczalne sumy i przekroje.

PRZYKEAD 1.1.3 Rodzina R = {{} jest oczywiscie pierécieniem, a rodzina A = {), X } jest
najmniejszym ciatem podzbioréw X. Zauwazmy, ze zbiér potegowy P(X) jest o—ciatem.

Jesli oznaczymy przez R rodzine wszystkich skonczonych podzbioréw nieskonczonej
przestrzeni X to R jest pierScieniem, ale nie jest cialem. Zauwazmy tez, ze taka rodzina
nie jest o—pierscieniem bo, skoro X jest nieskonczonym zbiorem, to w X mozna wyr6zni¢
ciag z, parami réznych jego elementéow. Przyjmujac A = {x, : n € N} oraz A, = {x,}
mamy A, € R ale A ¢ R.

Analogicznie w nieprzeliczalnej przestrzeni X rodzina C wszystkich podzbioréw przeli-
czalnych stanowi naturalny przyktad o—pierscienia, ktory nie jest o—ciatem. <

Podamy teraz mniej banalny i wazny przyktad pierscienia podzbiorow R.

LEMAT 1.1.4. Rodzina R tych zbiorow A C R, ktére mozna, dla pewnychn € N, a;,b; € R,
zapisaé w postact

(x) A= Q[aiabi);

jest pierScieniem podzbiorow prostej rzeczywistej. Kazdy A € R ma takie przedstawienie
(*), w ktérym odcinki [a;, b;) sq parami rozlgczne.

Dowdd. Mamy () = [0,0) € R; z samej postaci formuly (*) wynika, ze rodzina R jest za-
mknieta na skonczone sumy. Zauwazmy, ze zbior [a, b)\ [¢, d) jest albo pusty, albo odcinkiem
postaci [z,y), albo tez, w przypadku gdy a < ¢ < d < b, jest zbiorem [a,c) U [d,b) € R.
Korzystajac z tej uwagi tatwo jest przez indukcje sprawdzié, ze [a,b) \ A € R dla zbioru A
jak w (*). Stad z kolei wynika, ze R jest zamknieta na odejmowanie zbiorow.

Sprawdzenie koncowego stwierdzenia pozostawiamy czytelnikowi (patrz tez Zadanie
19). a

Na og6t trudno jest opisywaé w konkretny sposéb rodziny ktoére sg zamkniete na przeli-
czalne operacje — zamiast tego wygodniej jest méwi¢ o generowaniu danego o—pierscienia
lub o—ciata przez jakas wyrdzniona rodzing zbiorow. Zauwazmy, ze dla dowolnej rodziny
F C P(X) istnieje najmniejszy pierscien Ry zawierajacy F; Ro jest po prostu przekrojem
wszystkich mozliwych pierécieni R 2O F (por. Zadanie [10[3). Ta uwaga odnosi sie tez do
cial i o—cial.
DEFINICJA 1.1.5. Dla dowolnej rodziny F C P(X) przyjmiemy oznaczenia

r(F) — pierscieni generowany przez rodzing F (Ring);
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s(F) — o—pierscieni generowany przez rodzine F (Sigma ring);
a(F) — cialo generowane przez rodzing F (Algebra);
o(F) — o-cialo generowane przez rodzing F (o-algebra).

W nawiasach podano wyjasnienie wybranych liter — w terminologii angielskiej czesto
cialo = field nazywa sie tez algebra = algebra. Oznaczenia te beda stosowane tylko w
biezacym rozdziale. Wyjatkiem jest oznaczenie o(-), ktére warto zapamieta¢ bo jego rola
jest duzo powazniejsza.

Zauwazmy, ze pierscien przedzialow R z Lematu jest generowany przez rodzine
F ={[a,b) : a < b}, natomiast o-pierscien zbioréw przeliczalnych z Przyktadu [1|jest gene-
rowany przez rodzine wszystkich singletonéow {z} dla z € X (inne przyklady generowania
znajduja sie w zadaniach). Generowanie pierécieni czy cial mozna poréwnaé do sytuacji, gdy
w danej przestrzeni liniowej mowimy o podprzestrzeni generowanej przez wybrany uktad
wektoréw lub w ustalonej grupie — o podgrupie generowanej przez pewien jej podzbior.

DEFINICJA 1.1.6. Najymniejsze o-ciato zawierajgce rodzine U wszystkich otwartych pod-
zbioréw R oznaczamy Bor(R) = o(U) i nazywamy o-cialem zbioréw borelowskich.

Powyzsza definicja uogdlnia sie w oczywisty sposob na inne przestrzenie euklidesowe
oraz przestrzenie metryczne. W przypadku prostej rzeczywistej warto odnotowac bardziej
“konkretne” rodziny generatoréw zbioréw borelowskich — patrz lemat ponizej oraz Zadanie

O

LEMAT 1.1.7. Niech F bedzie rodzing przedzialow postaci [p,q) gdzie p,q € Q. Wtedy
o(F) = Bor(R).

Dowdd. Poniewaz [p,q) = N0, (p — 1/n,q) wiec [p,q), jako przekrdj przeliczalnie wielu
zbioréw otwartych, jest elementem Bor(R). Stad F C Bor(R) i tym samym o(F) C
Bor(R).

Z drugiej strony dla dowolnych a < b mozemy napisaé¢ (a,b) = U2, [pn, qn) € o(F),
gdzie p,,q, sa odpowiednio dobranymi ciggami liczb wymiernych. Stad i z Twierdzenia
wynika, ze dowolny zbiér otwarty U jest elementem o(F), a zatem Bor(R) C o(F).
A

O zbiorze borelowskim B € Bor(R) mozna mysleé¢ jako o takim zbiorze, ktéry mozna
zapisa¢ za pomoca przedzialow oraz przeliczalnych operacji mnogosciowych. Méwiac po-
gladowo kazdy zbidr, ktory “mozna zapisa¢ wzorem” jest borelowski i w znacznej czesci
rozwazah matematycznych wystepuja tylko zbiory borelowskie. W istocie wskazanie zbioru
spoza Bor(R), a raczej udowodnienie, ze istnieja nieborelowskie podzbiory prostej, wymaga
pewnego wysitku — patrz Problem [I1]C.

2. Addytywne funkcje zbioru

Dla ustalonej rodziny R funkcje f : R — R nazywamy funkcja zbioru (aby wyraznie
zaznaczy¢, ze argumenty tej funkcji maja inna nature niz zmienne rzeczywiste). Tradycyjnie
funkcje zbioru oznaczane sg literami alfabetu greckiego. Naturalnie jest zaktadacd, ze funkcja
zbioru moze takze przyjmowacé wartos¢ oo, czyli rozwazaé funkcje zbioru

R — R =R, U {oo} = [0, oc];
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o symbolu nieskonczonosci zaktadamy na razie tylko tyle, ze * < o0 i x + o0 = oo dla
z € R.

DEFINICIA 1.2.1. Niech R C P(X) bedzie pierscieniem zbioréw. Funkcje p: R — [0, 0]
nazywamy addytywna funkcja zbioru (albo miara skonczenie addytywna) jezeli

(i) p(0) =0,
(ii) jesli A,B€R i ANB =10 to n(AU B) = u(A) + u(B).

Zauwazmy, ze jesli istnieje A € R, dla ktérego pu(A) < oo to
H(A) = B(AUB) = p(A) + (D), wiee u(0) = 0.

Innymi stowy warunek (i) w definicji jest potrzebny tylko po to, aby wykluczyé¢ przypadek
funkcji stale réownej co. Warunek skoriczonej addytywnosci (ii) ma nastepujace konsekwen-
cje.
LEMAT 1.2.2. Niech p bedzie addytywng funkcjg na pierscieniu R i niech A, B, A; € R.
(a) Jezeli A C B to u(A) < u(B).
(b) Jezeli A C B i u(A) < oo to u(B\ A) = pu(B) — p(A).
(c) Jezeli zbiory Ay, ..., A, sq parami rozlgezne to (Ui, Ai) = S0y w(A;).

Dowéd. Poniewaz B = AU (B \ A) dla zbioréw A C B, wiec u(B) = p(A) + (B \ A).
Stad wynika (a), jako ze (B \ A) > 0 oraz (b).
Czesé (c) dowodzi sie przez tatwa indukcje. A

DEFINICIA 1.2.3. Jesli p jest addytywng funkcjg na piercieniu R to mowimy Ze p jest
przeliczalnie addytywng funkcjg zbioru, jezeli dla dowolnych R € R @ parami roztgcznych
A, € R, takich ze R =\J;> A, zachodzi wzor

(G ) = S

W powyzszej definicji musimy zatozy¢, ze nieskonczona suma zbioréw jest elementem R,
jako ze rodzina R jest z zalozenia jedynie pierscieniem. Odnotujmy, ze warunek przeliczalne;
addytywnosci z tej definicji moze oznaczaé zaréwno, ze szereg > o0 iu(A,) jest zbiezny
do wartosci po lewej stronie, jak i ze szereg jest rozblezny i miara zbioru U2, A, jest
nieskonczona.

Definicja przeliczalnej addytywnosci jest dostosowana do potrzeb Twierdzenia |1.4.2
ponizej. Naszym docelowym obiektem badan bedzie miara, czyli przeliczalnie addytywna
funkcja zbioru okreslona na o—ciele.

LEMAT 1.2.4. Jesli u jest przeliczalnie addytywng funkcjg na pierscieniu R to dla R € R
© dowolnego ciggu A, € R, takich ze R = ;> A, zachodzi nieréwnos$é

(G4)< S

Dowdéd. Przyjmijmy B; = A; oraz

<n
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dla n > 1. Wtedy zbiory B, sa parami roztaczne, B, C A, oraz U, B, = U, A, = R wiec
na mocy Lematu [1.2.2)a)

p(R) = pu(By) <Y p(Ay).
A

Zauwazmy, ze dla funkcji addytywnej p na R i zbioru R € R, ktory jest suma parami
roztacznego ciggu zbiorow A, € R, dla kazdego n zachodzi nier6wnosé

u(R) > M(in) = zn;,u(Ai)’

co implikuje pu(R) > Y02, u(A,). Méwiac obrazowo: funkcja addytywna jest przeliczalnie
nadaddytywna. Jak zobaczymy na przyktadach przeliczalna addytywnos¢ jest warunkiem
istotnie mocniejszym. Najpierw jednak przekonamy sie, ze przeliczalng addytywnos$é mozna
wyrazi¢ na roézne sposoby.

TWIERDZENIE 1.2.5. Addytywna funkcji zbioru p na pierscieniu R jest przeliczanie ad-
dytywna wtedy 1 tylko wtedy gdy jest cigglta z dotu, to znaczy dla kazdego A € R i ciggu
A, € R, takiego ze A, T A, zachodzi wzor lim, u(A,) = u(A).

Dowdéd. Warunek ciagtosci z dotu jest konieczny: Dla rosnacego ciagu zbiorow A, T A
potézmy By = Ay oraz B, = A, \ A,—1 gdy n > 1. Wtedy A = U,, By, przy czym zbiory
B,, sa parami roztaczne, a zatem

)= (U 8] = X utB0) = tign 3 () = g ().

Rozwazmy teraz parami roztaczne zbiory A4, 1 A = U, A, € R. Niech S,, = U, A;. Wtedy
Sp T A i warunek ciagtosci pociaga za soba

p(A) =lim p(Sy) = lim(u(Ar) + .. p(Ay)) = D p(Ay),
a wiec przeliczalng addytywnosc¢. A

TWIERDZENIE 1.2.6. Dla addytywnej funkcji zbioru p na pierscieniu R, przyjmujgcej tylko
wartosci skonczone nastepujgce warunki sqg réwnowazne (gdzie zawsze A,, A € R)

(i) p jest przeliczalnie addytywna;

(ii) p jest ciggla z gory, to znaczy lim, u(A,) = p(A) jezeli A, | A;

(111) w jest ciggla z gory na zbiorze 0, czyli lim,, u(A,) = 0 jezeli A, | 0.
Dowdéd. (i) = (ii) Tutaj przyjmujemy B, = A; \ A,; wtedy B, T A; \ A wiec, na mocy
Twierdzenia [1.2.5]

lim pu(Ar\ Ap) =limp(By) = p(Ar \ A) = p(Ar) — p(A),

co implikuje lim,, u(A,) = pu(A) po odjeciu p(A;) stronami.

Implikacja (i1) = (ii7) jest oczywista po wstawieniu A = ().

(73i) = (i) Rozwazmy parami roztaczne zbiory A, i A = U,, An. Niech S,, = U, A;.
Wtedy S, T A i

(A) = p(Ar) + .. p(An) + (AN Syp).
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Poniewaz lim,, u(A \ S,) = 0, powyzsze pocigga zbieznosé¢ szeregu do u(A). A

PRZYKLAD 1.2.7 Niech A bedzie cialem generowanym przez wszystkie skonczone podzbio-
ry X, gdzie X jest nieskonczony. Wtedy A € A wtedy i tylko wtedy gdy

(t) A jest skonczony lub X \ A jest skonczony.

Istotnie, kazdy zbiér o whasnosci (1) nalezy do A, jako ze taki zbidr tatwo zapisaé za pomoca
singletonéw i operacji sumy i dopelnienia. Z drugiej strony rodzina zbioréw o whasnoscei (f)
jest zamknieta na sumy skonczone i dopehienia, a wiec rodzina ta jest ciatem.

Zdefiniujmy funkcje p na A, gdzie u(A) = 0 gdy A jest skoniczony i pu(A) = 1 w
przeciwnym przypadku. Wtedy p jest skonczenie addytywna na A. Istotnie jesli A, B € A
sa roztaczne to u(AU B) = u(A) 4+ u(B), poniewaz albo oba zbiory sa skoriczone (i po obu
stronach wzoru jest 0), albo doktadnie jeden zbidr jest nieskonczony i mamy réwnosé 1=1;
(zauwazmy, ze jesli obydwa zbiory A, B € A sa nieskoriczone to AN B # (). Jesli X jest
nieskoriczonym zbiorem przeliczalnym to mozemy napisa¢ X = UJ,{z,} dla pewnego ciagu
x, 1 dlatego p nie jest przeliczalnie addytywna w tym przypadku.

Niech teraz ¥ bedzie o—cialem generowanym przez wszystkie przeliczalne podzbiory X,
gdzie sam X jest nieprzeliczalny. Mozemy analogicznie sprawdzié¢, ze A € ¥ wtedy i tylko
wtedy gdy albo zbiér A, albo jego dopelnienie X \ A jest przeliczalne. Ktadac p(A) = 0 gdy
A jest przeliczalny i u(A) = 1 w przeciwnym przypadku, okreslamy miare na X. Istotnie,
jesli A, € 3 sa parami roztaczne i wszystkie zbiory A, sa przeliczalne to takze zbior
A =U,, A, jest przeliczalny i dlatego

0= p(A) =) u(A,)=0.

Jesli Ay, jest nieprzeliczalny dla pewnego k to zbiory A,, C X \ Ay dla n # k sa przeliczalne
i po obu stronach wzoru powyzej mamy 1.

Na o—ciele P(X) mozna zdefiniowaé miare w nastepujacy prosty sposéb: ustalmy zo € X
i przyjmijmy u(A) =0 gdy 2o ¢ Aipu(A) =1dla zy € A. Sprawdzenie przeliczalnej addy-
tywnosci nie powinno przedstawiaé¢ trudnosci (por. Zadanie .. Miare taka nazywamy
deltqg Diraca i oznaczamy p = 0,,.

3. Miara Lebesgue’a 1

Przyktad 2l podaje proste, wrecz banalne, przyktady miar. W tej czesci zdefiniujemy na-
turalng funkcje zbioru A na pierscieniu R, generowanym przez przedziaty postaci |a, b), por.
Przyktad[[.1.4] Funkcja A ma za zadanie mierzy¢ “dlugosé” zbioréw na prostej rzeczywiste;
i dlatego przyjmujemy A([a,b)) = b — a dla a < b. Dla zbioru R € R postaci

(*) R=Jlai,b;), gdzie a; <b;,la;,b;)Na;,b;)=0dlai+# j,definujemy
i=1

(xx) A(R) = Z(bz — a;).

=1
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W dalszym ciggu sprawdzimy, ze A jest dobrze okreslona, przeliczalnie addytywna funkcja
zbioru na pierécieniu R. Ponizej przyjmiemy dla uproszczenia konwencje, ze dla kazdego
rozwazanego przedzialu [a, b) milczaco zaktadamy, ze [a,b) # 0, czyli ze a < b.

LEMAT 1.3.1. JeZeli [a,,by,) jest skoriczonym lub nieskorniczonym ciggiem parami rozlgcz-
nych przedziatéw zawartych w [a,b) to

> (bp —an) <b—a.

Dowdd. Dowdd dla ciagu skoniczonego [aq,b1), ..., [an,b,) mozna przeprowadzié przez in-
dukcje: przyjmijmy, ze b, = max(by,...,b,). Wtedy b; < a,, dla i < n wiec [a;,b;) C [a,a,)
dla i < n i dlatego, na mocy zatozenia indukecyjnego, >, (b; — a;) < a,, — a. Teraz

> (b —ai) < (ap—a)+ (by —a,) =b, —a < b—a.

<n
W przypadku nieskoficzonego ciagu [a,, b,) mamy >,y (bp — a,) < (b— a) dla kazdego N
wiec, przechodzac z N do nieskonczonosci, otrzymujemy Y, (b, — a,) < (b —a). A

LEMAT 1.3.2. Jezeli [ay,b,) jest skoriczonym lub nieskonczonym ciggiem przedziatow i

[a’vb) g Un[aTZ7bn) tO
b—a <)) (by—ay).

Dowdd. (1) Przypadek skoficzony dowodzimy znowu przez indukeje: niech [a, b) € U;c,,[as, b;).
Mozemy bez zmniejszenia ogblnosci zatozy¢, ze b € [a,, by, ); wtedy [a, a,) C Ujcnlai, b;) wiec
an, —a < Yicn(bi — a;) z zalozenia indukeyjnego, i

b—a<bn—an+an—a<2(bi—ai).

<n

(2) Zauwazmy, ze przypadek nieskoniczony nie redukuje sie do skonczonego w oczywisty
sposéb i dlatego w rozumowaniu wykorzystamy Twierdzenie [0.3.4] Ustalmy ¢ > 0; skoro
[a,b) C Uylan,bn) to

la,b—¢] C J(an — 27", by),
wiec na mocy dla pewnego N zachodzi [a,b — €] C U, <n(a, — 27", b,) co na mocy
(1) daje

b—a—e< Y (by—a,+27") <D (by—a,) +e.

n<N n

W ten sposéb, z uwagi na dowolno$é¢ € > 0, otrzymujemy zadana nier6wnosc. A

LEMAT 1.3.3. Definicja A\ jest poprawna.

Dowdd. Zauwazmy najpierw, ze z Lematow i wynika, ze jesli [a, b) jest roztaczna
sumg przedzialow [a1,b1),. .., [an, by) to b —a =3¢, (b — a;).
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Kazdy R € R ma przynajmniej jedno przedstawienie w postaci sumy parami roztacz-
nych przedziatéw jak w (*), patrz Lemat [1.1.4] Niech

R = U [ai’ bl) = U [Civ dj)
i<n j<k

beda dwiema takimi reprezentacjami. Dla i < n,j < k oznaczmy przez P;; = [a;,b;) N
[cj,d;); wtedy P, ; jest pusty lub jest przedzialem postaci [z, y).
Dla ustalonego ¢ < n mamy

[aiu bz) = U [ai7 bl) M [Cj’ d])7
J<k
co daje b; — a; = > ;< A(Fi;) na mocy uwagi powyzej. Ostatecznie
D (b —ai) =Y ANPiy) = (di —ci),
i<n ij j<k

gdzie druga réwnos$¢ wynika z analogicznego rozumowania. A

TWIERDZENIE 1.3.4. Funkcja A\ zdefiniowana wzorem (**) jest przeliczalnie addytywng
funkcjg zbioru \ na pierscieniu przedziatow R.

Dowdd. Addytywnos$¢ A wynika tatwo z samej definicji w (**) (i jej poprawnosci). Jezeli
[a, b) jest suma parami roztacznych zbioréw R, € R to, przedstawiajac kazdy R, w postaci
roztacznej sumy

Rn = U [az 7b?)7
i<knp
otrzymujemy
b—a= > (O —al)=>_ > (b —a}) Z)\
n,i<kn n i<kn

Przypadek ogdlny, gdy R € R jest suma zbioréw R,, € R otrzymamy przez prosta indukcje
po ilosci przedziatéw wystepujacych w przedstawieniu R. A

4. Twierdzenie o konstrukcji miary

W poprzedniej czesci pokazaliSmy, ze miare mozna zdefiniowaé efektywnym wzorem
na rodzinie podzbioréow prostej zbudowanych w sposoéb elementarny. Aby taka funkcje A
rozszerzy¢ do miary na o-ciele Bor(R) potrzebna jest jednak pewna ogdlna procedura, ktéra
pozwoli nam pokona¢ trudnosci ze sledzeniem, jak z danego uktadu zbioréw generowane
jest o-cialo.

W dalszym ciagu ograniczymy sie do rozwazania o-skonczonych funkeji zbioru; to po-
jecie wyjasnione jest w definicji ponizej.
DEFINICJA 1.4.1. Powiemy Ze funkcja p jest o-skonczona na pierscieniu R podzbioréow X
jezeli istniejq zbiory X,, € R, takie Ze X = U, X, i u(X,) < oo dla kazdego n.

Nastepujace Twierdzenie o konstrukcyi miary jest kluczowe.

TWIERDZENIE 1.4.2. Jezeli p jest przeliczalnie addytywng i o-skonczong funkcjg na pier-
Scieniu R to u rozszerza sig jednoznacznie do miary na o(R).
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Dowod istnienia takiego rozszerzenia do miary jest niewatpliwe najbardziej ztozonym
elementem catego wyktadu i dlatego zostanie odtozony na koniec tego rozdziatu. Wezesniej
przekonamy sie, ze

wystarczy uwierzycé w istnienie miary, aby wyprowadzic¢ jej wlasnosci.
Jak pisza oglednie autorzy podrecznikéw dowdd mozna pomingé, przynajmniej
przy pierwszym czytaniu. Odnosi sie to z pewnoscig to dowodu istnienia rozszerzeniaﬂ.

Dowodd jednoznacznosci rozszerzenia jest o tyle istotniejszy, ze stosowana w nim technika
ma inne zastosowania. Pierwsza ilustracja powyzszej zasady metamatematycznej:

TWIERDZENIE 1.4.3. Jezeli, w warunkach Twierdzenia|l.4.2, oznaczymy przediuzenie j do
miary na o(R) tg samq literg to dla kazdego A € o(R) o wlasnosci u(A) < oo i dowolnego
e > 0 istnieje R € R, taki Ze (A A R) < e.

Dowdd. Rozwazmy najpierw przypadek X € R i u(X) < oo (wtedy R jest ciatem). Niech
A bedzie rodzing tych A € o(R), ktore daja sie aproksymowaé zbiorami z R w powyzszy
spos6b. Wtedy oczywiscie R C A C o(R); wystarczy wiec sprawdzié, ze A jest o-cialem,
aby otrzymaé¢ A = o(R), czyli teze twierdzenia.

Rodzina A jest zamknieta na branie dopetnien (zauwazmy, ze A°/A R° = AA R). Jezeli
A1, Ay € Aie >0 to biorac R; € R, takie ze u(A; A R;) < ¢/2 dla i = 1,2, otrzymujemy
p((Ay U A2) A (R URy)) < e. Dlatego A jest zamknieta na skoriczone sumy, jest ciatem
zbioréw. Wystarczy jeszcze upewnié sie, ze jezeli zbiory A, € A tworza cigg niemalejacy
to A =U, A, € A. Dla € > 0 istnieje n, takie ze u(A\ A,) < £/2. Poniewaz A, € A wigc
istnieje R € R, taki ze u(A, A R) < £/2. Czytelnik sprawdzi, ze wtedy u(A A R) <eito
zakonczy dowod przypadku skonczonego.

W ogélnym przypadku rozwazamy rozktad X = UJ,, X,,, gdzie X,, € R sa miary skon-
czonej. Z pierwszej czesci dowodu wynika ze, dla ustalonego n, kazdy zbiér z o(R) zawarty
w X,, daje si¢ odpowiednio aproksymowac. Z kolei A jest sumg zbioréw A, = AN U<, X;
wiec mozemy zakonczy¢ dowod, rozumujac jak przed chwilg, w koncéwcee przypadku skon-
czonego. A

5. Przestrzenie miarowe

Terminem miara bedziemy okresla¢ przeliczalnie addytywna funkcje zbioru okreslong
na o-ciele.

DEFINICJA 1.5.1. Przestrzeniqg miarowq nazywamy trojke (X, %, p), gdzie X C P(X) jest
o-ciatem, a p: X — [0, 00] jest miarg.

Zauwazmy, ze dla danej przestrzeni miarowej (X, X, u), jezeli ¥’ C 3 jest mniejszym o-
ciatem, to (X, ¥, i') gdzie ' = s jest, formalnie rzecz biorac, inng przestrzenia miarows.
Czesto jednak dla wygody obciecia i do podrodzin ¥ oznaczamy tg sama liters.
DEFINICJA 1.5.2. Przestrzen miarowq (X, 3, u) nazywamy skonczong jezeli pu(X) < oo

oraz probabilistyczna w przypadku, gdy p(X) = 1. Przestrzen taka jest o-skonczona, jezeli
istniejq zbiory Xy € X, takie Ze X = Uy Xy i u(Xy) < oo dla kazdego k.

LW ktérym, nawiasem moéwiac, o-skoniczonosé nie jest potrzebna
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W przestrzeniach miarowych mozna dokonywac operacji brania podprzestrzeni, co opi-
sujemy w ponizszym twierdzeniu, ktorego dowdd jest zupetnie oczywisty.

TWIERDZENIE 1.5.3. Dla przestrzeni miarowej (X, %, p) i zbioru Y € ¥ oznaczmy
YSy={AeX:ACY}.
Wtedy (Y, Xy, uy ), gdzie py (A) = p(A) dla A € Xy jest przestrzeniq miarowq.
Kazda miare mozna, tanim kosztem, uzupeic.

DEFINICJA 1.5.4. Méwimy, Ze przestrzeri miarowa (X, 3, ) jest zupelna jezeli dla kazdego
A e X, jezeli p(A) =0 to wszystkie podzbiory A nalezq do ¥. W takim przypadku méwimy
tez, ze 3 jest o-ciatem zupelnym wzgledem p

Dowod twierdzenie podanego ponizej bedzie potraktowany jako ¢wiczenie, patrz Zada-

nie [TOIT8]

TWIERDZENIE 1.5.5. Dla kazdej przestrzeni miarowej (X, %3, 1) zstmeje przestrzen miarowa
zupetna (X, 5 ), gdzie SOY [l jest rozszerzeniem miary L na 5.

Dowéd. Niech 3 bedzie rodzing zbioréw postaci A A N, gdzie A € ¥ 1 N C B € %,
przy czym pu(B) = 0. Istota dowodu polega na sprawdzeniu, ze ¥ jest o-cialem i wzor
A(AA N) = pu(A) poprawnie definiuje miare. A

6. Miara Lebesgue’a 11

W podrozdziale (3| zdefiniowaliémy funkcje zbioru A na pierscieniu R podzbioréw pro-
stej, generowanym przez przedzialy postaci [a,b). Poniewaz A jest przeliczalnie addytywna
funkcjg zbioru na R wiec z Twierdzenia [1.4.2| wynika, ze \ rozszerza sie jednoznacznie do
miary na Bor(R). I to jest owa stynna miara Lebesgue’a (na prostej rzeczywistej). Liniowa
miara Lebesgue’a jest wiec po prostu uogoélnieniem elementarnej koncepcji dhugosci odcin-
ka. Tak jak obiecaliSmy, z samego faktu istnienia jedynej takiej miary wyprowadzimy jej
podstawowe wlasnosci.

Mamy wiec pierwszy niebanalny przyklad przestrzeni miarowej: (R, Bor(R),\). Sto-
sujac zabieg opisany w Twierdzeniu [1.5.3] mozemy tez wyr6zni¢ podstawowa przestrzen
probabilistyczna: ([0, 1], Bor[0, 1], A).

Zbiory borelowskie mozna uzupetlni¢ wzgledem miary Lebesgue’a, jak to opisano w
twierdzeniu[1.5.5] Oznaczmy takie uzupelione o-cialo przez £ (na cze$¢ Lebesgue’a). Zbior
A € £ nazywamy mierzalnym w sensie Lebesque’a. Taki zbior mozna wiec zapisaé jako
A= BAN, gdzie B € Bor(R) i N jest podzbiorem zbioru miary zero (zbiér mierzalny to
modyfikacja zbioru borelowskiego na zbiorze miary zero). Otrzymujemy zupekna przestrzen
miarowa (R, £, \) (jak zwykle pozostawiamy to samo oznaczenie na miare). Jak sie okaze,
zabieg uzupetniania jest drobny, ale bywa istotny.

Odnotujmy przede wszystkim, ze A({z}) = 0 dla kazdego = € R (dlatego ze A([z,z +
9)) = ¢ dla 6 > 0. Stad wynika natychmiast ze dla a < b mamy

Ala, b)) = Al(a, b)) = A([a, b]).
TWIERDZENIE 1.6.1. (a) Kazdy zbior przeliczalny jest miary Lebesque’a zero.
(b) Dla kazdego A € £ istniejq zbiory borelowskie By C A C By, takie Ze A\(By\B1) =0



G. Plebanek, MTARA T CAELKA _ Rozdzial 1: Rodziny zbioréw i miary 19

(¢) Dla kazdego zbioru mierzalnego A € £ i e > 0 istnieje zbior otwarty V i zbior
domkniety F, takie z2e F CACV i N(V\F) <e.

Dowdd. 7Zbidr przeliczalny A jest przeliczalng suma postaci A = Uyea{x} wiec M(A) =0
wprost z przeliczalnej addytywnosci.

Kazdy zbior A € £ jest postaci A = B A N gdzie N jest podzbiorem borelowskiego
zbioru C miary zero. Wtedy mozna przyja¢ By = B\ C i By = BUC.

Z uwagi na (b), wystarczy (c) sprawdzi¢ dla A € Bor(R). Rozwazamy najpierw zbiory
borelowskie A zawarte w [0,1] i stosujemy znany chwyt: Niech A bedzie rodzina tych
borelowskich A C [0, 1], ktére aproksymuja sie od géry zbiorami otwartymi V' (otwartymi
w R), i od dotu zbiorami domknietymi. Jest to rodzina podzbioréw [0, 1] zamknieta na
branie dopelnienn (w [0, 1]). Istotnie, jezeli F C A C V to

0,1\ V C [0,1]\ A C [0,1] N F*.

Tutaj [0, 1] \ V jest zbiorem domknietym; zbiér [0, 1] N F° nie musi by¢ co prawda otwarty,
ale mozna go powiekszy¢, kosztem nieznacznego zwigkszenia miar, do otwartego zbioru
(=9,140)N Fe.

Sprawdzamy teraz bez trudu, ze A jest ciatem podzbioréw [0, 1] (zbiory otwarte sa za-
mkniete na skoniczone sumy i przekroje, te sama wlasno$é maja zbiory domkniete). Osta-
tecznie rozwazamy rosnacy ciag A, € A i sprawdzamy, ze A = UJ,, A, € A, postepujac jak
w dowodzie [[L4.3]

Pierwsza czes¢ dowodu mozna oczywiscie odnies¢ do ustalonego odcinka [n,n + 1].
Ostatecznie, biorgc dowolny zbiér borelowski A, dla danego ¢ > 0 przykrywamy kazdy
zbiér AN [n,n + 1] otwartym zbiorem V;, z doktadnoscia £/2!"2 (tutaj n przebiega liczby
catkowite). Wtedy V =U, V, 2 A i

AV \A) < i AVL\AN[n,n+1]) <e.

Aproksymacja od dotu zbiorem domknietym przebiega analogicznie. Co prawda na ogdt

nieskonczona suma zbioréw domknietych nie musi by¢ domknieta, ale |UJ,, F;, jest zbiorem

domkniety, o ile zbiory domkniete speliaja warunek F,, C [n.n + 1], prosze sprawdzi¢! A
Stosujac Twierdzenie [1.4.3| otrzymujemy inny wazny fakt.

TWIERDZENIE 1.6.2. Jezeli A € £ i MN(A) < oo to dla kazdego € > 0 istnieje zbior J bedgcy
skoniczong sumaq odcinkéow i taki Ze N(A A J) < e.

Odnotujmy jeszcze nastepujacy wniosek.

WNIOSEK 1.6.3. Jezeli A € £ i AM(A) < oo to dla kazZdego € > 0 istnieje zbior zwarty (czyli
domkniety i ograniczony) K C A, taki Ze \(A\ K) < e.

Dowdd. Dla A, = AN (—n,n) mamy A, T A idlatego A\(A,) zbiega do A(A). Wybierzmy
n takie ze A(A,) > A(A) — ¢/2; z Twierdzenia istnieje zbiér domkniety K C A, o
whasnosci A(A4,, \ K) < /2. Wtedy K jest zbiorem zwartym i

AANK) < MAN\ Ay) + M4, \ K) < e.
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Jak sie okazuje dowolny zbiér mierzalny mozna na rézne sposoby aproksymowac z punk-
tu widzenia miary stosunkowo prostymi podzbiorami prostej. Nie nalezy jednak myli¢ in-
kluzji w Twierdzeniu[L.6.1|(c): zbiér [0, 1]\Q jest miary 1, ale nie zawiera niepustych zbioréw
otwartych. Podobnie zbiér [0, 1] N Q jest miary zero, ale kazdy domkniety F 2 [0,1]NQ w
istocie zawiera [0, 1] wiec A(F) > 1; por. Zadanie [L0]23]

PRzZYKEAD 1.6.4 Niech C' C [0, 1] bedzie “tréjkowym” zbiorem Cantora; przypomnijmy,
ze zbior C' powstaje w ten sposob, ze odcinek jednostkowy dzielimy na 3 czesci punktami
1/3 1 2/3 i usuwamy z niego $rodkowy odcinek otwarty (1/3,2/3). Nastepnie w drugim
kroku stosujemy analogiczna operacje w odcinkach [0,1/3] i [2/3, 1], usuwajac odpowiednio
odcinki (1/9,2/9) 1 (7/9,8/9). Itd. .. Nietrudno policzy¢, ze taczna dtugo$é usuwanych od-
cinkéw wynosi 1; tym samym A\(C) = 1 —1 = 0. Zauwazmy, ze C' jest zbiorem domknigetym
i nie zawiera zadnego niepustego przedziatu.

Inaczej moéwiac, zbior C' sklada sie ze wszystkich liczb x € [0, 1], ktére mozna zapisaé
w systemie trojkowym za pomoca cyfr 0 i 2. W ten sposéb mozna uzasadnié, ze C' jest
zbiorem nieprzeliczalnym, rownolicznym ze zbiorem R. Istnieja tez wersje takiej konstrukeji,
prowadzace do zbioru “typu Cantora” miary dodatniej, patrz Zadanie &

Wykorzystujac wlasnosci zbioru Cantora wspomniane powyzej oraz Problem [I1]C moz-
na wywnioskowaé, ze £ # Bor(R). Istotnie, kazdy zbiér A C C' jest mierzalny, jako ze
A(C) = 0. W teorii mnogosci dowodzi sig, ze rodzina P(C) jest mocy 2° > ¢, a moc Bor(R)
wynosi jedynie ¢. Dlatego tez C zawiera nieborelowskie zbiory mierzalne.

W tym miejscu warto wspomnie¢ o wlasnosciach miary Lebesgue’a zwigzanych ze struk-
tura grupy addytywnej (R, +). Dla B C Rix € R piszemy x + B na oznaczenie translacji
zbioru B, czyli {x +b:b € B}.

TWIERDZENIE 1.6.5. Dla dowolnego B € Bor(R) i x € R mamy x + B € Bor(R) i
Az + B) = \(B).

Dowdd. Jesli oznaczymy przez A rodzine tych B € Bor(R), dla ktérych wszystkie translacje
sq borelowskie to A zawiera wszystkie odcinki otwarte (a, b), jako ze x+(a, b) = (a+x, b+x).
Wystarczy teraz zauwazy¢, ze rodzina A jest o-ciatem, aby otrzymaé A = Bor(R). Dla
ustalonego x rozwazmy miare p na Bor(R), dang przez wzor u(A) = M\(x+ A) (sprawdzenie,
ze | jest istotnie przeliczalnie addytywna pozostawiamy czytelnikowi). Dla a < b mamy

ILL([CL, b)) = )\([l‘ + ba T+ b)) =b—a= )\([CL, b))>
wynika stad ze pu(R) = A(R) dla R z pierécienia przedzialéw i tym samym p(B) = A(B)
dla B € Bor(R) z jednoznacznosci rozszerzenia miary Lebesgue’a. A

Nietrudno rozszerzy¢ niezmienniczos¢ opisang w Twierdzeniu [1.6.5| na o-ciato zbioréw
mierzalnych £. Prowadzi to do klasycznej konstrukeji Vitalego, ktéra pokazuje, ze mozna
za pomocg pewnika wyboru udowodni¢ istnienie podzbioru prostej rzeczywistej, ktéry nie
jest mierzalny, por. Problem [T1]F.

7. Jednoznaczno$¢ rozszerzenia miary

Jezeli R jest pierscieniem zbioréw przeliczalnych w nieprzeliczalnym zbiorze X to funk-
cje p tozsamosciowo réwna zeru na R mozna przedtuzyé na o(R) na wiele sposobdéw.
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Okazuje si¢ jednak, ze w typowej sytuacji rozszerzenie do miary jest jedyne. Dowdd tego
faktu opiera sie na nastepujacym pomysle.

DEFINICJA 1.7.1. Rodzine M C P(X) nazywamy klasa monotoniczna jesli dla dowolnego
ciggu A, € M

(i) jezeli A, T A to A e M;

(ii) jezeli A, | A to A€ M.

Oczywiscie kazdy o-pierscien jest automatycznie klasa monotoniczna; zauwazmy, ze
pierdcien bedacy klasa monotoniczna jest o-pierScieniem, patrz Zadanie [10[77. Ponizsze,
wcale nieoczywiste, twierdzenie bywa tradycyjnie nazywane lematem o klasie monotonicz-
nej.

TWIERDZENIE 1.7.2. Jezeli klasa monotoniczna M zawiera pierscien R to zawiera tez
o-pierscien s(R) generowany przez R.

Dowéd. Oznaczmy S = s(R); zauwazmy, ze wystarczy jesli sprawdzimy, ze jezeli M jest
najmniejsza klasg monotoniczng zawierajacg R to M = S. Zauwazmy przy tym, ze M C S,
jako ze kazdy o-pierscien jest klasg monotoniczng.

Dla dowolnego A C X rozwazymy rodzine k(A), gdzie

k(A)={B:A\B,B\ A, AUB € M}.

Zauwazmy, ze B € k(A) wtedy i tylko wtedy gdy A € k(B), z uwagi na symetrie warunkow.
Odnotujmy tez, ze rodzina k(A) jest klasa monotoniczna dla dowolnego A; na przyktad jesli
B, €k(A)iB, 1 Bto

A\ B, | A\B, B,\A1B\A, B,UATBUA,

co dowodzi ze B € k(A).

Dla R € R z definicji pierécienia wynika natychmiast, ze R C k(R). Tym samym, jako
ze k(R) jest klasa monotoniczna, M C k(R) dla R € R. Inaczej méwiac, jesli M € M i
R e R to M € k(R), a wiec takze R € k(M). Stad otrzymujemy R C k(M) dla M € M,
a zatem M C k(M) dla M € M. To ostatnie stwierdzenie oznacza po prostu ze M jest
pierscieniem. Klasa monotoniczna bedaca pierscieniem jest automatycznie o-pierscieniem,
co ostatecznie dowodzi, ze M = S. A

TWIERDZENIE 1.7.3. Niech p bedzie przeliczalnie addytywng funkcjg zbioru na pierscieniu
R CP(X). Zaloimy, ze X =, Sk dla pewnych Sy € R, takich Ze u(Sy) < oo.
Wtedy p ma co najwyzej jedno przedtuzenie do miary na o(R).

Dowdd.  Zatézmy, ze 1, po sa miarami na o(R), takimi, ze 1 (R) = p2(R) = p(R)
dla R € R. Bedziemy rozumowaé jak poprzednio, rozwazajac wpierw przypadek miary
skonczone;j.

Zatézmy, ze X € R i pu(X) < oo; rozwazmy rodzing M tych A € o(R), dla ktérych
p1(A) = pua(A). Wtedy M jest klasa monotoniczna, co wynika natychmiast z Twierdzenia
2l mamy M D R i dlatego M = o(R) po zastosowaniu lematu o klasie monotonicznej
[1.7.2] Oznacza to, ze co py = po.

W przypadku ogbélnym mozemy zalozyé¢, ze zbiory Sj sa parami roztaczne. Z pierwszej
czesdci dowodu, zastosowanej do kazdego zbioru Sy z osobna, wynika, ze jesli A € 0(R)1 A C
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Sy dla pewnego k to pui(A) = uz(A). Ostatecznie dla dowolnego A € o(R) otrzymujemy
p(A) = m(ANSy) =3 pa(ANSk) = pa(A),
k 2

na mocy przeliczalnej addytywnosci p1 1 pio. A

8. Miara zewnetrzna

W dalszym ciggu ustalmy dowolny pierscien R podzbioréw przestrzeni X i addytywna
funkcje p na tym pierscieniu.

DEFINICJA 1.8.1. Dla dowolnego E C X definiujemy
p(E) = inf{> u(R,): R, € R,E C|JR.}.

Tak okreslong funkcje p* : P(X) — [0, 00] nazywamy miara zewnetrzna pochodzaca od .

W ogdélnym przypadku, gdy X nie pokrywa si¢ ciagiem elementow R, zbior wystepujacy
po prawej stronie wzoru moze by¢ pusty — przypomnijmy, ze inf () = oo.

LEMAT 1.8.2. Funkcja zbioru p* zdefiniowana w|1.8.1] ma nastepujgce wtasnosci:
(a) p(0) =0.
(b) Jezeli Ey C Ey C X to p*(Ey) < p*(Ey).
(¢) Dla dowolnych E, C X p*(U, En) < X, 1 (Ey).

Dowéd. (a) wynika z faktu, ze p(0) = 0, natomiast (b) z uwagi, ze inf A > inf B dla
A C B C R. Nier6wnosé w (¢) jest oczywista gdy pu*(E,) = oo dla pewnego n. Zatdézmy
wobec tego, ze u*(E,) < oo dla wszystkich n. Wtedy dla ustalonego € > 0 istnieja R} € R,
takie ze

E, CURy oraz > u(Rp) < p(E,) +e/2"
K k

Wtedy
UE. <R,
n n,k

i (UB) < S0 (E) + 22 = S () + =

n,k n

co dowodzi tezy. A
Warunek |1.8.2(b) nazywany jest monotonicznosciag a warunek [1.8.2(c) to przeliczalna

podaddytywnosé. Czasami dowolng funkcje P(X) — [0, 00|, niekoniecznie zdefiniowana
wzorem , ktéra jest monotoniczna i przeliczalnie podaddytywna (oraz znika na ()
nazywa sie miarg zewnetrzna; ta ogdlnos$é nie bedzie nam potrzebna. Idea miary zewnetrzne;
polega na mierzeniu dowolnych zbiorow “ od zewnatrz”, przez pokrywanie ich ciggami
zbioréw z miarg juz okreslona.

Miara zewnetrzna zadana przez [I.8.1| nie jest na ogét przeliczalnie addytywna na rodzi-
nie wszystkich podzbioré6w X, patrz na przyktad Zadania [I0]36]i nastepne. Jak sie jednak
okaze, p* jest przeliczalnie addytywna na o(R).
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9. Dowdd twierdzenia o konstrukcji miary

Podstawowy pomyst wykorzystywany w dowodzie pochodzi od Caratheodory’ego i opie-
ra sie na tym, ze mozna zdefiniowa¢ pewne o-ciato zawierajace wyjsciowy pierécien i na
tym o-ciele miara zewnetrzna jest przeliczalnie addytywna.

DEFINICIA 1.9.1. Mowimy, ze zbior A C X jest mierzalny wzgledem miary zewnetrznej p*
jezeli
p(Z) =p (ZNA)+p(Z N A%,

dla dowolnego zbioru Z C X. Oznaczmy przez M(u*) rodzine wszystkich mierzalnych pod-
zbiorow X .

Zauwazmy, ze w warunku definiujacym mierzalnosé tylko nieréwnosé “>” jest istotna
— nier6wno$¢ przeciwna wynika z zaleznosci Z = (Z N A) U (Z N A°) i (przeliczalnej)
podaddytywnosci miary zewnetrznej. Zauwazmy tez, ze kazdy zbiér A spelniajacy warunek
p*(A) = 0 jest mierzalny.

Ponizej udowodnimy, ze 9(u*) jest o-cialem zawierajacym wyjsciowy pierScien, a miara
zewnetrzna jest przeliczalnie addytywna na tym o-ciele i zgadza sie z p na R. Zauwazmy,
ze to automatycznie dowodzi Twierdzenia [1.4.2]

LEMAT 1.9.2. Rodzina M(u*) jest cialem zbioréw.

Dowdd. Mamy () € MM (p*) poniewaz wzor w(1.9.1]jest spelniony dla A = 0. Jesli A € M(u*)
to A® € M(u*) bo warunek jest taki sam dla zbioru A, jak i dla jego dopeienia A°.
Rozwazmy A, B € M(p*) i dowolny Z C X. Wtedy, testujac mierzalno$é zbioru A zbiorem
7, a nastepnie mierzalno$¢ zbioru B zbiorem Z N A, otrzymamy

p(Z)=p (ZNA)+p (ZNA) = (ZNANB)+p (ZNANBS) + pu*(ZNA®) >
> (ZNANB) +p(ZN (AN B)°),

gdzie w drugiej linii korzystamy z tego ze
(ZNANBYU(ZNA)DZN(A°UBY) =ZN(ANB)°,

oraz podaddytywnosci p*. W ten sposoéb dowiedlismy ANB € M(u*), jako ze przeciwna nie-

réwnosé jest zawsze prawdziwa. Tym samym 9T(u*) jest rodzing zamknieta na dopelnienia
i przekroje, a wiec jest cialem. A

LEMAT 1.9.3. Dla dowolnych parami roztgcznych zbioréw Ay, ..., A, € M(u*) i dowolnego
Z C X zachodzi wzor

p(ZnJA) = 1 (Z0A);
<n <n
w szezegdolnodci p* jest addytywng funkcjg na M(u*).
Dowdéd. Dla dwbch roztgcznych zbiorow Aq, As otrzymujemy teze, testujac mierzalnosé
zbioru A; zbiorem 7' = ZN(A1UAy) bo Z7NA; = ZNA; 1 Z'NAS = ZN As; rozszerzenie
wzoru na n sktadnikéw wymaga jedynie prostej indukcji. Addytywnosé p* otrzymujemy
podstawiajac Z = X. A
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TWIERDZENIE 1.9.4. Rodzina M(u*) jest o-cialem zawierajgcym R, a p* jest przeliczalnie
addytywna na M(p*). Zachodzi wzér p(R) = pu*(R) dla R € R.

Dowdéd. Sprawdzimy, ze IM(u*) jest o-ciatem. Poniewaz M (u*) jest ciatem (Lemat
wiec wystarczy sprawdzié, ze OM(u*) jest rodzing zamknieta na roztaczne przeliczalne sumy.
Niech A, € M(u*) bedzie ciagiem parami roztacznych zbioréw i A = U, A,. Wtedy dla
dowolnego Z i n mamy na mocy

w(2) = (20 A) + (z n (U Az-) ) > Y p (Z0A) + (20 A9,

<n i<n i<n
Stad, wykorzystujac przeliczalng podaddytywnosé u*,
WH(Z) > S W20 A) + i (Z 0 A%) 2 (2.0 A) 4+ 1*(Z 1 A°).

To dowodzi, ze A € M(u*). Miara zewnetrzna pu* jest przeliczalnie addytywna na 9%(u*)
jako funkcja jednoczesnie przeliczalnie podaddytywna i addytywna (por. Lemat i
1.8.9).

Niech R € R. Aby pokazaé, ze R € M(u*) rozwazmy dowolny Z. Jezeli u*(Z) = oo to
automatycznie p*(Z) > p*(Z N R) + p*(Z N R°). Jezeli u*(Z) < oo to dla dowolnego € > 0
istnieje ciag parami roztacznych zbioréw R, € R takize Z C U, R, i p*(Z) < X, u(R,)+e.
Wtedy

W(ZNR)+ i (ZNRY) < Y u(Ran R)+ Y pl(RaN B = Y ulRy) < p1°(Z) .

co dowodzi nieréwnoéci p*(Z N R) + p*(Z N R°) < p*(Z), a wiec R € M(p*).
Dla R € R mamy p*(R) < p(R) z definicji p*. Jedli R C U, R, dla pewnego ciagu
parami roztacznych zbiorow R, € R to

p(R) = p(RNJRy) =D n(RN Ry) < p(R),

gdzie stosujemy przeliczalng addytywnos$¢ p na R. A

Mozna sie na koniec zastanawiaé, jaka jest réznica pomiedzy 9M(p*) i o(R). Ot6z pierw-
sze o-cialo jest uzupelnieniem tego drugiego. Wyjasnia to, ze nasza wyjsSciowa definicja
podzbioru prostej mierzalnego w sensie Lebesgue’a zgadza sie z definicjg mierzalnosci za-
dang poprzez warunek Caratheodory’ego. Dowdd koncowego faktu przebiega podobnie do
poprzednich rozwazan i zostanie pominiety.

LEMAT 1.9.5. Dla kazdego A € M(u*) istniejg By, By € 0(R), takie ze By C A C By i

—

p (B \ By) = 0. W szczegdlnosci o(R) = MM (u*).
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10. Zadania
Rodziny zbioréow

1.10.1 Niech R bedzie pierscieniem zbioréw. Zauwazy¢, ze jesli A, B € Rto AAB € R
i AN B € R. Sprawdzi¢, ze (R, A,N) jest takze pierécieniem w sensie algebraicznym, w
szczegblnosci, ze dzialanie A jest taczne i (N jest rozdzielne wzgledem A.

1.10.2 Niech F bedzie taka rodzing podzbioréw X, ze X € F oraz A\ B € Fdla A, B € F.
Sprawdzi¢, ze F jest ciatem.

1.10.3 Zauwazy¢, ze przekrdj dowolnej ilosci pierécieni, cial. . . jest pierscieniem, ciatem itp.

1.10.4 Zauwazy¢, ze jesli F C G C P(X) to a(F) C «(G), gdzie a oznacza jeden z symboli
generowania r, s, a, 0.

1.10.5 Niech G bedzie rodzina wszystkich skonczonych podzbioréw X. Opisaé r(G), s(G),
a(G) i0(G).

1.10.6 Niech A C P(X) bedzie ciatem zbioréw i niech Z C X. Wykazaé, ze

a(AU{Z}) ={(ANnZ)u(BNZ%: A B e A}

1.10.7 Zauwazy¢, ze jezeli C jest taka rodzina podzbioréw X, ze X = 2, C,, dla pewnych
C, € C to s(C) =a(C).

1.10.8 Sprawdzi¢, ze jesli A jest cialem zbioréow i rodzina A jest zamknieta na rozlgczne
przeliczalne sumy to A jest o-ciatem.

1.10.9 Niech A bedzie skoriczonym ciatem zbioréw. Udowodnié, ze |A| = 2" dla pewnej
liczby naturalnej n. WSKAZOWKA: wymysleé, co to jest n,

1.10.10 Niech F bedzie przeliczalna rodzing zbioréw. Udowodnié, ze ciato a(F) jest przeli-
czalne.

1.10.11 Udowodni¢, ze jesli A jest nieskonczonym o—ciatem to A ma przynajmniej ¢ elemen-
téw. WSKAZOWKA: Wykazaé¢ wpierw, ze w kazdym nieskonczonym o-ciele istnieje cigg
niepustych parami roztacznych zbioréw; skorzystaé z tego, ze ¢ jest moca P(N).

Funkcje zbioru

1.10.12 Niech p bedzie skonczong addytywna funkcja zbioru, okreslona na pierscieniu R.

Sprawdzi¢, ze (dla dowolnych A, B,C € R)
(i) [1(A) ~ u(B)| < p(A L By

(1) p(AU B) = p(A) + u(B) — n(AN B);
(iii) p(AUBUC) = pu(A)+u(B) +u(C) — n(ANB) — w(ANC) — w(BNC) +u(ANBNC).
Jak bedzie wygladal analogiczny wzér dla 4, 5. .. zbiorow?

1.10.13 Sprawdzi¢, ze dla funkcji ¢ z poprzedniego zadania, warunek A ~ B <= u(A A
B) = 0 okresla relacje rownowaznosci na R.

1.10.14 Niech X bedzie zbiorem skoniczonym. Sprawdzié, ze wzor u(A) = % okresla miare
probabilistyczng na P(X).
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1.10.15 Niech (x,) € X bedzie ustalonym ciagiem i niech (¢, ) bedzie ciagiem liczb nieujem-
nych. Wykaza¢, ze wzor
pA) = > e
n:xrn €A

okresla miare na P(X) (w razie trudnosci rozwazy¢ ciag skoniczony z, ..., z,). Kiedy taka
miara jest skonczona?

1.10.16 Zauwazy¢, ze P(N) jest o-ciatem generowanym przez singletony. Wykazaé, ze kazda
miara na P(N) jest postaci opisanej w poprzednim zadaniu.

1.10.17 Niech p bedzie miarg na o-ciele A i niech A, € A. Zaktadajac, ze pu(A, N Ag) =0
dla n # k, wykazaé ze

u( fj A,) = i H(A,).

1.10.18 Uzupelnié szczegoty dowodu Twierdzenia[l.5.5w nastepujacy sposéb: Dla przestrzeni
miarowej (X, 3, ) zdefiniujmy S jako rodzine zbioréw postaci AAN, gdzie A € ¥, N C B
dla pewnego B € ¥ miary zero. Wtedy I jest o—cialem, a wzor A(AAN) = pu(A) definiuje
poprawnie przedtuzenie miary p z Y na 5.

Na prostej; miara Lebesgue’a

1.10.19 Niech R bedzie pierscieniem na prostej rzeczywistej, generowanym przez przedziaty
postaci [a,b). Sprawdzi¢, ze A € R wtedy i tylko wtedy gdy A jest roztaczna skonczona
sumg takich przedziatow.

1.10.20 Wykazacé, ze rodzina podzbiorow R postaci
(FiNWV)U...U(F, N V),
gdzie F; sa domkniete, V; sg otwarte, k € N, jest ciatem.

1.10.21 Sprawdzié, ze o-cialo Bor(R) jest generowane przez kazda z rodzin
(1) odcinki otwarte o konicach wymiernych;
(71) odcinki domkniete;
(111) poiproste postaci (—oo, al;
(iv) pétproste postaci (a, 00);
(v) odcinki domkniete o koficach wymiernych.

1.10.22 Sprawdzi¢, ze
(1) M(A) = 0 dla kazdego zbioru skoniczonego A;
(11) Aa,b] = Aa,b) =b—adlaa < b;
(111) A(U) > 0 dla kazdego zbioru otwartego U # (J;
(iv) A(A) = 0 dla kazdego zbioru przeliczalnego A.

1.10.23 Poda¢ przyktad zbioru mierzalnego A, takiego ze
(1) M(A) =11 A jest nieograniczonym zbiorem otwartym;
(ii) Mint(A)) =1, AM(A) = 2, \(A) = 3;
(111) A(A) =01 A C [0, 1] jest zbiorem nieprzeliczalnym.
UWAGA: int(A) oznacza wnetrze zbioru, czyli najwickszy zbior otwarty zawarty w A.
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1.10.24 Skonstruowaé, dla ustalonego ¢ > 0, zbiér domkniety F' C [0, 1] o wnetrzu pustym,
dla ktorego A(F) > 1 —e.
I sPOSOB: Zmodyfikowaé konstrukeje zbioru Cantora.
IT sposOB: Niech (g,), bedzie ciagiem liczb wymiernych z [0, 1]. Rozwazy¢ zbiér otwarty
V=U (g — €27, q, + £27™) przy odpowiednim doborze € > 0.

1.10.25 Zauwazy¢, ze dla kazdego zbioru M € £, jesli A(M) < oo to dla kazdego € > 0
istnieje ograniczony zbiér mierzalny My C M, taki ze A\(M \ M) < e.

1.10.26 Zauwazy¢, ze istnieje zbior domkniety F C [0, 1] miary dodatniej zlozony z liczb
niewymiernych.

1.10.27 Dla B C R iz # 0, niech 2B oznacza zbior {zb: b € B} (czyli jednoktadnosé zbioru
B).
Sprawdzi¢, ze takie przeskalowanie zbioru otwartego jest otwarte i ze rodzina tych B €
Bor(R) dla ktorych B € Bor(R) dla kazdego x # 0 jest o-cialem. Wyciagnaé¢ stad
wniosek, ze dla kazdego B € Bor(R) i x mamy zB € Bor(R) (tzn. ze o—ciato Bor(R) jest
niezmiennicze na jednoktadnosé).

1.10.28 Wykazaé, ze A(xB) = xA(B) dla kazdego zbioru borelowskiego B i x > 0. Rozszerzy¢
ten rezultat na zbiory mierzalne.

1.10.29 Udowodnié¢, ze dla dowolnego zbioru mierzalnego M miary skoniczonej i € > 0 istnieje
zbidér postaci I = U<, (ai, b;), taki ze A(M A T) < g, przy czym a;,b; € Q. WSKAZOWKA:

patrz [1.6.2]

<n

Wlasnosci miar

1.10.30 Niech (X, X, u) bedzie skoniczona przestrzenia miarowa. Wykazaé, ze jezeli A, € X i
dla kazdego n zachodzi nier6wnosé u(A,) > § > 0, to istnieje z € X, taki ze z € A, dla
nieskonczenie wielu n.

1.10.31 Udowodni¢, ze jesli (A,) jest ciagiem zbioréw z o—ciata, na ktérym okreslona jest
skoficzona miara p, to jesli (A4,) jest zbiezny do A to p(A) = lim,, u(A,). Czy skonczonosé
miary jest istotna?

1.10.32 Niech (X, 3, ) bedzie przestrzenia miarowa. Zbiér T € X jest atomem miary g jesli
u(T) > 01 dla kazdego A € 3, jesli A C T to pu(A) = 0 lub pu(A) = w(T). Moéwimy, ze
miara p jest bezatomowa jesli nie ma atoméw.

Sprawdzi¢, ze miara Lebesgue’a jest bezatomowa. Zauwazy¢, ze inne miary rozwazane do
tej pory mialy atomy.

1.10.33 Udowodni¢, ze skonczona miara bezatomowa p na > ma nastepujaca wlasnos¢ Dar-
boux: dla kazdego A € ¥ 1 0 < r < u(A) istnieje B € 3, takize BC Aiu(B) =r.
PIERWSZY SPOSOB (DLA OSOB WIERZACYCH TYLKO W KONSTRUKTYWNA MATEMATY-
KE): Niech u(X) = 1; sprawdzié, ze dla kazdego ¢ > 01 A € ¥ jesli u(A) > 0 to istnieje
BeX, ze BC Ai0< pu(B) < e. Nastepnie sprawdzi¢, ze X jest roztaczna suma zbioréw
A, o whasnosci 0 < p(A,) < e. To rozumowanie pokaze, ze zbiér wartosci u jest gesty w
[0, 1]; potem juz blisko do celu.
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SPOSOB SIERPINSKIEGO (DLA WIELBICIELI PEWNIKA WYBORU): Rozwazy¢ maksymalny
taricuch C zbiorow z ¥, ktére sa zawarte w danym zbiorze A. Tutaj tancuch oznacza rodzine
zbioréw uporzadkowang liniowo przez inkluzje, a istnienie maksymalnego tancucha wynika
tatwo z lematu Kuratowskiego-Zorna.

Idealy i miary zewnetrzne (zadania do podrozdziatu

1.10.34 Niepusta rodzine J C P(X) nazywamy o—ideatem jesli A C B i B € J implikuje
A e Joraz Uy A, € J jesli A, € J dlan = 1,2,.... Podaj znane Ci przyktady
o-ideatéw na R i R2.

1.10.35 Niech J bedzie o-ideatem na X. Opisa¢ A = o(J) (rozwazy¢ przypadki X € J, X ¢
J). Zdefiniowaé¢ na A zerojedynkowa miare p, analogicznie jak w przykltadzie z rozdziatu

2

1.10.36 Niech J C P(X) bedzie c—ideatem nie zawierajacym X. Na a(J) definiujemy addy-
tywna, zerojedynkowsg funkcje zbioru p (por. zadanie poprzednie). Okresli¢ miare zewnetrz-
na za pomoca u i scharakteryzowac¢ rodzine zbioréw mierzalnych.

1.10.37 Niech {A;, As, ...} bedzie partycja przestrzeni X na zbiory niepuste.
(i) Opisaé ciato A generowane przez zbiory A,, n € N.
(i1) Na A okreslamy addytywna funkcje p, tak aby pu(A,) = 27" i p(X) = 1. Jak mozna
opisa¢ o—ciato zbioréw mierzalnych wzgledem miary zewnetrznej pochodzacej od u?
(patrz Definicja

1.10.38 Niech X = [0,1) x [0, 1] i niech R bedzie cialem w X generowanym przez cylindry
postaci [a,b) x [0,1]. Na R rozwazamy funkcje zbioru, taka ze u([a,b) x [0,1]) = b —a dla
0 < a <b< 1. Jak wygladaja (z grubsza. .. ) zbiory p*-mierzalne? (patrz Definicja [1.9.1)).
Zauwazy¢, ze w X mozna wskaza¢ wiele parami roztacznych zbioréw E niemierzalnych,
takich ze p*(E) = 1.

1.10.39 Niech R bedzie pierscieniem podzbioréw QQ generowanym przez zbiory postaci Q N
[a,b) (a,b € R). Sprawdzié, ze na R mozna okregli¢ addytywna funkcje v, tak ze v(Q N
[a,b)) = b—a dla a < b. Udowodnié, ze v nie jest przeliczalnie addytywna na R i obliczy¢
/(@)

1.10.40 Zauwazy¢, ze we wzorze na A* mozna zastapi¢ odcinki postaci [a,b) przez odcinki
postaci (a,b) (lub [a, b]). Stad bezposrednio wynika mozliwo$¢ przyblizania od gbry zbiorami
otwartymi.

11. Problemy
1.11.A Udowodni¢, ze suma dowolnej (nawet nieprzeliczalnej) rodziny przedziatéw na prostej,

postaci [a, b], a < b, jest zbiorem borelowskim.

1.11.B Udowodnié, ze dla dowolnego zbioru X, | X| < ¢ wtedy i tylko wtedy gdy istnieje w
P(X) przeliczalna rodzina zbioréw F, taka ze o(F) zawiera wszystkie punkty.

1.11.C Niech F C P(X) bedzie rodzina mocy < ¢. Udowodni¢, ze |o(F)| < ¢. Wywnioskowad
stad, ze |Bor(R)| = ¢ i ze istnieja nieborelowskie zbiory na prostej.



G. Plebanek, MIARA T CALKA Zadania do rozdziatu 1 29

UWACGA: tutaj potrzebna jest indukcja pozaskonczona.

1.11.D Udowodni¢, ze funkcja zbioru A zdefiniowana na pierécieniu generowanym przez od-
cinki postaci [a, b) (przez warunek A([a,b)) = b—a dla a < b) jest ciagla z gory na zbiorze
0 (a wiec jest przeliczalnie addytywna). WSKAZOWKA: Zbiory postaci U [, d;] sa zwarte
i (w pewnym sensie) przyblizaja zbiory z R od srodka.

1.11.E Niech (X, X, u) bedzie przestrzenia probabilistyczna i niech Ay, ..., Ayps € ¥ be-
da zbiorami o wlasnodci u(A;) > 1/2. Wykazaé, ze istnieje x € X, taki ze z € A; dla
przynajmniej 1013 wartosci .

1.11.F Przeprowadzi¢ nastepujaca konstrukcje zbioru Vitali’ego: Dla x,y € [0, 1), niech x ~
y < = —y € Q. Sprawdzi¢, ze ~ jest relacja rownowaznosci. Niech Z bedzie zbiorem,
ktory z kazdej klasy abstrakeji tej relacji wybiera doktadnie jeden element. Sprawdzi¢, ze
Useq(Z @ q) = [0, 1), gdzie & oznacza dodawanie mod 1.

Zauwazy¢, ze A jest niezmienniczna na [0, 1) wzgledem dziatania @; wywnioskowaé stad,
ze powyzszy zbior Z nie jest mierzalny w sensie Lebesgue’a.

1.11.G Skonstruowaé zbiér borelowski B C R, taki ze A(BN1I) > 01i A(B°NI) > 0 dla
kazdego niepustego odcinka otwartego I.
UWACA: Z réznych konstrukeji ta jest najlepsza, patrz zbiory Bernsteina ponizej: Rozwazy¢
ciag wszystkich przedziatéw o koncach wymiernych i wykorzysta¢ fakt, ze kazdy przedziat
zawiera zbior domkniety miary dodatniej, majacy puste wnetrze.

1.11.H Udowodni¢ twierdzenie Steinhausa: Jesli A C R jest mierzalny i A(A) > 0 to zbiér
A — A (r6znica kompleksowa) zawiera odcinek postaci (—9,d) dla pewnego > 0. Nieco
ogoblniej: roznica kompleksowa dwoch zbioréw miary dodatniej ma niepuste wnetrze.
WSKAZOWKA: Mozna zalozyé, ze A(A) < oo; pokazaé najpierw ze istnieje taki niepusty
odcinek I, ze A(ANT) > 3A(1).

1.11.T Niech A C R bedzie takim zbiorem mierzalnym, ze A(A A (z + A)) = 0 dla kazde;
liczby wymiernej x. Udowodnié, ze A(A) = 0 lub A\(R\ A) = 0.
WSKAZOWKA: Twierdzenie Steinhausa.

1.11.J (Wymaga indukcji pozaskoniczonej.) Skonstruowaé zbiér Bernsteina Z C [0, 1], czyli

taki zbidr, ze

ZNP#0, P\Z#0,
dla dowolnego zbioru domknietego nieprzeliczalnego P C [0, 1]. Zauwazy¢, ze Z nie jest
mierzalny w sensie Lebesgue’a, a nawet A\*(Z) = \*([0,1]\ Z) = 1.
WsKAZOWKA: Wszystkie zbiory P domkniete nieprzeliczalne mozna ustawié w cigg Py,
a < ¢. Zdefiniowaé Z jako {z, : o < ¢}, gdzie ciag z, 1 pomocniczy ciag y, sa takie, ze

Zos Yo € Pu \ {28,y5 : B < a}.

Aby przeprowadzi¢ konstrukcje trzeba wiedzie¢ lub sprawdzié, ze kazdy zbiér P, ma moc
continuum.
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12. Dodatek o zbiorach dziwnych

Studentom matematyki nalezy mowié prawde,
ale cata prawda nie zawsze jest wskazana.

Cytat powyzej zmyslitem, ale tego typu opinie styszatem wielokrotnie podczas swoich
studiow. Studenci jednak bywaja dociekliwi i juz w czasie wyktadu obalili moje metatwier-
dzenie o tym, ze nie da sie wskaza¢ zbioru nieborelowskiego — mozna faktycznie uznac,
ze przytoczonaﬂ konstrukcja Luzina wskazuje zbiér nieborelowski. 7Z tej inspiracji powstato
ponizsze uzupetnienie.

Wspomniany przyktad Luzina wiaze si¢ z nastepujacym fenomenem: istnieja funkcje cia-
gte f na R\ Q (topologicznie rzecz biorac, jest to przestrzein NN z topologia produktowa),
takie ze obraz f[R \ Q] nie jest borelowskim podzbiorem prostej. Takie obrazy nazywa-
my zbiorami analitycznymi — zajmuje si¢ nimi deskryptywna teoria mnogosci. Wskazanie
stosownego analitycznego zbioru i udowodnienie, ze nie jest on borelowski wymaga pew-
nej techniki. Jesli ktos nie chce czeka¢ to moze sam zajrze¢ do ksiazki Kechrisa Modern
descriptive set theorgﬂ Ciekawe jest to, ze kazdy zbiér analityczny na prostej jest jednak
mierzalny w sensie Lebesgue’a. Pewne podstawowe wiadomosci o obrazach zbioréw przez
porzadne funkcje zawarte sag w zadaniach do rozdziatu 2.

Zbioréw niemierzalnych na prostej nie da si¢ wskazaé, przynajmniej zrobi¢ gotymi re-
kami — patrz model Solovaya. Jezeli jednak mamy do dyspozycji poreczny obiekt, na
przyktad ultrafiltr, to sprawa przedstawia sie duzo lepiej. Przypomnijmy, ze F C P(N) jest
ultrafiltrem niegtéwnym jezeli zbiory skonczone nie naleza do F, F jest zamkniety na prze-
kroje i nadzbiory oraz dla kazdego podzialu N = AU B zachodzi A € F lub B € F. Otéz
Sierpinski udowodnil, ze majac taki F mozemy zdefiniowaé niemierzalny zbiér Z wzorem

Z:{Zl/2":Fe}"}.
nel

Oczywiscie samo istnienie ultrafiltru niegtéwnego wymaga pewnika wyboru. Inne tego typu
konstrukcje wspomniane sg na koncu rozdziatu 4.

Konstrukcja Vitalego pokazuje, ze nie istnieje przedtuzenie miary Lebesgue’a do nie-
zmienniczej miary okreslonej na pelnym o-ciele P(R). Ten rezultat zostal p6zniej uogdl-
niony przez Banacha i Ulama: w zasadzi(ﬂ nie istnieje przedtuzenie miary Lebesgue’a do
jakiejkolwiek miary mierzacej wszystkie podzbiory prostej. Podstawowa wersja twierdze-
nia Ulama znajduje si¢ w bardzo przystepnej ksiazce Oxtoby’ego | Measure and category.

2przez pana Franciszka
3chyba nietrudno dotrzeé do tekstu online
4o znaczy o ile ¢ nie jest liczba kardynalna stabo nieosiagalna, na przyklad gdy ¢ = Xy, Xy, ...


https://en.wikipedia.org/wiki/Solovay_model
https://math.rice.edu/~michael/teaching/426_Spr14/Banach_Mazur.pdf

ROZDZIAYL, 2

Funkcje mierzalne

Licz to, co policzalne, mierz to, co mierzalne,
a to, co niemierzalne, uczyn mierzalnym.
Galileusz

1. Podstawowe wiadomosci

Przypomnijmy, ze dla dowolnej funkcji f : X — Y i dowolnych zbioréw A C X oraz
B C Y, zbiory f[A] i f~![B], zdefiniowane jako

flAl={f(@) e Y :ze A}, [T'[B]={xeX: f(z) € B},

nazywamy, odpowiednio, obrazem zbioru A przez funkcje f oraz przeciwobrazem zbioru B
przez funkcje f. Operacja przeciwobrazu zachowuje wszystkie dzialania mnogosciowe, na
przyktad

I [Q Bn] -NsB),

dla dowolnego ciggu zbioréw B,, C Y; por. Zadanie W przypadku, gdy B = {b} pisze-
my raczej o] niz fT1[{b}], czego nie nalezy myli¢ z obliczaniem wartodci (potencjalnie
istniejacej) funkcji odwrotne;j.

Przypomnijmy, ze ciggto$c funkcji f : R — R mozna wyrazi¢ za pomoca przeciwobrazow
zbioréw przez te¢ funkcje — zbidr f~1[V] jest otwarty dla kazdego zbioru otwartego V' C R.
Istotnie, jedli xg € f71[V] to yo = f(xo) € V, a skoro V jest otwarty to dla pewnego & > 0
mamy (Yo — &,yo + €) C V. Dobierajac teraz 6 > 0 jak w warunku Cauchy’ego ciagtosci
funkcji f w zg, otrzymamy natychmiast (zq — 4,z + ) C f1[V].

Nietrudno jest wykaza¢, ze w istocie funkcja f jest ciagta wtedy i tylko wtedy gdy
przeciwobrazy zbioréw otwartych przez te funkcje sg otwarte. Ten ostatni warunek z kolei
jest réwnowazny faktowi, ze zbiér f~![F] jest domknigty dla kazdego domknietego zbioru
F C R — wynika to tozsamosci R\ f71[F] = f7}R\ F].

Rozwazmy ustalong przestrzen miarowa (X,X%, u) (chwilowo sama miara nie bedzie
odgrywata zadnej roli). Odpowiednio “dobre wzgledem 7 wtasnosci funkecji f : X — R
definiuje sie nastepujaco.

DEFINICJA 2.1.1. Moéwimy, ze funkcja f : X — R jest Y—mierzalna, albo po prostu mie-
rzalna jesli jest jasne jakie o-ciato mamy na mysli, gdy f~[B] € ¥ dla kazdego zbioru
B € Bor(R).

Ponizszy fakt pozwoli wystowi¢ mierzalno$é¢ funkcji w prostszy sposob.
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LEMAT 2.1.2. Niech G C Bor(R) bedzie dowolng rodzing zbioréw, takq ze o(G) = Bor(R),
Wtedy dla mierzalnosci funkcji f : X — R potrzeba i wystarcza, aby f~1[G] € ¥ dla kazdego
Geg.

Dowéd. Rozwazmy rodzing A ztozong z tych B € Bor(R), dla ktérych f~1[B] € ¥. Wtedy
A jest o-ciatem zbioréw. Istotnie, jedli A, € A1 A = U, A, to wtedy f~1[A,] € ¥ dla
kazdego n i

A =Uf A e =

Jedli A € A to takze A° € A, poniewaz f~1[A°] = (f~![A])° € %.
Jako ze A jest o-cialem, z inkluzji G C A wynika Bor(R) = o(G) C A, czyli A =
Bor(R), co dowodzi dostatecznosci warunku — jego konieczno$é jest oczywista. A

WNIOSEK 2.1.3. Kazdy z poniZszych warunkow pocigga mierzalnosé funkcji f: X — R:
(i) {z: f(z) <t} € ¥ dla kazdego t € R;
(i) {z: f(x) <t} € ¥ dla kazdego t € R;
(iii) {x : f(x) >t} € ¥ dla kazdego t € R;
() {z: f(z) >t} € ¥ dla kazdego t € R.

Dowdd. Sprawdzimy dla przyktadu dostateczno$é warunku (i). Niech G bedzie rodzing
polprostych (—oo,t) dla t € R. Wtedy f1[G] € ¥ dla G € G wiec f jest mierzalna, jako
ze G generuje Bor(R), patrz Zadanie [L0]21] A

WNIOSEK 2.1.4. Jesli funkcja f : R — R jest ciggla to jest mierzalna wzgledem Bor(R).

PrzyKrAD 2.1.5 Funkcje f: R — R, ktéra jest Bor(R)-mierzalna nazywamy po prostu
funkcja borelowska. Zauwazmy, ze dla X = [0, 1] lub innego borelowskiego podzbioru prostej
mozemy rozwazy¢ rodzing {B € Bor(R) : B C X}, ktéra jest o-cialem podzbioréw X.
Takie o-ciato bedzie oznaczane Bor(X) — przypomnijmy, ze w topologii za zbiory otwarte
w X uwaza si¢ zbiory postaci U N X, gdzie U C R jest otwarty.

Dla dowolnego A z o-ciata ¥ podzbioréw dowolnej przestrzeni X funkcje x4 : X — R,
gdzie ya(z) =1dlaxz € Aixa(x) =0dlaz ¢ Anazywamy funkcjg charakterystyczng zbio-
ru A. Taka funkcja jest mierzalna, jako ze x ;' [U] jest elementem rodziny {(}, A, A°, X} C X.

Dla dowolnego B € Bor(R) funkcja xp jest wiec borelowska. Zauwazmy, ze xgo nie
jest ciggta w zadnym punkcie prostej, co pokazuje, ze mierzalnosé jest whasnoscia znacznie
ogolniejsza. &

W dalszym ciggu pokazemy, ze wiele naturalnych operacji przeprowadzanych na funk-
cjach mierzalnych prowadzi do funkcji mierzalnych.

LEMAT 2.1.6. Jezeli funkcja f: X — R jest X-mierzalna, a funkcja g : R — R jest ciggla
to funkcja go f : X — R jest X-mierzalna.

Dowéd. Dla dowolnego zbioru otwartego U C R, zbiér g~ [U] jest otwarty na mocy ciagtosci
g stad (go f)7H U] = f g '] € X. A
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WNIOSEK 2.1.7. Jezeli funkcja f: X — R jest X-mierzalna to funkcje ¢ - f, f2, |f] tez sq
Yi-maerzalne.

LEMAT 2.1.8. Jezeli funkcje f,g : X — R sqg X-mierzalne to funkcja f+g jest X-mierzalna.
Dowéd. Wystarczy wykazaé, ze dla h = f + g it € R mamy h™*[(—o0,t)] € ¥. Ale
reX f@+ow)<th= U {o:f@) <pinie: o) <aqh
p+q<t,p,qeQ

co nietrudno sprawdzi¢, korzystajac z gestosci zbioru Q w R. Zauwazmy, ze suma mnogo-
Sclowa w powyzszym wzorze jest przeliczalna, patrz Twierdzenie [0.2.4] i dlatego nalezy do
. A

WNIOSEK 2.1.9. Jezeli funkcje f,g: X — R sq X-mierzalne to takie mierzalne sq funkcje
f ' g,max(f, g)amin<f7 g)
Dowdd. Dowdd wynika bezposrednio z rozwazan powyzej, tozsamosci

2 _ r2__ 2 _
f_g:(f+g)2f g max(f,g):|f 9|2+f+g’

oraz analogicznego wzoru na min(f,g). A

Dodajmy ze mierzalno$¢ iloczynu f - g mozna sprawdzi¢ zapisujac zbior postaci

{o: fz)g(z) <t}
analogicznie jak w dowodzie Lematu 2.1.8]

Czasami wygodnie jest rozwazaé¢ funkcje postaci f : X — R U {—o00,00}. Naturalnie
jest wtedy przyjaé, ze YN-mierzalno$é funkeji f oznacza dodatkowo, ze zbiory f~!(—o0) i
/7 (o0) naleza do Y. Przy takiej umowie mozemy dla dowolnego ciggu funkcji mierzalnych
fn : X — R zdefiniowaé, na przyktad sup,, f,,, bez koniecznosci zaktadania, ze zbiér { f,,(x) :
n € N} jest ograniczony dla kazdego x € X. Podobnie, rozwazamy funkcje f = limsup,, fy,
zadang oczywiscie przez f(x) = limsup,, f,(z). Wystepujace tu pojecie granicy gérnej ciagu
liczbowego, a takze wlasnosci granic gérnych i dolnych przypomniane sa w Dodatku [7]

LEMAT 2.1.10. Jezeli funkcje f, : X — R sq¢ X-mierzalne to mierzalne sq rowniez funkcje
lin}1 inf f,,, limsup f,, iInlf frnssup fa-

Dowéd. Pokazemy dla przyktadu, ze funkcja f = limsup,, f, jest mierzalna — wynika to
bezposrednio z tozsamosci

{z: fla) =00} =N UAz: fulz) > K},

k m n>m
{z: fl@) <t} =U N {z: fulz) <t+1/k},
k mn>m
i analogicznej formuly dla —oco. Drugi ze wzoréw powyzej wynika z faktu, ze na to, aby
f(z) < t potrzeba i wystarcza, aby dla dowolnej matej liczby postaci € = 1/k, prawie
wszystkie wyrazy ciggu f,,(x) spelialty f,(z) <t+1/k. A

WNIOSEK 2.1.11. Granica punktowa zbieznego ciggu funkcji mierzalnych jest mierzalna.
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Intuicyjnie rzecz biorac, kazda przeliczalna operacja wykonywana na funkcjach mie-
rzalnych prowadzi do funkcji mierzalnych i na przyktad kazda funkcja R — R zapisana
“wzorem”, w ktorym wystepuja przeliczalne kwantyfikatory jest borelowska.

PRzZYKELAD 2.1.12 Niech f, : X — R bedzie ciagiem funkcji >-mierzalnych; sprawdzimy,
ze zbior

A ={z :limsup f,(x) > liminf f,(z)} € .

W tym celu nalezy zapisa¢ formalnie warunek definiujacy x € A za pomoca przeliczalnych
kwantyfikatorow. Zauwazmy, ze x € A wtedy i tylko wtedy gdy istnieja liczby wymierne
p, q, takie ze

limsup f,(z) >p>q> lim inf fn(x).

Warunek limsup,, f.(z) > p oznacza ze dla pewnej liczby postaci 1/m nieréwnosé f,(z) >
p + 1/m zachodzi dla nieskonczenie wielu n; analogiczna uwaga dotyczy warunku ¢ >
liminf f,,(x). Tym samym z € A wtedy i tylko wtedy gdy

(Fp,q € Q,p > q)(Im)(Vk)(3ni,ne > k) fu, () > p+ 1/m, fr,(x) < qg—1/m,
co pozwala napisac
A=UUN U & fu@ >p+Um)n{e: ful@) <g—1/m} €3,
p>qg m k nins>k

(tutaj p,q € Q, a wszystkie pozostate zmienne sg naturalne). Powyzszy przyktad ilustruje
formalng droge sprawdzania mierzalnosci. Oczywiscie w tym przyktadzie troche proscie;
jest sprawdzié, ze X \ A € ¥: zauwazmy, ze © ¢ A oznacza, ze ciag f,(z) jest zbiezny, co
pozwala zapisaé

X\NA=U N {z:lfu(@) = fao(2)] < 1/m},

m k nine>k

poniewaz zbieznosé ciggu liczbowego jest rownowazna warunkowi Cauchy’ego.

Na koniec tej czesci odnotujemy nastepujacy prosty, ale czesto wykorzystywany fakt.

LEMAT 2.1.13. Kazdg Y-mierzalng funkcje f : X — R mozZna zapisaé¢ w postaci f =
[T — [, réznicy funkcji mierzalnych i nieujemnych.

Dowdd. Tstotnie, niech f* = max(f,0), f~ = —min(f,0); wtedy oczywiscie f = fT — f~,
a funkcje f*, f~ sa mierzalne na mocy Wniosku [2.1.9, A

2. Funkcje proste

Dla ustalonego o-ciata ¥ na X mozemy zdefiniowa¢ dos¢ bogata rodzine funkcji mie-
rzalnych X — R.

DEFINICJA 2.2.1. Funkcje f : X — R nazywamy funkcja prosta jesli zbior wartosci f[X]
jest skonczony.

Funkcja charakterystyczna y 4 dowolnego zbioru A C X jest prosta. W istocie wszystkie
funkcje proste sa skonczonymi kombinacjami liniowymi funkcji charakterystycznych.



G. Plebanek, MIARA T CALKA Rozdziat 2: Funkcje mierzalne 35

LEMAT 2.2.2. Funkcja f: X — R jest prosta wtedy i tylko wtedy gdy
f=> aixa,
<n
dla pewnych liczb a; € R i zbiorow A; C X. Funkcja prosta jest Y-mierzalna wtedy i tylko
wtedy gdy f mozna wyrazi¢ jako kombinacjq lintowq funkcyi charakterystycznych zbiorow z

3.

Dowdd. Jezeli f[X]| = {a1,...,a,} to biorac A; = f~'[a;] mamy f = >,c, a;xa,. Na od-
wrot, dla funkeji postaci f = 37, a;xa, jej zbidr wartosci zawiera si¢ w skoficzonym zbiorze
ztozonym z 0 i wszystkich liczb bedacych sumami pewnych elementéw zbioru {ay, ..., a,}.
Drugie stwierdzenie wynika natychmiast z tych uwag. A

Z punktu widzenia opisanego ponizej rodzina funkcji prostych mierzalnych jest dosc¢

bogata.
TWIERDZENIE 2.2.3. Niech f : X — R bedzie funkcjg nieujemng, mierzalng wzgledem
pewnego o-ciata ¥ podzbiorow X. Wtedy istnieje cigg mierzalnych funkcji prostych s, :
X — R, taki ze

0< s1(a) <s2(@) <.y i limsala) = f(a),
dla kazdego x € X. Jesli ponadto funkcja f jest ograniczona to cigg s, mozna dobrac tak,
aby byt jednostajnie zbieiny do f.
Dowdod. Ustalmy n i dla kazdego 1 < k£ < n2" niech

E—1 k

An,k:{l"iQT < flz) < 27};

wtedy A, € X, jako ze funkcja f jest mierzalna. Niech s,, bedzie zdefiniowana tak, ze
kE—1
Sn(.f) = 27, dla €T € An7k,

oraz s,(x) =n gdy f(z) > n. Niewatpliwie funkcje proste s,, zdefiniowane w ten sposéb sa
mierzalne i nieujemne. Jezeli © € A, dla pewnego k to s,(z) = (k — 1)/2", natomiast

3n+1(x) = (k - 1)/2n lub Sn-i-l(x) = (Qk - 1)/2n+17

czyli s, (z) < spp1(x).

Dla ustalonego = i n > f(z) mamy f(x) >
lim, s,(z) = f(x). Jesli f jest ograniczona to 0 <
o ile tylko n ogranicza f[X]| z gory. A

sp(x) = f(x) — 1/2™, co pokazuje, ze
f(z) — s, < 1/2" jednostajnie po = € X,

3. Prawie wszedzie

Dla ustalonej przestrzeni miarowej (X, 3, ) i funkcji mierzalnych f, g : X — R méwimy,
ze f = g p-prawie wszedzie jezeli u({z : f(x) # g(x)}) = 0. W wielu rozwazaniach zmiana
wartosci danej funkcji na zbiorze miary zero nie zmienia jej istotnych wtasnosci i dlatego
funkcje réwne prawie wszedzie mozna bedzie, do pewnego stopnia, utozsamiac¢. Ale warto
pamietac, ze to zalezy od punktu widzenia: g = 0 A-prawie wszedzie, ale xq nie jest ciggla
w zadnym punkcie prostej.
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Ogolniej mozemy o dowolnej (ale “mierzalnej”) whasnosci ¢ punktéw x € X powiedzied,
ze ¢(x) zachodzi prawie wszedzie jezeli p({z : —p(z)}) = 0. Taki charakter ma ponizsza
definicja.

DEFINICIA 2.3.1. Cigg funkcji mierzalnych f, : X — R jest zbieiny p-prawie wszedzie
(albo po prostu prawie wszedzie) do funkcji f jezeli im, f,(x) = f(x) dla wszystkich x
spoza pewnego zbioru miary zero.

PRzYKEAD 2.3.2 Niech X = [0, 1]; rozwazmy funkcje f,(z) = 2™. Wtedy f,, — 0 A-prawie
wszedzie oraz f, — 1 pu-prawie wszedzie, gdzie u = d; jest delta Diraca.

Przypomnijmy, ze dla funkcji okreslonych na prostej rzeczywistej lub jej podzbiorach
naturalne jest rozwaza¢ ich mierzalno$¢ wzgledem o-ciata Bor(R), ale takze wzgledem o-
ciata £ zbioréw mierzalnych wzgledem miary Lebesgue’a. Funkcje £-mierzalne bywaja tez
nazywane A-mierzalnymi; funkcje Bor(R)-mierzalne nazywa sie po prostu funkcjami bore-
lowskimi. Ponizsze twierdzenie jest w pewnym sensie faktem analogicznym do Twierdzenia

LeT

TWIERDZENIE 2.3.3. Dla kazdej funkcji A\-mierzalnej f istnieje funkcja borelowska g, taka
ze [ = g \-prawie wszedzie.

Dowdd. Niech I, I, . .. bedzie ciagiem zawierajacym wszystkie odcinki postaci (p, q), p, q €
Q (por. Twierdzenie [0.2.4). Dla kazdego n zbiér f~[I,] jest mierzalny, a wiec na mocy
Twierdzenia mamy A, C f'I,] € B, i A(B, \ 4,) = 0 dla pewnych zbioréw
borelowskich A,, B,. Tym samym f~![I,] = A, U Z,, gdzie Z, jest miary zero. Niech
Z = U, Zn; wtedy A(Z) = 0 i istnieje zbior borelowski C, taki ze Z C C'i A\(C') = 0.
Zdefiniujmy funkcje g tak ze g(z) = f(z) dlaz ¢ C oraz g(z) =0dlaxz € C. Wtedy g = f
prawie wszedzie. Ponadto

g L) =A,\C gdy0¢ I,
g L) =A,uC  gdy0¢€ I,;

co w szczegdlnoscei oznacza, ze g '[I,] € Bor(R). Stad i z Lematu wynika, ze g jest
funkcja borelowska. A

4. Zbiezno$¢ ciggéw funkcyjnych

Jak wynika z Twierdzenia kazda funkcja mierzalna jest granicag punktows cig-
gu funkcji prostych, a kazda funkcja mierzalna ograniczona jest jednostajng granica ciggu
takich funkcji (tutaj dla funkcji niekoniecznie nieujemnych nalezy zastosowaé jeszcze Le-
mat . Jak sie¢ za chwile przekonamy, za pomoca miary mozna definiowaé i glebiej
analizowa¢ rozne rodzaje zbieznoéci ciagéw funkcyjnych.

Ciag funkcji f, : [0,1] — R, f,(z) = 2™ jest dobrze znanym przyktadem punktowo
zbieznego ciggu funkcji, ktory nie jest zbiezny jednostajnie. Zauwazmy, ze dla dowolnego
e > 0 ciag f, zbiega jednostajnie do zera na odcinku [0, 1 — €]. Mozna wiec powiedzieé, ze
usuniecie zbioru matej miary poprawia zbieznosé¢ ciggu. To zjawisko ma charakter bardzo
ogblny, o czym mowi tak zwane twierdzenie Jegorowa.
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TWIERDZENIE 2.4.1. Jezeli (X, %, ) jest skoriczong przestrzenig miarowg, a f, : X — R
jest ciggiem funkcji mierzalnych zbieznym prawie wszedzie do funkcji f to dla kazdego € > 0
istnieje A € X, taki Ze u(A) < e i cigg f,, jest jednostajnie zbieiny do f na zbiorze X \ A.
Dowdd. Zatézmy po prostu, ze f(z) = lim, f,(z) dla kazdego = € X — w ogdlnym
przypadku zbior punktéow, w ktorych ciag nie jest zbiezny jest miary zero i mozna go
usunaé z dalszych rozwazan. Dla dowolnych m,n € N rozwazamy zbiory

Blm,n) = (s 1) )] < 1/m).

Wtedy E(m,1) C E(m,2) C ... dla kazdego m oraz
UE(m,n) =X,

co wynika z tego, ze f,(z) — f(z), czyli ze dla kazdego x istnieje n, ze |fi(z)— f(x)| < 1/m.
Ustalmy e > 0; poniewaz E(m,n) T X wiec X \ E(m,n) | 0 i, korzystajac z ciagtodci
miary skonczonej na zbiorze pustym, dla kazdego m istnieje n,,, takie ze

WX\ E(m, ) < /27
Wtedy, ktadac
A= U(X \ E(m,n;,)), mamy;

p(A) <Y X\ E(m,ng)) <) e/2" =«

Ponadto |f,(z) — f(x)] < 1/m dlan > n,, ix ¢ A, co oznacza jednostajna zbieznos¢ f, na
X\A a

Zaltozenie p(X) < oo w twierdzeniu Jegorowa jest istotne: ciag funkeji f,(x) = x/n na
prostej zbiega punktowo do zera i nie jest zbiezny jednostajnie na zadnym nieograniczo-
nym podzbiorze prostej. Dla potrzeb licznych zastosowan Twierdzenia [2.4.1| wprowadza sie
nastepujaca definicje.

DEFINICJA 2.4.2. Mowimy, Ze cigg funkcji mierzalnych jest niemal jednostajnie zbiezny
jezeli dla kazdego € > 0 cigg f, zbiega jednostajnie na dopetnieniu pewnego zbioru miary
< E.

Wprowadzimy teraz inne wazne pojecie zbieznosci ciggéw funkcyjnych: zbieznosé we-
dhug miary.
DEFINICIA 2.4.3. Cigg [, : X — R funkcji mierzalnych jest zbiezny do funkcji f wedlug
miary jezeli dla kazdego € > 0

Tim p({e: |fule) = f(2)] > <}) = 0.
Piszemy f, —— f, aby odnotowaé zbiezno$é¢ wedtug miary p.

WNIOSEK 2.4.4. Cigg funkcyjny zbieiny niemal jednostajnie jest zbiezny wedtug miary. W
szezegolnosci, cigg funkcyiny zbiezny prawie wszedzie na przestrzeni o mierze skonczonej
jest zbiezny wedtug miary.
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Dowdd. Jezeli funkcje f, zbiegaja do f niemal jednostajnie to (w szczegblnosci) dla do-
wolnego ¢ istnieje zbiér A, taki ze p(A) < e i |fu(x) — f(z)| < € dla duzych n i wszystkich
r ¢ A Wtedy {z: |fu(z) — f(x)] > e} C A wiec

plz : [fulz) — f(2)] > e}) <p(A) <e
dla dostatecznie duzych n. Drugie stwierdzenie wynika z Twierdzenia [2.4.1] A

Zbieznos¢ wedtug miary jest jednak witasnoscia istotnie stabsza niz zbiezno$é¢ prawie
wszedzie, nawet przy zatozeniu skonczonosci miary. Ponizszy przyktad nosi nazwe “wedru-
jacego garbu”.

PRZYKLAD 2.4.5 Niech f, : [0,1] — R bedzie ciggiem

X[0,1]5 X[0,1/2]5> X[1/2,1]5 X[0,1/4]» X[1/4,1/2]5 - - -

gdzie w ogoblnosci “garb” ma dlugosé 1/2" i przemierza caly odcinek [0,1]. Bez trudu
sprawdzamy, ze f, zbiega do zera wedlug miary Lebesgue’a, ale liminf, f,(z) = 0 i
lim sup,, fn(x) = 1 dla kazdego x € [0,1]. $

W powyzszym przyktadzie mozna bez trudu wskaza¢ podciagi ciagu f, zbiezne prawie
wszedzie do zera. To jest ogdlna prawidtowosé, wystowiona w ponizszym twierdzeniu Riesza.

TWIERDZENIE 2.4.6. Niech (X,%, u) bedzie dowolng przestrzenig miarowq i niech f, :
X — R bedzie ciggiem funkcji mierzalnych, spetniajgcym warunek Cauchy’ego wedtug mia-
Ty, to Znaczy

lim ({2 = [fo(z) = fi(2)] > €}) = 0,

n,k—o0

dla kazdego € > 0. Wtedy
(a) istnieje podcigg n(k) liczb naturalnych, taki ze cigg funkcji fo) jest zbieiny prawie
wszedzie oraz wedtug miary do pewnej funkcji f;
(b) cigg f, jest zbieiny wedlug miary do f.

Dowdd. Zauwazmy, ze wspomniany w zalozeniu warunek Cauchy’ego implikuje, ze dla
kazdego k istnieje n(k), takie ze dla dowolnych n,m > n(k) zachodzi

p{z [ fal@) = fnl2)] > 1/2°}) < 1/2%,

przy czym mozemy dodatkowo zazadaé, aby n(1) < n(2) < .... Niech
By = {a 1 [fay (@) = fagsny (@) > 1/2°}, Ay = | Ex;

n>k
wtedy p(Ag) < 1/2k—1 i dlatego zbisr A = (), Ay, jest miary zero. Jezeli ¢ A to dla
kazdego k iz ¢ A mamy
| fu) () = [+ (@)] < 1/2°

dla wszystkich ¢ > k. Z nieréwnosci trojkata otrzymujemy, ze dla 7 > ¢ > k zachodzi

| fu() () = fagp(@)] < 1/271
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Tym samym, dla « ¢ A ciag liczbowy f,,;)(z) spelnia warunek Cauchy’ego i dlatego jest
zbiezny do liczby, ktéra oczywiscie oznaczymy f(x). W ten sposéb otrzymujemy, ze fo )
zbiega prawie wszedzie do funkcji f.
Z powyzszych rozwazan wynika, ze {x : [f(z) — famw(2)] > €} C Ai, co dowodzi
zbieznosci tego podciagu do funkeji f wedtug miary; tym samym cze$¢ (a) zostala wykazana.
Dla sprawdzenia (b) wystarczy zauwazy¢, ze f,, —— f, co wynika z zaleznosci

{z: [fulx)=f(2)] > €} S{z: [ful@)=fam ()] > €/2}0{a : | fa () —f(2)] = £/2},
i warunku Cauchy’ego dla zbieznosci wedtug miary. A

Warto podkresli¢, ze badanie wtasnosci ciagéw zbieznych wedtug miary wymaga czesto

sporego wysitku, por. Zadania [5|[I6HIg|



G. Plebanek, MIARA T CALKA Zadania do rozdziatu 2 40

5. Zadania

2.5.1 Sprawdzi¢, ze operacja przeciwobrazu zbioru przez funkcje zachowuje podstawowe
operacje mnogosciowe. Zauwazyc, ze

f [LnJAn] - U/l

dla dowolnych zbioréw A, z dziedziny funkcji f. Zauwazmy, ze inkluzja f[A; N As] C
f[A1] N f]As] moze by¢ wlasciwa.

2.5.2 Niech f,, : X — R bedzie ciagiem funkcji mierzalnych wzgledem o—ciata 3. W kazdym
z podanych przyktadéw opisa¢ warunek formuty logiczng, wykorzystujaca tylko kwantyfi-
katory postaci Vn i dk.

(i) ciag fa(x) jest rosnacy;

(11) fn(x) < 2 dla wszystkich n;
(111) fn(x) < 2 dla prawie wszystkich n;
(iv) fn(x) < 2 dla nieskonczenie wielu n;

(v) sup,, fa(z) < 2
(vi) sup, fu(z) < 2;
(vii) ciag f.(x) jest zbiezny;
(viii) limsup f,,(z) > liminf f,(x).
Na podstawie tych formul, poda¢ w kazdym przyktadzie wzér na zbior x, dla ktorych
warunek jest spetniony.

2.5.3 Wykazaé, ze suma zbieznego szeregu funkcji mierzalnych jest mierzalna.

2.5.4 Niech f : R — R bedzie dowolng funkcja. Niech F. = {x € R : osc,(f) > €},
gdzie osc,(f) > e oznacza, ze dla kazdego 6 > 0 istnieja a’, 2" € (x — 6,2 + ) takie ze
f(2) = f(a")] > e.

Sprawdzi¢, ze zbiér F. jest domkniety. Wywnioskowaé¢ stad, ze zbidr punktéow ciagtosci
kazdej funkcji jest borelowski.

2.5.5 Niech dla kazdego t z pewnego zbioru T' dana bedzie funkcja ciagta f; : R — R.

Rozwazmy funkcje h = sup,cp fi- Wykazaé, ze h jest funkcja borelowska (nawet jesli zbiér
indekséw T jest nieprzeliczalny). W tym celu rozwazy¢ zbiér postaci {x : h(z) > a}.
2.5.6 Sprawdzi¢, ze kazda funkcje prosta, mierzalna wzgledem o—ciala ¥ C P(X) mozna
zapisa¢ w postaci

(i) Yicn @iXa,, gdzie A; € ¥, Ay C Ay C ... C A, oraz

(i) Yicn bixB,, gdzie B; € ¥, a By, ..., B, sa parami roztaczne.
2.5.7 Sprawdzi¢, ze rodzina funkcji prostych jest zamknieta na kombinacje liniowe, branie
modutu i mnozenie.

2.5.8 Niech f : R — R spelnia warunek Lipschitza, tzn. |f(z) — f(y)| < L|x —y| dla pewnej
statej L. Pokazaé, ze f[A] jest miary Lebesgue’a zero dla kazdego A miary zero.

2.5.9 Wywnioskowa¢ z poprzedniego zadania, ze obraz zbioru mierzalnego przez funkcje
spelniajaca warunek Lipschitza jest mierzalny.
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WSKAZOWKA: f[F] jest zwarty gdy [ jest ciaglai F' C R jest zwarty; zastosowa¢ Wniosek
163

2.5.10 Wykazaé, ze w zadaniach [§] i [J] wystarczy zakladaé, ze funkcja f spelnia warunek
Lipschitza lokalnie, na kazdym odcinku postaci [—n,n|, a wiec w szczegélnosei gdy f ma
ciggta pochodna.

2.5.11 Zauwazy¢, ze dowolna funkcja niemalejaca f : R — R jest borelowska.

2.5.12 Skonstruowaé funkcje schodkowg Cantora — niemalejaca funkcje ciagta ¢ : [0,1] —
0,1], taka ze g[C] = [0, 1], gdzie C' C [0, 1] jest trojkowym zbiorem Cantora.
WSKAZOWKA: intuicyjnie rzecz biorac, wystarczy potozyé¢ g(z) = 1/2 dla = € (1/3,2/3);
gx) =1/4dlaxz € (1/9,2/9), g(x) = 3/4 dla z € (7/9,8/9 itd. Trzeba jednak troche ten
proces sformalizowaé, aby zademonstrowaé cigglosc.

2.5.13 Stosujac funkcje g z poprzedniego zadania zauwazy¢, ze obraz zbioru mierzalnego
przez funkcje ciggla nie musi by¢ mierzalny.

Sprawdzi¢ tez, ze przeciwobraz zbioru mierzalnego przez funkcje ciggta nie musi by¢ mie-
rzalny. Tutaj warto rozwazy¢ funkcje h, h(x) = 1/2 (x + g(x))
Nastepnie pogodzié¢ te odkrycia z twierdzeniami i definicjami z rozdzialu drugiego!

2.5.14 Zauwazy¢, ze jesli u(X) < oo, a f : X — R jest funkcja mierzalng, to dla kazdego
e > 0 istnieje zbiér A, taki ze u(A) < e i f jest ograniczona na X \ A.

2.5.15 Niech | f,| < M, gdzie f, — f. Sprawdzié, ze |f| < M prawie wszedzie.

2.5.16 Niech f, bedzie niemalejacym ciggiem funkcji mierzalnych, zbieznych do f wedtug
miary. Udowodnié, ze wtedy f,, — f prawie wszedzie.

2.5.17 Sprawdzi¢, ze jesli f, == f i gn —— g to fn+ gn —— f + g. Pokazaé, ze fngn — fg
przy dodatkowym zaltozeniu, ze f, i g, sa wspolnie ograniczone przez stala.

2.5.18 Niech y bedzie miarg skoficzona. Wykazaé, ze jedli f,, -~ f oraz f(x) # 0 dla kazdego
z,to 1/f, = 1/f.

2.5.19 Niech p(X) < oco. Udowodnié, ze jedli f, = f i g, —— g to fugn —— fg (por.
Zadanie . Pokazaé, ze zatozenie skonczonosci miary jest istotne.

6. Problemy

2.6.A Udowodni¢, ze na przestrzeni z miarg skoficzona p, zbieznosé f, —— f jest réwno-
wazna stwierdzeniu
kazdy podciqg f,, ma podcigg zbieiny prawie wszedzie.
Zauwazy¢, ze ten fakt prowadzi to do innych dowodéw w zadaniach typu

2.6.B Niech A C R bedzie zbiorem mierzalnym miary Lebesgue’a skonczonej. Udowodnié,
ze funkcja

g:R—=R, gz)=XAN(z+ A)),

jest ciagta (tutaj A oznacza miare Lebesgue’a, x + A jest przesunieciem zbioru).
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2.6.C Wykazaé, ze kazda mierzalna w sensie Lebesgue’a funkcja f : [0,1] — R ma nastepu-
jaca wtasnosé: Dla kazdego € > 0 istnieje funkcja ciagla g, taka ze

AM{z €01 1f(2) - g(a) > e}) <e.

Wywnioskowaé¢ stad, ze istnieje ciag funkcji ciagtych g, zbiezny do f prawie wszedzie. W
istocie mozna takie g, wybra¢ klasy C*°.

WSKAZOWKA: Zaczaé od przypadku f ograniczonej. W sprawie funkcji gtadkich: poszukaé
konstrukeji “gtadkiego kapelusza”; patrz na przyktad Bump function

2.6.D Wykazaé, ze nie istnieje ciag funkcji ciggltych f, : R — R, zbiezny punktowo do
funkcji xo (czyli funkcji charakterystycznej zbioru Q).

WSKAZOWKA: I sposOb: mozna przeprowadzi¢ dowdd nie wprost, wykorzystujgc jedynie
wtasnosé Darboux. II sposéb: udowodnié, ze granica ciggu funkeji ciagtych musi mieé¢ punkt
ciagtosci.

2.6.E Niech f : R — R bedzie dowolna funkcja, speliajaca warunek f(z+y) = f(z)
dla wszystkich x,y. Sprawdzié, ze wtedy f(z) = ax dla wszystkich x € Q (a = f(1)
Udowodnié, ze jesli funkcja f jest mierzalna to f jest po prostu funkcja liniowa, f(z
dla wszystkich z € R.

+f(y)
).
) =

2.6.F Niech p i v beda dwiema bezatomowymi miarami probabilistycznymi, okreslonymi
na borelowskich podzbiorach [0, 1]. Udowodnié, ze istnieje przedziat [a,b] C [0, 1], taki ze

p(la, b)) = v(la, 0]) = 1/2.
2.6.G Niech p i v beda dwiema bezatomowymi miarami probabilistycznymi, okreslonymi
na pewnym o—ciele ¥ podzbioréw X. Udowodnié¢, ze istnieje zbiér A € 3, taki ze u(A) =

v(A) =1/2.

7. DODATEK: limsup a, oraz liminf a,

Niech (a,) bedzie ciagiem liczb rzeczywistych. Liczbe a nazywamy punktem skupienia
ciagu jesli istnieje podciag ciagu (a,) zbiezny do a. Podobnie definiujemy fakt, ze oo lub —oo
jest punktem skupienia ciggu. Przypomnijmy, ze kazdy ciag ograniczony zawiera podciag
zbiezny (a wiec ma punkt skupienia bedacy liczba).

2.7.1 Pokazaé, ze zawsze istnieje najmniejszy punkt skupienia danego ciagu (bedacy liczba
badZz —oo, 00). Te wielkosé oznaczamy liminf,, .., a,.

2.7.2 Zauwazy¢, ze liminf, ., a, = —oo wtedy i tylko wtedy gdy ciag (a,) jest nieograni-
czony z dotu.

2.7.3 Udowodni¢, ze a = liminf, . a, (gdzie a jest liczba) wtedy i tylko wtedy gdy dla
kazdego € > 0 mamy a, > a — ¢ dla prawie wszystkich n i a, < a + ¢ dla nieskonczenie
wielu n.

2.7.4 Udowodni¢, ze liminf, . a, = lim,_. infy>, ax.
2.7.5 Sprawdzi¢, ze liminf, . (a, + b,) > liminf, . a, + liminf, . b,.

2.7.6 Zdefiniowac analogiczne pojecie lim sup i zapisa¢ jego podstawowe wlasnosci.
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2.7.7 Zauwazy¢, ze ciag jest zbiezny wtedy i tylko wtedy gdy jego granica gorna jest rowna
dolnej i jest liczbg rzeczywista.

2.7.8 liminf, . (a, — b,) = a — limsup,,_, b, gdy lima, = a.



ROZDZIAYL, 3

Catka

Does anyone believe that the difference between the Le-
besgue and Riemann integrals can have physical signi-
ficance, and that whether say, an airplane would or
would not fly could depend on this difference? If such
were claimed, I should not care to fly in that plane
Richard W. Hamming
W niniejszym rozdziale wprowadzimy i zbadamy centralne pojecie skryptu, czyli catke
typu Lebesgue’a, zdefiniowang na dowolnej przestrzeni miarowej o-skonczonej. Zaltozenie
o-skoniczonosci nie jest tak naprawde istotne, ale pozwala omingé¢ kilka komplikacji, por.
Problemy [6lA-B. Jak sie okaze w przypadku prostej rzeczywistej, catka Lebesgue’a ma
zastosowanie do znacznie szerszej rodziny funkeji niz klasyczna catka Riemanna.

1. Calka z funkcji prostych

W tej czesci bedziemy rozwazaé ustalona przestrzen miarowa (X, X, u). Catkowanie
jest operacja liniowa, przypisujaca funkcjom wartosci liczbowe. Poniewaz catka z funkcji
nieujemnej ma wyrazaé¢ “pole pod wykresem funkcji” wiec jasne, ze powinnismy przyjac
Jx xa dp = p(A) dla A € ¥, oraz ponizsza definicje. Dla symboli co i —oo, oprécz konwencji
x+00=00,r—00=—00 dlaz € R, przyjmujemy dodatkowo

0-00=0-(—00)=0.
Przypomnijmy, ze wyrazeniu oo — oo nie mozna nadacé sensu liczbowego.
DEFINICJA 3.1.1. Jesli f = 3, aixa, dla A; € X to definiujemy
/ fdp = Z%‘N(Ai),
X i<n

jesl tylko wyrazenie po prawej stronie wzoru ma sens liczbowy. Mowimy, ze funkcja f jest
catkowalna jezeli [y f du ma wartosé skonczong.

Tym samym dla f = 2x(01] + €X[3,00) Mmamy [ f dA = 2 gdy ¢ = 0; wartos¢ tej calki
jest oo dla ¢ > 01 —oo dla ¢ < 0. Dla funkcji g = X|—00,0) — X[1,00) WyTazenie [p g d) nie ma
sensu liczbowego.

LEMAT 3.1.2. Definicja catki z funkcji prostej jest poprawna, to znaczy
jezeli f = ZaiXAz‘ = Z bixs, to Z%M(Ai) = Z bu(B;).
i<n i<k i<n i<k

Dowéd. Patrz Zadanie B[l A
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Oprocz catki po calej przestrzeni mozemy rozwazaé catke na dowolnym zbiorze A € 3;
przyjmujemy po prostu za definicje wzor

/Afduzfxf-xAdu-

TWIERDZENIE 3.1.3. Dla funkcji prostej mierzalnej h i funkcji prostych catkowalnych f i
g zachodzq nastepujgce zaleznosci

(i) [x(a-f+b-g)du=afy fdu+b[ygdu (tutaj a,b € R);

(i) jezeli h = 0 prawie wszedzie to [y h du = 0;

(1ii) jezeli f < g prawie wszedzie to [y f du < [y g du;

() [[x(f+g) dul < [x [f] du+ [x |g] dp;

(v) jezelia < f <btoau(X) < [y fdu<bu(X);

(vi) jezeli [x h dp =0 i h >0 prawie wszedzie to h = 0 prawie wszedzie;

(vii) dla A, B € X2, jezeli ANB =1 to

. fau=[ rau+ [ fan

Dowdd. Wzér (i) dla a = b = 1, wynika natychmiast z poprawnosci definicji calki z funkcji
prostych; rozszerzenie tego wzoru na dowolne a,b € R to po prostu rozdzielnos¢ mnozenia
wzgledem dodawania.

Jezeli h = 0 prawie wszedzie to mozemy przedstawié¢ h jako Y, a;xa,, gdzie u(A;) =01
dlatego [y h dp = 0.

Zauwazmy, ze jeSli f > 0 prawie wszedzie to f = h' + >, a;x 4, dla pewnej funkcji A/
rownej zero prawie wszedzie i a; > 0; stad i z (ii) otrzymamy [y f du > 0. Aby sprawdzié
(iii) piszemy g = f + (g — f) 1 stosujac te uwage, otrzymujemy na mocy (i)

/deﬂ</xfd/t+/x(g—f)duz/)(gdu'

(iv) wynika z (iii) i nieréwnosci —|f + g| < f 4+ ¢ < |f + g|. Podobnie sprawdzamy (v).
Czesé (vi) jest oczywista.
Wzoér w (vii) wynika stad, ze xaus = Xa + XB, 0 ile AN B =0 i dlatego

/Aude'u:/XfXAUBdM:/XfXAd“‘i‘/XfXBdM:/Afd/l-i-/de,u.

2. Caltka z funkcji mierzalnych

W dalszym ciagu rozwazamy funkcje na ustalonej o-skonczonej przestrzeni (X, X, u) —
zaktadamy milczaco, ze wszystkie omawiane funkcje sg Y-mierzalne. Zdefinujemy wpierw
catke z funkcji mierzalnej nieujemnej f : X — R. Zauwazmy, ze jesli s jest nieujemna
funkcjg prostg, przedstawiong w postaci s = 3, a;xa,, gdzie A; s parami rozlgczne i
a; > 0 to warunek 0 < s < f oznacza, geometrycznie rzecz biorgc, ze prostokaty postaci
A; x [0, a;] znajduja sie pod wykresem funkcji f i dlatego powinno by¢ tak, ze [y f du >
[x s du. Istotnie, przyjmujemy nastepujaca definicje.
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DEFINICIA 3.2.1. Dla funkcji nieujemnej mierzalnej f definiujemy

/ fdu:sup{/ sdp:0<s<f},

X X

gdzie supremum jest liczone po funkcjach s prostych mierzalnych. Funkcje f nazywamy
catkowalng, jezeli catka z f jest skonczona.

Zauwazmy, ze w istocie caltka z funkcji nieujemnej f moze by¢ zdefiniowana jako supre-
mum wartosci [y s du, brane po funkcjach prostych catkowalnych, por. Problem [6lA-B.
W wielu przypadkach wygodniej jest operowaé raczej ponizszym twierdzeniem niz wzorem
podanym w Definicji [3.2.1

TWIERDZENIE 3.2.2. Jesli [ jest nieujemnqg funkcjg mierzalng, a s, ciggiem funkcji pro-
stych, takim ze s1 < so < ... 1 lim, s, = f prawie wszedzie to

/fdu:hm/ Sy dpe.
X noJx

Dowdéd. Poniewaz ciag catek [y s, du jest niemalejacy na mocy Twierdzenia m(iii) wiec
faktycznie granica lim,, [y s, du, wladciwa lub niewtasciwa, zawsze istnieje oraz na mocy
definicji catki zachodzi nieréwnos¢ [y f dup > lim, [y s, du.

Rozwazmy funkcje prosta g, taka ze 0 < g < fig = X, aiXa,, gdzie A; sg parami
roztgcznymi zbiorami miary skonczonej. Wtedy Xy = U, A; ma miare skorficzong; niech
M = max; a; (w tym momencie wielkosci pu(Xy) i M sa ustalone!).

Z twierdzenia Jegorowa [2.4.1] s,, zbiega do f niemal jednostajnie na zbiorze X,. Dla
ustalonego € > 0 istnieje A C X, taki ze u(A) < /M izbieznosé na X\ A jest jednostajna.
Tym samym dla duzych n mamy nieréwnos¢

9(x) = sn(2) < f(2) = sa(2) < /p(Xo),
dla z € X, \ A i dlatego

/gdu=/ gduz/ gdu+/gdu<
X Xo Xo\A A

| (swte/n(Xo)) du+ Mp(A) < [ spdp+e+e,
X()\A Xo

co dowodzi, ze lim [y s, dp > [ g dp. A

Wreszcie catke z funkeji mierzalnych niekoniecznie nieujemnych definiujemy za pomoca
rozktadu opisanego w Lemacie [2.1.13]

DEFINICIA 3.2.3. Mowimy, ze funkcja mierzalna f : X — R jest catkowalna jezels

[ 11 dpe < oo
X

w takim przypadku definiujemy catke wzorem

JoFdu= [ du= [ 5 an.
gdzie f = ft — f~ jest rozkladem na f* =max(f,0) i f~ = —min(f,0).
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Zauwazmy, ze funkcja f jest calkowalna wtedy i tylko wtedy gdy funkcje f* i f~
sa catkowalne. Oczywiscie w przypadku, gdy [y fT du = oo i [y f~ dp < oo czym$
naturalnym jest przyja¢ [y f du = oo. Zauwazmy tez, ze dla funkcji catkowalnej f i A € X,
zachodzi wzoér

Afdﬂz/){f‘XAdU-

Teraz bez trudu rozszerzymy podstawowe wiasnosci catki (patrz [3.1.3) na przypadek
funkcji mierzalnych.

TWIERDZENIE 3.2.4. Dla funkcyi catkowalnych f, g @ funkcji mierzalnej h zachodzg naste-
pujgce zaleznosci

(i) [x(a-f+b-g)du=afy fdu+b[xgdu (tutaja,b € R);

(i) jezeli h = 0 prawie wszedzie to [y h du = 0;

(1ii) jezeli f < g prawie wszedzie to [y f du < [y g du;

() |[x(f+9g) dul < [x [f] du+ [x |g] dp;

(v) jezelia < f <btoau(X) < [y fdu<bu(X);

(vi) jezeli [ h du =0 i h >0 prawie wszedzie to h = 0 prawie wszedzie;

(vii) dla A, B € X2, jezeli AN B =1 to

AUdeu:Afdu+[9fdu-

Dowdd. Warunek (i) dla funkcji nieujemnych f, g mozemy, korzystajac z Twierdzenia|2.2.3]
dobra¢ niemalejace ciagi funkcji prostych s, i t,, takie ze zachodzi zbiezno$é¢ punktowa

sp, — fit, — g. Wtedy s, +t, — f+ g wiec korzystajac z Twierdzenia i13.1.3(1)

otrzymujemy

/ (f+g) dp = lim/ (Sp+tn) dpu = lim/ Sn d,u—Him/ tp du = / f du—i—/ g dp.
X noJx noJx noJx X X
Teraz rozszerzenie wzoru na przypadek dowolny wynika z Definicji oraz tozsamosci
(f+a) "+ +g =(+g) +f +g"

(ii) jest oczywiste.

Ad (iii): W przypadku 0 < f < g nier6wnosé [y f du < [y g dp wynika natychmiast z
Definicji [3.2.1} W ogdélnym przypadku, piszac f = f* — f~ig=¢" — ¢, mamy f* < g*
if~>g9g,czyli

/f*du</g+du i /g’du>/f’du;
X X X X

odejmujac te nieréwnosci stronami otrzymujemy zadang zaleznosc.

(iv) i (v) wynikaja bezposrednio z (iii), ale (vi) wymaga nowego argumentu:

Zatbézmy, ze h nie jest prawie wszedzie réwna zeru. Wtedy dla zbioru A = {z : h(z) > 0}
mamy pu(A) > 0; oznaczajac A, = {z : h(z) > 1/n}, spelniona jest zaleznos¢ A = U, A4,,
a zatem istnieje ng, takie ze u(A,,) > 0. Stad, na mocy (iii),

/ hdp > / hdp > (1/no)pu(A,,) > 0.
X Ang

Czes¢ (vii) sprawdzamy tak samo jak dla funkeji prostych, por. Twierdzenie 3.1.3] A
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Uwzgledniajac wlasnosci catki opisane w Twierdzeniu [3.2.4] nietrudno wywnioskowaé
nastepujacg wtasnos¢ monotonicznosci catki.

WNIOSEK 3.2.5. Jezeli f < g prawie wszedzie to

/fdu</gdu-
X X

o ile tylko calki wystepujgce we wzorze majqg sens liczbowy.

3. Twierdzenia graniczne

Przedstawimy teraz klasyczne twierdzenia o przechodzeniu do granicy pod znakiem
catki — jak si¢ okaze mozliwosci wykonania takiej operacji wymagaja dos¢ stabych zatozen.
Niezmiennie rozwazamy ustalong przestrzen o-skonczona (X, %, u) i milczaco zaktadamy,
ze wszystkie omawiane funkcje sg mierzalne wzgledem o-ciata 3.

Najprostsze twierdzenie graniczne wynika tatwo z twierdzenia Jegorowa:

TWIERDZENIE 3.3.1. Zalozmy ze (X)) < oo i |fn| < M prawie wszedzie dla wszystkich n
i pewnej statej M. Jezeli f =lim, f, prawie wszedzie to

lim/ |fn—f|d,u:00mz/fdu:1im/ fr dp.
nJx X nJx

Dowadd. Ciag f, zbiega do f niemal jednostajnie i dlatego dla ustalonego ¢ > 0 istnieje
A € ¥, taki ze u(A) < € oraz zachodzi jednostajna zbieznosé na X \ Z. Wtedy

ol = fldu= [ Af= et [ 1~ flan<

N

/ 5du+/2Mdu<e-u(X)+2M5
X\A A

dla duzych n. Poniewaz wielkosci p(X) oraz M sa state, udowodniliSmy pierwsza czesé tezy.
Druga jest jej bezposrednig konsekwencja. A

TWIERDZENIE 3.3.2 (o zbiezno$ci monotonicznej). Niech funkcje f, bedq nieujemne oraz
f1 < fo < ... prawie wszedzie to funkcja graniczna f = lim, f, spelnia wzor

/de#:h}fl/xfndﬂ'

Odnotujmy przed dowodem, ze funkcje f,, nie muszg by¢ catkowalne. Funkcja graniczna
jest dobrze okreslona prawie wszedzie, przy czym f moze przyjmowaé wartosci nieskonczo-
ne.

Dowadd. Jak wynika z Wniosku ciag calek [y f, du jest niemalejacy i dlatego istnieje
jego granica lim,, [y f, dp < [y f du. Wystarczy wiec uzasadni¢ nieréwnos¢ przeciwna.
W tym celu rozwazymy catkowalng funkcje prostg s, takg ze 0 < s < f i pokazemy, ze
lim, [y fn dp > [y s du.

Przypusémy, ze s = Y.<) aiXa,, gdzie a; > 0, a zbiory A; sg parami roztaczne i pu(A;) <
oo. Wtedy Xy = U<, A; jest zbiorem miary skoficzonej i bez zmniejszenia ogélnosci mozna
zaktadaé, ze u(Xo) > 0.
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Rozwazmy funkcje h, = min(f,,s) na zbiorze X, i zastosujmy do nich Twierdzenie
(gdzie M = max; a;). Mamy h,, — s wiec

lim/fnd,u>lim/ fnd,u>/ hnd,u:/ s dy,
n Jx n JXo Xo Xo

co konczy dowdd. A

TWIERDZENIE 3.3.3 (Lemat Fatou). Dla dowolnego ciggu funkcji nieujemnych f,, zachodzi
nierownosé

/ liminf f,, du < lim inf/ frn dp.
x n noJx
Dowdd. Oznaczajac

In :Iigfsz’ f:hH%IHlffn,

otrzymujemy 0 < ¢; < g2 < ...orazlim, g, = f (patrz Zadanie .. Dlatego z Twierdzenia

332
/fndﬂ>/gndu—>/fd#,
X X X

a to daje natychmiast teze twierdzenia. A
Jezeli

Jn= X[0,1/2] lub  f, = X[1/2,1]

w zaleznosci od tego, czy n jest parzyste, czy nieparzyste, to liminf,, f,, = 0, podczas gdy
f[OJ} fn dp = 1/2 dla kazdego n. Ten prosty przyktad pokazuje, ze w lemacie Fatou nie
musi by¢ rownosci; jednoczesnie przyktad ten pozwala tatwo zapamietaé, ktora nierownosé
jest zawsze prawdziwa. Nietrudno tez pokaza¢ ma przyktadzie, ze zalozenie f, > 0 w

Twierdzeniu jest istotne, por. Zadanie [|[I7]

TWIERDZENIE 3.3.4 (Twierdzenie Lebesgue’a o zbieznosci ograniczonej). Niech f, i g be-
dg takimi funkcjami mierzalnymi, ze dla kazdego n nieréwnosé |f,| < g zachodzi prawie
wszedzie, przy czym [y g dp < oo. Jezeli f = lim, f, prawie wszedzie to

lim/ |fo— fldu=0 oraz /fd,u:lim/ fr dp.
nJx X nJx

Dowdd. Przyjmijmy h, = |f, — f| i h = 2¢g; wtedy h, — 0 prawie wszedzie i 0 < h,, < h.
Dlatego, stosujac lemat Fatou do funkcji h — h,,, otrzymujemy

/ hdp = / lim inf(h—hy) dg < lim inf / (h—hy) dpt = / h dp—lim sup / hyy dps.
X X n n X X n X

Ta zalezno$¢ daje limsup,, [x h, dp = 0, jako Ze [y h du < oo. Pokazalismy wiec, ze
Ix |fn — f| du — 0. Poniewaz

[ tean= [ g an < [ 1f -l an,

to druga zalezno$¢ wynika z pierwszej. A
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Zauwazmy, ze dla X = [0, 1] i funkcji f,, = nxo,1/n] zachodzi f, — 0 A-prawie wszedzie,
ale f[0,1] fn dX = 1. Jak widaé, wystepujace (nawet w nazwie) Twierdzenia zatozenie
“zbieznosci ograniczonej” jest istotne.

Teraz mozemy tatwo uzasadni¢ nastepujacg wiasno$é catki.

TWIERDZENIE 3.3.5. Jezeli f jest mierzalng i nieujemng funkcjg na przestrzeni miarowe;j
(X, 3, 1) to funkcja v : X — [0,00| dana dla A € ¥ wzorem v(A) = [, f du jest miarqg.

Dowdd. Jak juz bylo udowodnione (Twierdzenie [3.2.4(vii)), v jest addytywna funkcja
zbioru na X. Jezeli A, T A dla pewnych zbioréow A,, A € ¥ to x4, jest niemalejacym
ciagiem funkcji zbieznym do x4, a fxa, — fxa. Dlatego z Twierdzenia wynika, ze

v(A) = [ fdu= [ fradu=lim [ fra, dp=lmv(4,).

Stad v jest ciagta z dotu i dlatego v jest przeliczalnie addytywna. A

4. Calka Lebesgue’a na prostej

Na prostej rzeczywistej badz jej podzbiorach mozemy catkowa¢ funkcje A-mierzalne
(czyli mierzalne wzgledem o-ciala £ zbioréw mierzalnych). Poniewaz kazda funkcja £-
mierzalna jest prawie wszedzie rowna funkcji borelowskiej wiec w wiekszosci przypadkow
wlasnosci calki Lebesgue’a wzgledem A sprowadzaja si¢ do rozwazania tylko tych ostatnich.
Oczywiscie nalezy wyjasnic, jakie sa zwigzki calki Lebesgue’a z klasyczng catka Riemanna.

Niech f bedzie ograniczona funkcja, okreslona na odcinku [a, b] zawartym w R. Przy-
pomnijmy, ze do definicji catki Riemanna [’ f(z) d shuza pojecia, ktére z naszego punktu
widzenia mozna zreferowaé¢ nastepujaco. Podziatem P odcinka [a,b] nazywamy dowolna
skoriczona rodzine odcinkéw domknietych, taka ze Urep I = [a,b], przy czym dla I, J € P,
jezeli I # J to zbiér I N J jest co najwyzej jednoelementowy (gdy odcinki maja wspdlny
koniec). Wyrazenia

L(f,P)=>_if(f)MI), U(f,P)=>_ sup(f)A(),
IeP 1ep 1
nazywane sa, odpowiednio, suma dolng i gérng dla podziatu P. Funkcja f jest catkowalna w
sensie Riemanna jezeli dla kazdego ¢ > 0 istnieje taki podzial P, ze U(f, P) — L(f,P) < ¢.

Zauwazmy, ze sumy catkowe opisane powyzej to nic innego jak catki z pewnych funkcji

prostych; jesli

() s=X (s to L(f,P):/ s d),

IeP [a,b]

(xx) t:Zsup(f)xl to U(f,P):/[ab]td/\,

1ep 1
przy czym s < f <t poza, by¢ moze, skonczong iloscig punktow.

TWIERDZENIE 3.4.1. Jezeli ograniczona funkcja f : [a,b] — R jest calkowalna w sensie
Riemanna to jest A-mierzalna i obie catki sq rowne:

/a " f2) do = /[a’b] £
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Dowdd. 7 zalozenia dla kazdego n istnieje podzial P, odcinka [a, ], taki ze
U(f, Pn) - L(f> Pn) < 1/”

Mozemy przy tym zatozy¢, ze dla kazdego n podziat P,,; jest wpisany w podziat P,
to znaczy, ze kazdy I € P, jest suma pewnych odcinkéw z podziatu P,;. Wtedy, jak
nietrudno wykazac,

L(f,Pn) < L(f, Pas1) S U(f, Pug1) < U(f, Pn).

Dlatego tez, oznaczajac przez s, i t, funkcje proste zdefiniowane analogicznie jak we wzo-
rach (*) i (**) dla podzialu P = P, nieréwnosci

51 <8< ...ty <1

zachodza prawie wszedzie, a doktadnie poza przeliczalnym zbiorem koncéw odcinkéw po-
dziatow. Przyjmijmy f; = lim, s,, fo = lim,t,; wtedy funkcje f; i fo sa borelowskie,
f1 < fo prawie wszedzie i f[a,b] frdh= f[mb] fo d)\, a zatem f, = fo prawie wszedzie. Dlate-
go funkcja f, spelniajaca prawie wszedzie nierownodci fi < f < fo jest mierzalna. Réwnosé
catek wynika natychmiast stad, ze

/bf(a:) dr =l L(f,P) =lim | sedd= [ fdx

" Jla,b] la,b
A

Warto przypomnieé, ze w teorii catki Riemanna dowodzi si(ﬂ, ze funkcja ograniczona
f jest calkowalna na odcinku [a,b] wtedy i tylko wtedy gdy zbiér D(f) jej punktéw nie-
ciagtosci jest miary Lebesgue’a zero. W ten sposob réwniez mozna pokazaé A-mierzalnosé
funkcji R-catkowalnych; por. Zadanie B4 Warto podkresli¢, ze jezeli A jest podzbiorem
zbioru Cantora, to funkcja x4 jest catlkowalna w sensie Riemanna, ale dla nieborelowkich
zbioréw A taka funkcja nie jest borelowska, por. uwaga po Przyktadzie [6]

Oczywiscie w dalszym ciggu nie ma potrzeby odrdzniania catek Lebesgue’a i Riemanna;
dlatego bedziemy raczej pisac¢ f(f f dX lub po prostu ff f dx na oznaczenie calki Lebesgue’a
dla funkcji zmiennej rzeczywistej. Zadanie [Bl[10] pokazuja ze catka Lebesgue’a pokrywa sie
tez z bezwzglednie zbiezng niewtasciwa catka Riemanna. W jednym tylko przypadku, gdy
catka niewlasciwa Riemanna jest zbiezna jedynie warunkowo, wedtug przyjetych definicji
funkcja nie jest catkowalna w sensie Lebesgue’a.

Przypomnijmy, ze dla zbioru A = [0,1] N Q funkcja x4 jest klasycznym przyktadem
funkcji niecatkowalnej w sensie Riemanna. Oczywidcie [, x4 dX\ = 0 bo A(A) = 0. Warto
zaznaczy¢, ze przymiotnik niecatkowalny ma inne znaczenie w przypadku obu calek: gdy
myslimy o calce Riemanna, méwimy najczesciej, ze funkcja jest niecatkowalna, gdy jest
zbyt skomplikowana i sumy catkowe nie pozwalaja prawidtowo zdefiniowa¢ catki. Z punktu
teorii Lebesgue’a funkcja f jest niecatkowalna po prostu dlatego, ze [ |f| d\ = oco. Tutaj
tez mozna napotka¢ na funkcje “zbyt skomplikowane”. czyli niemierzalne, ale nie daja sie
one zdefiniowa¢ w sposéb analityczny.

Ipatrz na przyklad M. Spivak, Analiza na rozmaitosciach
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5. Zadania

3.5.1 Sprawdzi¢, ze wzor

/ D aixa, dp =Y a;p(A;)
X =1 i=1

jednoznacznie definiuje catke z funkcji prostych catkowalnych na dowolnej przestrzeni (X, X, ).
WSKAZOWKA: Jezeli Y1 | aixa, = Zle bjx B, to istnieje skoficzona partycja X na zbiory
mierzalne T, 1 < s < p, takie ze kazdy zbioér A; i kazdy zbiér B; jest suma pewnych zbioréw
T.

3.5.2 Niech p(X) = 11 p(4;) > 1/2 dlai = 1,2,...,n. Wykazaé, ze istnieje x € X
nalezacy do przynajmniej n/2 zbioréw A;. W tym celu oszacowaé [y Y.<, x4, dp (por.
Problem 1.11.E).

3.5.3 Rozwazy¢ funkcje f(x) = —I%H, aby zauwazy¢, ze nie mozna w ogdlnym przypadku

zdefiniowac catki [p f d\ jako supremum z catek [s dA po funkcjach prostych s < f.
Zdefiniowaé¢ podobng funkcje na [0, 1].

3.5.4 Niech (X, ¥, u) bedzie przestrzenia miarowa, a f,g: X — R funkcjami mierzalnymi.
Sprawdzi¢ ze
(1) jeshi [, f du = 0 dla kazdego A € ¥, to f = 0 prawie wszedzie;
(i1) jesli f jest catkowalna na X, to jest tez calkowalna na kazdym X, € ¥;
(117) jesi A,B € X1 u(AAB)=0,to [, fdu= [5f dudlakazdej f (oraz istnienie jednej
z calek pociaga istnienie drugiej);
(i) ['If =gl dp> [ []f| dp— [ lg] dul.
3.5.5 Ustali¢, czy
(1) iloczyn dwéch funkeji catkowalnych jest catkowalny;
(11) funkcja f, gdzie f = 1 prawie wszedzie jest catkowalna;
(111) f jest catkowalna jesli jest catkowalna na kazdym zbiorze miary skonczone;.

3.5.6 Rozpatrzmy przestrzen (N, P(N), u), gdzie p jest miara liczaca, to znaczy u(A) = |A]
dla zbioréw skoncznych i pu(A) = oo dla kazdego A C N nieskoniczonego.

Udowodnié, ze f : N — R jest catkowalna wtedy i tylko wtedy gdy >°0, | f(n)] < oc.
Zauwazy¢, ze w tym przypadku catka jest suma szeregu.

3.5.7 Czy istnieje ciag funkcji catkowalnych, ktory jest
(i) zbiezny prawie wszedzie, ale nie wedlug miary;

(71) zbiezny wg miary ale nie prawie wszedzie;

(711) zbiezny prawie wszedzie, ale nieograniczony;

(iv) zbiezny jednostajnie do zera i taki, ze calki nie zbiegaja do zera;
(v) jest zbiezny jednostajnie do funkcji niecatkowalnej.

Przy kazdym pytaniu rozwazy¢ przypadek pu(X) < oo i p(X) = oc.

3.5.8 Niech f : [a,b] — R bedzie ograniczona funkcja borelowska. Zauwazy¢, ze f jest
catkowalna wzgledem miary Lebesgue’a na [a, b].

3.5.9 Wykazaé, ze jesli f : R — R jest calkowalna w sensie Lebesgue’a to dla kazdego € > 0
istnieje odcinek [a, b] taki ze [i,; [f] du > [g [f] du —e.
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3.5.10 Niech f : R — R bedzie nieujemna funkcjg dla ktorej istnieje skonczona catka nie-
whasciwa Riemanna [*7 f(x) dz. Udowodni¢, ze f jest calkowalna w sensie Lebesgue’a.
Wykazaé, ze zatozenie nieujemnosci funkeji jest istotne.

3.5.11 Niech u(X) < oo. Udowodnié, ze funkcja mierzalna f jest catkowalna wtedy i tylko
wtedy gdy dla zbiorow A, = {z : |f(x)| > n} zachodzi warunek > °° | u(A,) < oco.

3.5.12 Wykaza¢ tzw. nieréwnos¢ Czebyszewa: dla funkcji catkowalnej f zachodzi

[1ldu= eufa: f()] > <},

3.5.13 Wywnioskowa¢ z nieréwnoéci Czebyszewa, ze

mw/ﬂ—mwﬁomjfo
3.5.14 Niech A,, bedzie ciggiem zbioréw mierzalnych, takim ze pu(A, A Ax) — 0 gdy n, k —
oo. Wykazaé, ze istnieje mierzalny zbior A, taki ze u(A A A,) — 0

3.5.15 Zdefiniowaé funkcje ciagle catkowalne f, : [0,1] — [0,00), takie ze f, — 0 prawie
wszedzie, ale funkcja sup,, f,, nie jest catkowalna.

3.5.16 Niech f : R — R bedzie funkcja catkowalna. Sprawdzi¢, ze funkcja F'(z) = [io ) f(t) dA(?)
jest ciggla. Poda¢ przyktady swiadczace o tym, ze F' nie musi by¢ rézniczkowalna.

3.5.17 Zauwazy¢, ze lemat Fatou nie jest prawdziwy bez zatozenia nieujemnosci funkcji.
Zbada¢, przy jakich zatozeniach o funkcjach zachodzi wzor

lim sup/ fn du < / lim sup fn dp.

3.5.18 Niech (f,,) bedzie takim ciagiem funkcji catkowalnych, ze >°°°, [ |f.] du < oco. Udo-
wodnié, ze szereg >, f, jest zbiezny prawie wszedzie i

/inwzi/nw
1

3.5.19 Zbadaé, czy wzér z poprzedniego zadania zachodzi dla szeregu funkcji f,(z) = 2"~ —
22%"~! na odcinku (0, 1).

3.5.20 Zbadac, czy

/Z\/md$_z/ n—l—a:

Jak mozna uogolni¢ ten przyktad?

3.5.21 Niech p bedzie miara skonczong na X; f,, f : X — R beda funkcjami mierzalnymi,
takimi ze f, —— f. Udowodnié, ze jedli h : R — R jest ograniczona i jednostajnie ciggla to

lim MﬁMM:/h

3.5.22 Niech f,, bedzie ciagiem funkcji catkowalnych, zbieznym do catkowalnej funkcji f
prawie wszedzie. Udowodnié, ze lim, . [|fn — f] A\ — 0 wtedy i tylko wtedy gdy

limnaooﬂfn] d)\ = f\f’ d\.
WSKAZOWKA: Lemat Fatou.
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6. Problemy

3.6.A Moéwimy, ze przestrzen miarowa (X, X, p) jest semiskoriczona jezeli
pu(A) =sup{u(B): B€ X, BC A, u(B) < oo}.
Zauwazy¢, ze kazda przestrzen o-skonczona jest semiskonczona.

3.6.B Zauwazy¢ ze w definicji calki z funkcji nieujemnej na przestrzeni semiskonczonej moz-
na liczy¢ supremum po funkcjach prostych catkowalnych. Sprawdzi¢, ze twierdzenia gra-
niczne dla catki zachodza niezmienionej formie dla przestrzeni semiskonczonych.

3.6.C Udowodnié, ze kazda przestrzen (X, 3, u), ktora nie jest semiskonczona, zawiera nie-
skonczony atom miary, to znaczy zbiér A € ¥, taki ze pu(A) = oo i u(B) € {0,00} dla
kazdego zbioru B C A z o-ciata 3.

3.6.D Niech f: R — R bedzie funkcja catkowalna wzgledem miary Lebesgue’a. Udowodni¢,
ze dla kazdego € > 0 istnieje funkcja ciagta g, taka ze [p |f — g| A\ <e.

3.6.E Udowodnié¢ (wspomniane w tym rozdziale, klasyczne) twierdzenie: Ograniczona funk-
cja f : [a,b] — R jest calkowalna w sensie Riemanna wtedy i tylko wtedy gdy jej zbiér
punktow niecigglosci jest mary Lebesgue’a zero.

3.6.F Niech f : R — R bedzie funkcja catkowalng wzgledem miary Lebesgue’a. Zbadac,
czy dla kazdego zbieznego do zera ciagu z, € R, oznaczajac f,(z) = f(x + x,), mozna
stwierdzi¢, ze ciag f, zbiega do f prawie wszedzie.

SUGESTIE: zapewne tak, gdy szereg >, x, jest zbiezny; zapewne nie w przeciwnym przy-
padku (a kontrprzykltad f jest funkcja charakterystyczna).



ROZDZIAYL, 4

Miary produktowe i twierdzenie Fubiniego

Dajcie mi Twierdzenie, a wtedy {tatwo
znajde jego dowad.
Bernhard Riemann

W tym rozdziale zdefiniujemy i zbadamy operacje produktowania przestrzeni miarowych

oraz udowodnimy twierdzenie ]F‘ubinieg(ﬂ7 ktore jest podstawowa metoda liczenia catek z
funkcji wielu zmiennych. Pozwoli nam to na szybkie wprowadzenie wielowymiarowej miary
i calki Lebesgue’a w przestrzeniach euklidesowych.

1. Produktowanie o-cial

Rozwazmy dwie przestrzenie (X, )1 (Y, 0), gdzie ¥ C P(X)1 0O C P(Y) sa ustalonymi
o-ciatami. Zbiory postaci A x B bedziemy nazywaé prostokatami; prostokat A x B nazwiemy
mierzalnym jezeli A € ¥ 1 B € ©. W produkcie X x Y mozemy zdefiniowaé nastepujace
o-ciato.

DEFINICJA 4.1.1. Symbolem ¥ ® © oznaczamy o-ciato podzbioréw X XY, zadane jako
YO=0({AxB:AecX Be0O});
Y ® O nazywamy produktem o-ciat X i ©.

Oczywiscie sama rodzina prostokatéw mierzalnych A x B nie jest zamknieta nawet na
skoniczone sumy. W dalszym ciggu bedzie tez przydatnym rozwazanie ciata

F=a({{AxB:A€X, BeO}),

generowanego przez takie prostokaty; ciato F bedziemy nazywaé, troche niescisle, ciatem
prostokatow mierzalnych.

LEMAT 4.1.2. Zbior FF C X XY nalezy do ciala prostokgtow F wtedy 1 tylko wtedy gdy
() F= UAiXBi>
i<n
dla pewnych A; € ¥ i B; € ©, 1 =1,...,n. We wzorze (*) mozna przy tym zazqdaé, aby
prostokqty A; X B; byly parami rozlgczne.
Dowod. Wystarczy zauwazy¢, ze rodzina tych zbiorow F', ktére mozna przedstawi¢ w
postaci (*) jest ciatem. Oczywiscie rodzina ta jest zamknieta na skonczone sumy. Fakt, ze

dla zbioru F zadanego przez (*), jego dopehienie tez mozna zapisaé w podobny sposéb
mozna nietrudno wywnioskowac stad, ze

(Ax B)° = (A°x Y)U (X x B9,

!Guido Fubini (1879-1943), matematyk wloski
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i faktu, ze przekréj dwoch prostokatow tez jest prostokatem. To, ze prostokaty w przedsta-
wieniu (*) mozna uroztacznié, wynika ze wzoru

(A1 x By) \ (A3 X Bs) =
=[(A1\ A2) X (B1N By)]U[(A1 \ Ay) x (B1 \ B2)]U[(A1 N As) x (B \ By)],

gdzie sktadniki po prawej stronie sa parami roztaczne. A
Dla zbioru E C X x Y i ustalonych z € X, y € Y, zbiory
E,={z€Y :(z,2) e E}, E'={z€ X:(z,y) € E},

nazywamy, odpowiednio, cieciem pionowym i poziomym zbioru. Analogicznie, dla funkcji
rzeczywistej f okreslonej na produkcie X XY mozemy rozwazy¢ odpowiednie funkcje jednej
zmiennej:

f:v Y — R? fﬂE(Z) = f((l’,Z)), fy P X — Rv fy(Z) - f((z,y))
LEMAT 4.1.3. Jezeli E € X ®0 to E, € © dla kazdego x € X i EY € ¥ dla kazdegoy € Y.
Jezeli funkcja f: X XY — R jest ¥ ® ©-mierzalna to funkcja f, jest 0-mierzalna dla
wszystkich x € X, a funkcja fY jest X-mierzalna dla kazdego y € Y.

Dowdd. Ustalmy x € X. Nietrudno sprawdzi¢, ze rodzina &£ tych zbioréow E € ¥ ® O,
dla ktérych E, € O jest o-cialem. Poniewaz (A x B), = B lub (A x B), = 0 wiec kazdy
prostokat mierzalny nalezy do £. Stad £ = ¥ ® O. Oczywiscie sprawdzenie mierzalnosci
cie¢ poziomych jest analogiczne.

Rodzina tych funkcji f dla ktorych, przy ustalonym x € X, funkcja f, jest ©-mierzalna
zawiera funkcje proste i dlatego, na mocy Twierdzenia [2.2.3] teza zachodzi dla wszystkich
funkcji f nieujemnych, jako ze wspomniana rodzina jest zamknieta na granice punktowe.
Rozszerzenie na funkcje niekoniecznie nieujemne otrzymujemy jak zwykle przez rozktad na
czedci dodatnig i ujemna. A

Dla przyktadu mozemy rozwazy¢ o cialo produktowe Bor(R) ® Bor(R) na plaszczyz-
nie. Zauwazmy przede wszystkim, ze w R x R istnieje inne naturalne o-ciato, ktére teraz
zdefiniujemy.

Poniewaz R x R jest przestrzenig metryczng przy naturalnej metryce euklidesowej wiec
mozemy rozwazaé zbiory otwarte i domkniete na plaszczyznie. Przypomnijmy, ze odlegtosé
euklidesowg liczymy wedlug wzoru

||z —yl| = \/|5171 —yi? + |2 —yel?, dlaz = (21, 22),y = (Y1,92)-
Jak zwykle kula B,.(z) o érodku w z i promieniu r zdefiniowana jest jako
By (z) ={y:[lz —yll <r}.

Zbiér U C R x R jest otwarty gdy dla kazdego x € U istnieje r > 0, takie ze B,.(z) C U.
Zauwazmy jednak, ze mozna réwnowaznie otwarto$¢ U wyrazi¢ przez warunek: dla kazdego
x € U istnieje § > 0, taka ze

(I1—5,$1+5) X (5(72—(57172+(5) - U,
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co oznacza, ze wraz z kazdym swoim elementem, zbior U zawiera prostokat otwarty, ota-
czajacy ten punkt i zawarty w U. o-cialo Bor(R x R) borelowskich podzbioréw ptaszczyzny
jest zdefiniowane jako najmniejsze o-ciato zawierajace wszystkie zbiory otwarte.

TWIERDZENIE 4.1.4. Bor(R) ® Bor(R) = Bor(R x R).
Dowdd. Udowodnimy najpierw, ze Bor(R)® Bor(R) C Bor(RxR). Poniewaz dla otwartego
zbioru V' C R, zbiér V' x R jest otwarty wiec, rozwazajac rodzine

{B € Bor(R): BxR € Bor(R xR)},

bez trudu sprawdzimy, ze taka rodzina jest réwna Bor(R). Podobny argument mozna za-
stosowaé do drugiej osi; stad dla dowolnego borelowskiego prostokata A x B mamy

AxB=(AxR)N(R x B) € Bor(R x R),

co implikuje zadana inkluzje.

Zauwazmy, ze dla dowodu inkluzji przeciwnej Bor(RxR) C Bor(R)® Bor(R) wystarczy
sprawdzi¢, ze dowolny zbiér otwarty U C R xR nalezy do o-ciata produktowego. Rozumujac
jak w dowodzie Twierdzenia [0.3.3| mozna pokazac¢, ze taki zbior U mozna wyrazi¢ jako
przeliczalna sume prostokatéw otwartych, co oznacza, ze U € Bor(R) ® Bor(R). A

PRZYKEAD 4.1.5 Z twierdzenia powyzej wynika, ze przekatna A, jako zbiér domkniety
nalezy do Bor(R) ® Bor(R); te sama wlasno$¢ ma wykres kazdej funkeji ciaglej f : R — R.
Ogodlniej, jezeli funkcja f jest borelowska to jej wykres G mozna zapisa¢ jako

G=1 U 77 /n, G+ 1)/m)] % [fn, (k + 1)/n)]

n=1k=—oc0

co pokazuje, ze G € Bor(R) @ Bor(R). &

2. Produktowanie miar

Niech (X,¥,pu) i (YV,0,v) beda dwiema o-skoniczonymi przestrzeniami miarowymi.
Przedstawimy teraz konstrukcje miary produktowej p ® v, okreslonej na ¥ ® ©. Jak sie
okaze, jest to jedyna taka miara, ktora spelia naturalny wzor

4@ V(A x B) = u(A) - v(B)
dla wszystkich prostokatéw mierzalnych.

LEMAT 4.2.1. Niech F bedzie ciatem podzbiorow X X 'Y, generowanym przez prostokqgty
postaci A x B, gdzie A € ¥, B € ©. Wtedy funkcja zbioru k zdefiniowana dla F € F
wzorem,

(o) &(F) = [ v(F,) du(a)

jest przeliczalnie addytywna; ponadto, K(A x B) = u(A) - v(B) dla wszystkich A € %,
B e 0.
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Dowdd. Zauwazmy, ze dla F' € F, F jest skoniczong suma prostokatéw mierzalnych (Lemat
4.1.2), a stad tatwo wynika, ze funkcja x — v(F),) jest X-mierzalng funkcja prosta. Ta uwaga
uzasadnia poprawnos¢ wzoru (kx). Addytywnos¢ funkcji k wynika z whasnosci catki: jezeli
E. F € F sa roztaczne to

REUF) = [ W(BUF)) duf@) = [ ((E) +v(F) dpx) =

X

N /x V(E:) dpu(w) + /X v(F,) du(x) = K(E) + £(F).

Ponadto k jest ciagta z dotu: jezeli F,, € F i F, T F' € F to dla kazdego x € X mamy
(F). T Fyidlatego v((F,).) — v(F,), z ciaglodci miary v. Stad i z twierdzenia o zbieznosci
monotonicznej

R(F) = [ V((F).) du(a) = [ v(F) dpe) = w(F).

Ostatecznie k jest przeliczalnie addytywna jako funkcja addytywna i ciagta z dotu (Twier-

dzenie |1.2.5)). Wzor k(A x B) = u(A) - v(B) wynika natychmiast ze wzoru (*x). A

TWIERDZENIE 4.2.2. Niech (X,3, 1) i (Y,0,v) bedq o-skoriczonymi przestrzeniami mia-
rowymi. Na o-ciele ¥ ® © istnieje jedyna miara p ® v, spetniajgca dla kazdego A € ¥ i
B € © warunek

(@) p@v(AxB)=pu(A)-v(B).

Dla dowolnego zbioru E € ¥ ® © funkcje x — v(E,) i y — p(EY) sq¢ mierzalne wzgledem
odpowiednich o-ciatl i zachodzqg wzory

(®) nev(E) = [ vE)du) = [ u(E) dviy).

Dowdéd. Funkcja k zdefiniowana w Lemacie [£.2.1] jest przeliczalnie addytywna na ciele
F prostokatow mierzalnych i dlatego rozszerza sie do miary na o(F) = ¥ ® O, patrz
Twierdzenie Jedyno$é miary produktowej wynika stad, ze kazda miara spetniajaca
wzor (k%) musi by¢ réwna funkcji £ na F, por. Lemat Zauwazmy, ze jezeli miary
(i v sa o-skonczone to X x Y mozna pokry¢ przeliczalng suma prostokatow mierzalnych
miary s skonczonej.

Wzér (b) sprawdzimy najpierw przy zatozeniu, ze pu(X) i v(Y') sa wartosciami skonczo-
nymi. Niech £ bedzie rodzina tych zbioréw E € ¥ ® O, dla ktérych funkcja x — v(E,) jest
Y-mierzalna oraz

peuB) = [ v(E) du)

Bez trudu sprawdzamy, ze rodzina £ zawiera wszystkie prostokaty mierzalne i skonczone
roztaczne sumy takich prostokatéw. Stad i z Lematu[f.1.2] wida¢, ze F C €. Aby pokazaé, ze
£ = ¥ ® O wystarczy upewnic sie, ze £ jest klasg monotoniczng i zastosowaé¢ Twierdzenie
[1.7.2] Niech na przyklad E, € £ i E, | E. Wtedy v(E,) = lim, v((E,),) wiec funkcja

r — v(E,) jest mierzalna oraz

4 ® v(E) = lim p @ v(E,) = lim /X V((En)e) du(z) =
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= [ timu((B.).) due) = [ v(E,) du(),

X n
gdzie zastosowalidémy ciaglos¢ miary skoniczonej p ® v z gory oraz twierdzenie Lebesgue’a
o zbieznosci ograniczonej (dla catki wzgledem p). Drugi ze wzoréw (b) mozna sprawdzi¢
analogicznie.
Jezeli i v sg o-skonczone to mozemy napisa¢ X i Y jako wstepujace sumy

X:UXn7 Y:UYna

gdzie zbiory X,, € ¥ sg miary u skonczonej i zbiory Y,, € © sg miary v skonczonej. Niech
EFeXY®0, FE=U,FE,, gdzie E, = EN (X, xY,). Wtedy kazdy zbiér E,, spetia wzor
(b), czyli

peuv(E) = [ V(E).) dulx).

Przechodzac po obu stronach do granicy n — oo otrzymamy analogiczng tozsamosé dla
zbioru E. A

Dodajmy, ze nawet jesli miary p i v sa zupetne to miara produktowa pu ® v nie musi
by¢ zupelna na ¥ ® O, por. Zadanie []9} Z Twierdzenia [4.2.2] wynika w szczegdlnosci, ze
istnieje jedyna miara Ay = A ® A na borelowskich podzbiorach ptaszczyzny. Taka ptaska
miara Lebesgue’a A\ jest jedyna miarg na ptaszczyznie, uogdlniajacg elementarny wzor na
pole prostokata. Miare Ao mozna tez skonstruowaé, postepujac jak w rozdziale 1, to znaczy
definiujac Ay na pierécieniu generowanym przez prostokaty postaci [a,b) X [c, d), a nastep-
nie rozszerzajac miare na generowane przez nie o-ciato. Konstrukcja z Twierdzenia
pozwala unikna¢ komplikacji w rachunkach, dzieki temu, ze kluczowe fakty wyprowadza sie
ze znanych juz wlasnodci catki.

3. Twierdzenie Fubiniego

Twierdzenie Fubiniego, czyli wzor na catke wzgledem miary produktowej jest juz prosta
konsekwencjg Twierdzenia Twierdzenie to zwykle podaje si¢ w nastepujacych dwoch
wersjach.

TWIERDZENIE 4.3.1 (Twierdzenie Fubiniego). Niech (X, %, u) i (Y, 0, v) bedq o-skorniczonymi
przestrzeniami miarowymsi. O funkcji ¥ ® ©-mierzalnej f: X XY — R zalozmy, Ze

(i) f jest nieujemna, lub

(ii) f jest p @ v-catkowalna.
Wtedy funkcje

Liao— [ fey vy, Tiy— [ fy) du).

(przyjmujace byé moze wartosci nieskonczone) sq mierzalne wzgledem ¥ i, odpowiednio, 6

(o) [ apsw= [ ([ gy av) dptw) = [ ([ 1wy du@) dvty).
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Dowdéd. Zauwazmy, ze dla funkcji charakterystycznej f = xg zbioru F € ¥ ® ©, wzory
(***) redukuja sie do wzoru (b) z Twierdzenia [4.2.2] Stosujac addytywnosé calek tatwo
stad wywnioskowa¢, ze teza zachodzi dla kazdej funkcji proste;j.

Jezeli f > 0 to biorac ciag mierzalnych funkcji prostych f,, monotonicznie zbiezny do
f otrzymamy stad dow6d przy zatozeniu (i). Istotnie, I(x) = lim, [,(z), gdzie I, : * —
Jy fo(z,y) dv(y) z twierdzenia o zbieznosci monotonicznej dla catki wzgledem v. Dlatego
I jest funkcjg mierzalna; przechodzac do granicy we wzorze

| hduov= [ L@ du@).

otrzymujemy natychmiast

| rdnev= [ 1@) @),

poniewaz po lewej stronie dziata twierdzenie o zbieznosci monotoniznej dla catki wzgledem
p®v, apo prawej dla catki wzgledem miary p. Drugi ze wzoréw (***) mozna wyprowadzi¢
zupetnie analogicznie.

Zauwazmy, ze dla funkcji catkowalnej f > 0 mamy I(z) < oo dla p-prawie wszystkich
x, co wynika natychmiast z pierwszego wzoru (***). Dlatego tez, jezeli funkcja f = f+— f~
jest pu ® v-catkowalna to mozemy zastosowaé¢ udowodniong czesé twierdzenia do f* i f~ i
odjaé¢ otrzymane wyniki stronami, a to da wzory catkowe dla f. A

Twierdzenie Fubiniego nie zachodzi dla funkcji, ktére sg jedynie mierzalne — na przy-
ktad calki iterowane moga by¢ skonczone, ale dawaé rézne wyniki, por. Zadania [B|[I0] i
BIII

4. Produkty skonczone i nieskonczone

Dla trzech przestrzeni o-skoriczonych (X;, ¥;, p;) mozemy zdefiniowaé ich produkt jako
produkt przestrzeni (X; X X, X1 ® ¥o, 1 ® ps) oraz (Xs, X3, ug). Ta uwaga prowadzi do

nastepujacego uogoélnienia Twierdzenia [4.2. 21

TWIERDZENIE 4.4.1. Jezeli (X;, %, ;) sa dlai = 1,...,n o-skoniczonymi przestrzeniami
miarowyms to na o-ciele @, <, X; podzbioréw X = [];,, X, generowanych przez wszystkie
kostki mierzalne A; X Ay X ... x A,, istnieje jedyna miara i = @<, pi spetniajgca, dla

wszystkich A; € 3;, warunek
/,L(Al X A2 X ... X An) = /Ll(Al) . ,LLQ(AQ) EE /Ln(An)

W szczegolnosci na przestrzeni euklidesowej R™ mozna zdefiniowaé¢ n-wymiarowg miare

Lebesgue’a A, przyjmujac

A=A

i<n

Miara A, moze by¢ rozwazana na o-ciele

&) Bor(R) = Bor(R"),

<n
generowanym przez wszystkie n-wymiarowe kostki borelowskie; por. Zadanie [5|[14]

2szczegoly dowodu zostana pominiete
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Twierdzenie Fubiniego pokazuje, ze catka wzgledem miary n-wymiarowej moze by¢
sprowadzona do n catek iterowanych, Zauwazmy na przyktad, ze dla funkcji nieujemne;j
f: R? — R mozemy napisa¢

/RgfdA?,:/R/R/Rf(xl,xQ,xg) dA (1) d\(zs) dA (),

a w istocie jest 3! takich wzorow, uwzgledniajacych rézne kolejnosci liczenia catek.

Rozwaza sie tez produkty nieskonczone przestrzeni miarowych probabilistycznych. Do-
wod twierdzenia ponizej pomijamy; w szczegblnych przypadkach twierdzenie to oméwimy
doktadniej w dalszym ciggu.

TWIERDZENIE 4.4.2. Jezeli (X, X, iin) jest ciggiem przestrzeni probabilistycznych to na
o-ciele Q,, Xy, podzbiorow X = [1,, X,,, generowanych przez wszystkie skonczenie wymiarowe
kostki mierzalne postaci

E=A x Ay x ... x Ay X Xpp1 X Xpao X o0y

gdzie A; € ¥; dla i < n, istnieje jedyna miara p = Q,, b spetniajgca, dla wszystkich
zbrorow E jak wyzej, warunek

p(E) = pn (A1) - pa(Az) - oo i (An).

5. Miara na zbiorze Cantora

Zagadnienie nieskonczonych produktow zilustrujemy nastepujacym waznym przykta-
demf] Na zbiorze dwuelementowym X, = {0, 1} mozemy zdefiniowaé miare y = 1/2(5o+6),
okreslong na wszystkich podzbiorach Xy. Zauwazmy, ze dla n € N, miara ®;,, p# na {0,1}"
jest po prostu unormowang miarg liczaca: kazdy punkt przestrzeni ma miare 1/2". Okazuje
sie, ze operacja nieskonczonego produktu nawet dla tak prostej miary jak pu prowadzi do
jakosciowo zupetnie innej miary.

Niech K = {0, 1}" bedzie zbiorem wszystkich nieskoniczonych ciagéw zerojedynkowych.
Nietrudno sprawdzi¢, ze na zbiorze K mozna okresli¢ metryke d wzorem

d(x,y) = 1/n gdzie n = min{k : z(k) # y(k)},

dla x # y; ponadto przyjmujemy d(x, x) = 0. Zauwazmy, ze zbiezno$¢ w metryce d to zbiez-
no$¢ po wspéhrzednych, to znaczy dla z,,z € K, zbieznosé¢ d(x,,x) — 0 jest rGwnowazna
temu, ze x,(k) — x(k) dla kazdego k (co w tym przypadku oznacza, ze x,(k) = z(k) dla
dostatecznie duzych n). Dowodzi sig, ze przestrzen K jest zwarta w metryce d — ten fakt
wynika tez z nastepujacego twierdzenia, ktore mowi, ze przestrzen K jest nieco tylko innym
opisem zbioru Cantora.
TWIERDZENIE 4.5.1. Funkcja
> 2z(n)
f: K —10,1], f(a:)zz g
n=1

jest homeomorfizmem pomiedzy przestrzeniq K i zbiorem f[K| C [0, 1], ktory jest tréjkowym
zbiorem Cantora C'.

3ta czes¢ podana jest nieco szkicowo i stanowi material nieobowiazkowy
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Dowdd. Jezeli d(x,y) < 1/n to x(i) = y(i) dla i < n i dlatego

- sl <| 32 2 5 2 g

Ta zalezno$¢ oznacza, ze funkcja f jest ciagta. Z drugiej strony dla x # y biorac najmniejsze
n, takie ze x(n) # y(n), otrzymujemy

1)~ 1) > 23—y, AW

k=n+1

>2/3" —1/3" = 1/3",

co dowodzi réznowartosciowosci f oraz faktu, ze funkcja odwrotna tez jest ciagla. Oczy-
wiscie f[K] = C, jako ze elementy C' to te liczby z [0, 1], ktére w rozwinieciu tréjkowym
maja tylko cyfry 01 2. A

Dlatego tez zbiér K = {0,1}" jest po prostu nazywany zbiorem Cantora. Dla funkcji
¢ : A — {0,1} dziedzine funkcji A oznacza¢ bedziemy A = dom(y). Dla dowolnego
skonczonego zbioru A C N definiujemy

o] ={x € K:x(i) = (i) dla i € dom(yp)}.

Zauwazmy, ze dla A = {1,2,...,n} i dowolnej p : A — {0, 1}, jesli x € [¢] to [¢] jest kula
o $rodku w x i promieniu 1/n wzgledem metryki d.

LEMAT 4.5.2. Zbiory postaci ] sq jednoczesnie otwarte i domkniete w K. Rodzina takich
zbrorow stanowt baze topologii w K.

Dowdd. 7Zbidr postaci [p] jest otwarty bo jezeli x € [p] i n jest taka liczba, ze dom(yp) C
{1,2,...,n} to kula B = By,(z) (o srodku w x i promieniu 1/n) zawiera te y, ktére
zgadzaja sie z x na pierwszych n wspolrzednych, a zatem B C [p]. Z drugiej strony do-
pelienie zbioru [p] jest skonczong suma zbioréw postaci [¢], gdzie dom(y)) = dom(yp) i
1 # . Dlatego [p] jest takze zbiorem domknietym. A

Oznaczmy przez C cialo podzbioréw K generowane przez wszystkie cylindry postaci [¢],
gdzie dom(yp) C N. Zauwazmy, ze jest przeliczalnie wiele takich funkcji ¢ i dlatego ciato C
tez jest przeliczalne, patrz Zadanie[I0J[10] Mozna sprawdzi¢, ze kazdy zbiér C' € C jest suma
skoficzenie wielu zbioréw postaci [p] i dlatego kazdy taki zbiér C' jest otwarto-domkniety.

LEMAT 4.5.3. Zbior C € C wtedy i tylko wtedy gdy istnieje n i C" C {0, 1}", takie Ze
(f) C=0C"x{0,1} x....

Dowdd. Zauwazmy, ze rodzina zbioréw postaci jak w (f) jest ciatem i zawiera cylindry
postaci [p]. A

Zdefiniujemy teraz funkcje zbioru v : C — [0, 1] wzorem

_ ¢

gdzie C jest zapisany w postaci (). Nietrudno sprawdzié¢, ze wielko$¢ v(C') nie zalezy od
sposobu przedstawienia zbioru C' oraz ze v jest addytywna funkcja zbioru.
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TWIERDZENIE 4.5.4. Funkcja v rozszerza sie jednoznacznie do miary na Bor(K). Miara ta
(oznaczana w dalszym ciggu przez v) ma nastepujocg wlasno$é: dla kazdego B € Bor(K) i
e > 0 istnieje zbior C € C, taki ze v(B A C) < e.

Dowdéd. Zauwazmy, ze v, rozpatrywana na ciele C jest ciagta z gory na zbiorze pustym, bo
jesli C, e CiC, | 0 to C,, = () dla duzych n. Jest to konsekwencja zwartosci przestrzeni K.
Dlatego tez v jest przeliczalnie addytywna na C i rozszerza sie jednoznacznie na o(C), patrz
Twierdzenie m, przy czym o(C) = Bor(K), jako ze zbiory z C' sa otwarte oraz kazdy
zbior otwarty jest suma przeliczalng zbiorow z C. Wtasnosé rozszerzenia miary wynika z

Twierdzenia [[L4.3. A

Miara v skonstruowana powyzej spetnia wzor

1
v([e]) = Jldom(g)]’

dla cylindréw [p]. Jak widaé v = Q,, p, gdzie p jest miarg na {0, 1} wspomniana na poczat-
ku tej czesci. Zauwazmy, ze v znika na punktach , a wiec takze na zbiorach przeliczalnych.
Zbior Cantora K z miara v jest naturalnym modelem probabilistycznym dla “nieskoniczo-
nego ciagu niezaleznych rzutéw symetryczng moneta”; por. Problemy [6]

Wspomnijmy na koniec, ze miara v jest $cisle zwigzana ze struktura grupowa zbioru
Cantora K. Przypomnimy, ze zbior {0, 1} jst grupa (dodawania mod 2). Oznaczajac to
dziatanie przez @ mozemy zdefiniowac

r®y = (z(n) ©y(n)) € K,

dla z,y € K. W ten sposoéb K jest grupa z dziataniem &. Mamy x @ x = 0, czyli —z =«
w tej grupie. Ponadto dziatanie & jest ciagte; jezeli x,, - ziy, —ytozr, Dy, — Dy,
co wynika natychmiast z natury zbieznosci w K. Méwimy w takim przypadku, ze grupa K
jest grupa topologiczna. 7Z ciagtosci dziatania grupowego wynika, ze translacja x @ B zbioru
borelowskiego B tez jest zbiorem borelowskim (patrz Problem [6|E) oraz v(z & B) = v(B);
mowimy ze v jest miarg niezmienniczg na grupie, albo miarg Haara grupy.
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6. Zadania
4.6.1 Niech f : R — R, bedzie funkcja borelowska. Wykaza¢, ze zbior pod jej wykresem
{(z,y) : 0 <y < f(x)} jest borelowskim podzbiorem ptaszczyzny.

4.6.2 Niech f: X — R, bedzie nieujemna funkcja mierzalna na przestrzeni (X, X, p1); niech
P ={(z,t): 0 <t < f(x)} bedzie zbiorem pod wykresem funkcji. Sprawdzi¢, ze P nalezy
do o-ciata ¥ ® Bor(R) oraz wywnioskowaé z twierdzenia Fubiniego, ze

peNP) = [ fap.
4.6.3 Zauwazy¢, ze zbior borelowski A C [0, 1)? jest ptaskiej miary zero wtedy i tylko wtedy,
gdy A(4,) = 0 dla prawie wszystkich = € [0, 1].
4.6.4 Zauwazy¢, ze jesli zbiory borelowskie A, B C [0, 1]* speiaja zalezno$¢ A(A,) = \(B;)
dla wszystkich z to A2(A) = A2(B).
4.6.5 Obliczy¢ miare Lebesgue’a zbioréw

A={(z,y): z€QlubyecQt;  B={(z,y): v -y Q}.

4.6.6 Wychodzac ze znanego faktu, ze izometrie ptaszczyzny nie zmieniaja pola prostokatow
wykazaé, ze ptaska miara Lebesgue’a jest niezmiennicza na izometrie ptaszczyzny.

4.6.7 Zauwazy¢, ze plaska miara Lebesgue’a spetnia wzor \o(J,[B]) = r?Xy(B) dla B €
Bor(R?), gdzie J, jest jednoktadnoscia o skali r.
4.6.8 Wyprowadzi¢ z tw. Fubiniego

(i) wzor na objetosé stozka o wysokosci h, ktéry na podstawie ma zbiér borelowski B C R?;
(ii) wzor na objetosé kuli o promieniu r w R? i R%.

4.6.9 Zauwazy¢, ze A ® A nie jest miarg zupeing na £ ® £.

4.6.10 Niech v bedzie miara liczaca na wszystkich podzbiorach N. Poda¢ przyktad funkcji
f N x N — R, dla ktérej catki iterowane w twierdzeniu Fubiniego daja rézne wyniki
skonczone.

WSKAZOWKA: Okresli¢ niezerowe wartosci f(n,n) i f(n+ 1,n) dlan € N.

4.6.11 Na kwadracie jednostkowym rozwazy¢ funkcje

2xy 2% — 2
f(mvy) - (33'2 +y2)2 g(may) - (1'2 +y2)27
f(0,0) = ¢(0,0) = 0. Zbadaé¢ catkowalno$é¢, istnienie catek iterowanych, ich réwnos¢ i

odnies$¢ te obserwacje do twierdzenia Fubiniego.
4.6.12 Wykazaé, ze dla calkowalnej funkcji f : [0,1]*> — R zachodzi wzér

// (z,) dA(y) dA (@ // (z,) dA(z) dA(y).

4.6.13 Niech A bedzie o—ciatem na [0, 1], generowanym przez zbiory przeliczalne. Pokazaé,
ze przekatna A = {(z,y) € [0,1]* : = = y} nie nalezy do A ® A.

4.6.14 Funkcja f : R™ — R* jest borelowska jesli f~![B] € Bor(R") dla B € Bor(RF). Tutaj
Bor(R™) oznacza o-cialo generowane przez otwarte podzbiory R"™. Sprawdzié, ze
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(i) Bor(R?) jest generowane przez otwarte prostokaty U x V;
(i) Bor(R™) jest generowane przez otwarte kostki Uy x Uy X ... x Uy;
(111) kazda funkcja ciagla f : R” — R jest borelowska;
(w) funkcja g = (g1,92) : R — R? jest borelowska wtedy i tylko wtedy gdy gi1,¢> sa
borelowskie.

4.6.15 Wywnioskowac z poprzedniego zadania, ze jesli g1, g2 : R — R sg mierzalne to ¢; +
Jo, g1 * g2 tez sg mierzalne.

4.6.16 Niech f : X — Y bedzie odwzorowaniem mierzalnym pomiedzy przestrzeniami
(X,3, 1) 1 (Y, A), to znaczy f~1[A] € ¥ dla kazdego A € A. Sprawdzi¢, ze wzor v(A) =
u(f7'[A]) definiuje miar¢ na A. Te miar¢ nazywamy obrazem pu przez f; oznaczamy v =

flul-

7. Problemy

4.7.A Przy zalozeniu hipotezy continuum mozna odcinek [0, 1] uporzadkowaé relacja < tak,
ze kazdy odcinek poczatkowy {a : a < b} w tym porzadku jest przeliczalny dla b € [0, 1].
Zauwazy¢, ze zbior

Z={(w,y) € 0,1 x [0,1] : 2 <y},
nie spetnia twierdzenia Fubiniego, a wiec nie jest mierzalny na plaszczyznie.

4.7.B Pokazaé, ze istnieje na ptaszczyznie zbior A miary ptlaskiej zero, taki ze A przecina
wszystkie prostokaty mierzalne miary dodatnie;j.
WsKAZOWKA: Uogdlnié najpierw tw. Steinhausa do postaci: jesli A, B sq miary dodatniej
to A — B zawiera liczbe wymierna.

4.7.C Niech A = {(z,z) : * € X} bedzie przekatna. Udowodni¢, ze A nalezy do P(X) ®
P(X) wtedy i tylko wtedy gdy | X| < ¢.

4.7.D Niech

B {01 = [0,1), h(x) = il ),

Sprawdzi¢, ze h jest funkcja ciagta, a wiec mierzalng wzgledem o—ciata Bor{0, 1} i h[{0,1}N] =
[0, 1].
Wykazaé, ze miara A na [0, 1] jest obrazem miary Haara v na {0, 1} przez te funkcje.

4.7.E Niech A C {0, 1} bedzie zbiorem tych x, w ktérych pojawia sie, cho¢ raz, ustalony
skoficzony ciag (e1,€9,...,&,) zer i jedynek. Wykazaé, ze v(A) = 1.

4.7.F Udowodni¢, ze v(z®A) = v(A) dla kazdego borelowskiego zbioru A w zbiorze Cantora
{0, 1}
WSKAZOWKA: Sprawdzi¢ najpierw wzér dla zbioréw C' z ciala C zdefiniowanego w 4.5.

4.7.G Zbiér borelowski A C {0, 1} jest nazywany zdarzeniem resztowym jezeli e® A = A dla
dowolnego e € {0, 1}, dla ktorego e(n) = 0 dla prawie wszystkich n. Udowodni¢, ze v(A) = 0
lub v(A) =1 dla kazdego zdarzenia resztowego (jest tzw. prawo 0-1 Kotmogorowa).
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WSKAZOWKA: Jezeli A jest takim zdarzeniem to v(ANC) = v(A)v(C) dla kazdego C € C;
skorzystaé z tego, ze wielko$é v(A A C) moze byé dowolnie mata.

4.7.H Niech X bedzie zbiorem skonczonym i niech i bedzie miarg probabilistyczna, okre-
slona na wszystkich podzbiorach X x X i znikajaca na przekatnej. Udowodnié, ze istnieja
roztaczne A, B C X, takie ze u(A x B) > 1/4.



ROZDZIAYL, 5

Miary znakowane
i twierdzenie Radona-Nikodyma

If people do not believe that mathematics
s simple, it is only because they do not
realize how complicated life is.
John von Neumann
Rozdzial jest w catosci poswiecony zwigzkom, jakie moga zachodzi¢ pomiedzy dwiema
miarami okreslonymi na tym samym o-ciele. Gtéwnym wynikiem jest tutaj tytutowe twier-
dzenie Radona—Nikodymaﬂ nalezace do najwazniejszych faktéw z teorii miary. W ostatniej
czesci dokonamy, w charakterze matego podsumowania, przegladu miar na prostej rzeczy-
wiste;j.

1. Miary znakowane

Niech X bedzie ustalonym o-ciatem podzbiorow przestrzeni X. Jezeli p i v sa miarami
okreslonymi na 3, to p 4 v tez jest miarg na > — sprawdzenie przeliczalnej addytywnosci
it + v nie przedstawia trudnosci. W przypadku, gdy przynajmniej jedna z miar p i v jest
skonczona mozna takze rozwazy¢ funkcje zbioru g — v na 3. Taka funkcja zbioru nie musi
by¢ miara, jako ze moze przyjmowac wartosci ujemne. Jednakze p—v w dalszy ciagu spelnia
warunek przeliczalnej addytywnosci.

DEFINICJA 5.1.1. Funkcje zbioru o : ¥ — [—o00,00|, przyjmujace co najwyzej jedng z
wartosci nieskonczonych —oo, 00, nazywamy miara znakowana jezeli a(()) = 0 oraz

()= Sat

dla kazdego ciggu parami rozlgcznych zbiorow A, € 3.

Jak sie okaze, kazda miara znakowana daje przedstawi¢ sie jako roznica dwoch miar i
mozna takiego rozktadu dokona¢ w pewien kanoniczny sposéb.

TWIERDZENIE 5.1.2 (rozkltad Hahna). JezZeli « jest miarg znakowang na o-ciele ¥ podzbio-
réow X to istniejg rozlgczne zbiory Xt 1 X, takie ze X = X U X~ oraz dla dowolnego
Ael,

(i) jezeli A C X to a(A) > 0;

(i1) jezeli A C X~ to a(A) < 0.

1Otton Nikodym (1887-1974), matematyk polski, po wojnie w USA; Johann Radon (1887-1956) pra-
cowal na Universitat Breslau



G. Plebanek, MIARA T CALKA Rozdzial 5: Twierdzenie Radona-Nikodyma 68

Dowadd. Zatézmy dla przyktadu, ze a nie przyjmuje wartosci —oo. Dla potrzeb dowodu
powiedzmy, ze zbiér B € X jest negatywny, jezeli a(A) < 0 dla kazdego zbioru mierzalnego
A C B. Niech r = infg a(B), gdzie infimum jest liczone po wszystkich zbiorach negatyw-
nych.

Wtedy istnieje zbiér negatywny B taki, ze a(B) = r. Istotnie, z okreslenia kresu dol-
nego (ktory, a priori, moze by¢ réwny —oo) istnieje ciag zbioréw negatywnych B, taki
ze a(B,) — r. Jak latwo sprawdzi¢, zbiér B = U, B, jest takze negatywny, a wiec dla
kazdego n

a(B) = a(B,) + a(B\ B,) < a(B,),
co pokazuje, ze a(B) = r (a w szczegdlnosei, ze r > —o0). Niech X~ =B i Xt =X\ X~.
Wystarczy teraz upewnié sie, ze X jest pozytywny, to znaczy spelnia czesé (ii) tezy
twierdzenia.

Przypusémy, ze Eg C X jest takim zbiorem mierzalnym, ze a(Fy) < 0. Wtedy Fy nie
moze by¢ negatywny bo inaczej mielibysmy

a(BU Ey) = a(B) + a(Ey) < a(B) =,

co przeczytoby definicji liczby r. Istnieje wiec najmniejsza liczba naturalna & i By C Ey o
wlasnosci a(Ey) > 1/ky. Teraz
a(EO \ El) = OK(E()) — Oé(El) <0
i mozemy powtoérzy¢ nasze ostatnie rozumowanie: istnieje najmniejsza liczba ky € N, taka
ze dla pewnego Ey C Ey \ Ey, a(FEy) > 1/ks. W ten sposéb definiujemy ciag parami
roztacznych zbioréw mierzalnych F, C Ej i ciag liczb k, € N, takich ze a(F,) > 1/k, dla
kazdego n, przy czym k, jest najmniejsza liczbg naturalng o tej wtasnosci. Zauwazmy, ze
a(E) < oo dla kazdego E C Ey (skoro a(Fp) < 0) i dlatego, stosujac te uwage do zbioru
FE = U,>1 E,, wnioskujemy, ze

a(E)=> 1/k, < oo,

co oznacza w szczegblnosci, ze lim, 1/k, = 0. Dla zbioru F' = Ey \ £ mamy «(F) < 0 oraz
jezeli A C F to, dla kazdego n, A C Ey \ E,, a zatem a(A) < 1/(k, — 1) z minimalnosci
liczby k,. Oznacza to, ze a(A) < 0, czyli ze F jest negatywnym zbiorem, a to stanowi
sprzecznosé, gdyz znowu mieliby$my o(F U B) < a(B) =7. A

WNIOSEK 5.1.3 (Rozklad Jordana). Jezeli a jest miarg znakowang na o-ciele ¥ podzbioréw
X to istniejg miary o i o~ na X, takie ze o = at —a”.

Dowdéd. Jezeli X = XU X~ jest rozktadem Hahna dla miary znakowanej « to wystarczy
zdefiniowaé

at(A)=a(ANXT), a (A)=—-aANnX),

dla A € ¥. Wtedy at i a~ sg przeliczalnie addytywne i nieujemne, a wiec sg miarami; dla
dowolnego A € X,

a(Ad)=a(ANXT)+a(ANX")=a(4) —a (A);

w ten sposéb dowdd zostat zakonczony. A
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2. Absolutna cigglo$¢ i singularnosé miar

Powr6¢émy do dwoch miar p i v, okreslonych na tym samym o-ciele ¥ podzbiorow
przestrzeni X . Nastepujace dwie definicje okreslaja zwiazki, jakie mogg zachodzi¢ pomiedzy
tymi miarami.

DEFINICJA 5.2.1. Moéwimy, zZe miara v jest absolutnie ciggla wzgledem miary p, jezeli dla
wszystkich A € 3 zachodzi implikacja

jezeli u(A)=0 to v(A)=0.
Relacje absolutnej cigglosci miar oznaczamy przez v < L.

DEFINICJA 5.2.2. Mowimy, ze miara v jest singularna wzgledem miary p, jezeli istniejg
A, B e X, takie 2e X = AUB, ANB =0, u(A) =0 i v(B) = 0. Relacje singularnosci
miar oznaczamy przez v L p.

Zauwazmy, ze obie wlasnosdci sa w pewnym sensie przeciwstawne, patrz Zadanie [

PRZYKELAD 5.2.3 Jezeli v dana jest przez catke

v(A) = [ fau

z nieujemnej funkcji mierzalnej f, por. Twierdzenie [3.3.5] to v < u, bo catka po zbiorze
miary zero jest réwna zero.
Prostym przyktadem singularnosci miar jest A L é,., gdzie ¢, jest delta Diraca w punkcie

reR. O

Odnotujmy, ze rozklad Jordana o = o™ — a~ byt tak zdefiniowany, ze at L a~;
nietrudno sprawdzi¢, ze jest to jedyny rozklad miary znakowanej na réznice dwoch miar
wzajemnie singularnych.

DEFINICJA 5.2.4. Dla miary znakowanej o = ot — o™ przyjmujemy
o] = a +a7;

a miare || nazywamy absolutnym wahaniem miary znakowanej .
Dla dwoch miar znakowanych o i 8 okreslonych na tym samym o-ciele ¥ przyjmujemy,
Ze a < 3 gdy |o| < |B|; podobnie oo L B jezeli || L |5].

Nietrudno jest wystowié¢ warunki || < |5] 1 |a| L |5] w jezyku miar a™, o~ oraz §*, 57,
patrz Zadanie [5][6]

Definicja absolutnej cigglosci miar ma swoje przetozenie na warunek, ktory troche uza-
sadnia nazwe tej relacji.

LEMAT 5.2.5. Jezeli v jest miarg skoriczong na 3 to dla dowolnej miary p na > warunek
v L | jest rownowazny warunkow:

(x) (Ve>0)(F)(VAeX)u(A) <d=r(A) <e.

Dowdd. Dostateczno$é warunku (x) jest oczywista. Zatézmy, ze (x) nie zachodzi; wtedy
istnieje € > 0 oraz zbiory A, € X, takie ze pu(4,) < 1/2" i v(A,) > . Wtedy dla
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A = limsup,, A, mamy p(A) =0, jako ze
u(A) < (U A < Y 1/26 = /20!
k=n k=n

dla kazdego n. Z drugiej strony z ciaglosci miary skonczonej v z géry mozemy wywniosko-
wadé, ze V(A) > e, wiec v nie jest absolutnie ciagta wzgledem u. A

3. Twierdzenie Radona-Nikodyma

Tytutowe twierdzenie to po prostu odwrocenie komentarza z Przyktadu [2; kazda mia-
ra absolutnie ciagta jest dana przez caltke (przy do$é ogdlnych zaltozeniach). Przed udo-
wodnieniem tego podstawowego i nieoczywistego faktu podamy pewien lemat techniczny,
potrzebny w gtéwnym dowodzie.

LEMAT 5.3.1. Niech p i v bedg skoriczonymi miarami na X; zatoimy, zev # 0 i v < p.
Wtedy istnieje P € X, taki Ze u(P) > 0 i P jest pozytywny dla miary znakowanej v — e,
to znaczy v(B) > ep(B) dla kazdego mierzalnego B C P.

Dowdd. Dla kazdego n mozemy rozwazy¢ miare znakowana v — (1/n)p i odpowiadajacy
jej rozktad Hahna przestrzeni X = X;F U X, jak w Twierdzeniu Niech

A=UX}, B=NX,.

Wtedy B C X, dla kazdego n wiec v(B) — (1/n)u(B) < 0, co daje v(B) = 0. Poniewaz
v(X)>0iX =AUB, wiec v(A) > 01 takze, z warunku v < pu, u(A) > 0. Istnieje zatem
n, takie ze pu(X,7) > 0; wtedy € = 1/n oraz P = X, speliaja teze. A

TWIERDZENIE 5.3.2 (Radona-Nikodyma). Niech (X, 3, u) bedzie o-skoniczong przestrzeniq
miarowq i niech v bedzie takq miarg znakowang na X3, Ze |v| jest o-skonczona. Jezeliv < u
to istnieje mierzalna funkcja f : X — R, taka zZe dla wszystkich A € 3

v(A) = /A fdu.
Dowod. Zauwazmy przede wszystkim, ze wystarczy udowodni¢ twierdzenie dla miary v
nieujemnej — w ogllnym przypadku miary znakowanej zastosujemy te wersje do vt i

v~. Ponadto mozemy dodatkowo zatozy¢, ze obie miary p i v sg skonczone — w przy-
padku o-skonczonym bedziemy mogli zapisa¢ X jako roztaczng sume X = U, X, gdzie
w(Xn), v(X,) < oo i zdefiniowaé¢ odpowiedniag funkcje na kazdej czesci X, z osobna.

Niech H bedzie rodzing wszystkich mierzalnych funkcji A > 0, takich ze dla kazdego
A € ¥ zachodzi nier6wnosc¢

/Ah dp < v(A).

Wykazemy, ze w rodzinie H istnieje funkcja, w pewnym sensie, maksymalna i ze spetnia
ona teze twierdzenia. Niech

r:sup{/thu:hEH};
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wtedy istnieje ciag h, € H, taki ze lim,, [y h, du = r. Rozwazmy funkcje g,, , gdzie

gn = max h;.

i<n
Dowolny zbiér A mozemy zapisa¢ jako roztaczng sume¢ A = U, A;, gdzie g, = h; na A;;
wtedy

/Agnduzz

i<n

/AZ_ hi di < S w(A;) = v(A),

i<n
Pokazuje to, ze takze g, € H; teraz biorac granice punktowa f = lim, g, mamy f € H i
[x [ du = r z twierdzenia o zbieznosci monotonicznej. Zauwazmy, ze [y f du < v(X) < oo,
wiec f jest funkcjag skonczong v-prawie wszedzie.

Aby przekonac sie, ze f jest poszukiwang funkcjg sprawdzimy, ze miara v, dana wzorem

vo(4) = v(4) = [ f du

dla A € ¥ jest tozsamosciowo réwna zeru. W przeciwnym przypadku, gdy vo(X) > 0, na
mocy Lematu [5.3.1] istnieje € > 01 P € X, takie ze

eu(PﬂA)<u0(PﬂA):y(PﬂA)—/PmAfdu,

dla wszystkich A € Y. Rozwazmy funkcje g = f +exp i A € 3; korzystajac z ostatniej
nierownosci, mamy

Agdu:Afdu+5p(PﬂA)<

< [ fdurv(Pna)= [ = [ fdusv(PNA) < p(A\P)+#(PNA) = v(A).
A PnA A\P
Stad g € H, ale [y gdu > [y f du =1, co jest sprzecznoScia z definicja liczby r. A

Twierdzenie nie musi zachodzi¢ dla miar p, ktére nie s o-skoniczone, patrz Zadanie [5|[7]
Funkcja f speliajaca teze¢ twierdzenia Radona-Nikodyma bywa oznaczana przez
dv
f = dia
1
funkcja ta nosi nazwe pochodnej Radona-Nikodyma miary v wzgledem miary p. Oznaczenie
na te pochodna jest przydatne w zapamietywaniu niektérych wzoréw, patrz Zadania [o]9)
i b.3.2] ponizej. Zauwazmy, ze pochodna jest wyznaczona niejednoznacznie, ale v-prawie
wszedzie.

WNIOSEK 5.3.3. Dla muar p i v jok w Twierdzeniu [5.5.4, wzor

d
/gdv:/g-ldu,
X X du

zachodzi dla kazdej v-catkowalnej funkcji g.

Dowdd. Dla g = x4 wzor jest konsekwencja definicji pochodnej RN. Z addytywnosci catki
tatwo wywnioskowaé wzor dla funkcji prostych. Z twierdzenia o zbiezno$ci monotonicz-
nej otrzymamy teze dla funkcji nieujemnych itd. (czytelnik sam uzupeni szczegoly, por.

Zadanie .. A
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Nastepujacy prosty wniosek jest wykorzystywany w rachunku prawdopodobienstwa do
definiowania tak zwanych warunkowych wartosci oczekiwanych.

WNIOSEK 5.3.4. Niech (X, %, 1) bedzie o-skonczong przestrzeniq miarowg i niech Yo C X
bedzie dowolnym o-ciatem. Wtedy dla kazdego A € ¥ istnieje Yg-mierzalna funkcja f, taka
ze

uANB) = [ fap.
dla wszystkich B € Y.

Dowdd. Wystarczy zastosowaé¢ Twierdzenie do miary p na ¥y i v danej wzorem
v(B)=u(ANB)dla Be Xy A

Z twierdzenia Radona-Nikodyma wynika naste¢pujace twierdzenie o rozktadzie miar.

TWIERDZENIE 5.3.5. Niech p i v bedg o-skoriczonymi miarami, okreslonymi na tym samym
o-ciele. Wtedy istnieje rozktad v = v, + vs, gdzie v, < 1 vs L .

Dowéd. Mamy v < p + v wiec tym bardziej v < p + v; niech f bedzie pochodna RN
miary v wzgledem miary p + v. Zauwazmy, ze wtedy 0 < f < 1 v-prawie wszedzie. Niech
Xy =A{z: f(x) <1} i Xy ={x: f(x) = 1}. Poniewaz

V(o) = [ fdut [ fdv=p(Xa) +0(X),
X5 X5
wiec pu(Xz) = 0. Definiujemy
vo(A) =v(ANXy), vs(A)=v(ANX,) dlaAeX.

Wtedy oczywiscie v = v, + v, 1 vs L p, jako ze vy jest skupiona na X,. Pozostaje sprawdzi¢,
ze g < p. Niech p(A) = 0. Wtedy

ua(A):u(AﬂXl):/Am&fdqu/Alefdy:/A .

NX1

Stad

| a-pav=o,
ANXy
co implikuje v,(A) = v(AN X;) =0, jako ze 1 — f > 0 na zbiorze X;. A

4. Miary na prostej rzeczywistej

Wszystko sprowadza sie do prostej rzeczywistej, takze catkowanie.

TWIERDZENIE 5.4.1. Niech f : X — R bedzie mierzalng funkcjg na przestrzeni miarowej
(X, 3, p). Wtedy wzér v(B) = u(f~[B]) definiuje miare borelowskq na R, por. Zada,m'e
z poprzedniego rozdziatu.

Dla dowolnej borelowskiej funkcji g : R — R zachodzi wzor

Jogofdu= [ gavi)

(0 ile calki majg sens liczbowy).
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Dowdd. Patrz Zadanie [I7] z tego rozdziatu. A

W tej czesci dokonamy przegladu miar v okreslonych na o-ciele Bor(R), ktére sa lokalnie
skonczone, to znaczy przyjmujg skonczone wartosci na kazdym przedziale. Zauwazmy, ze
taka miara v jest automatycznie o-skonczona. Wtasnosé lokalnej skonczonosci jest jednak
istotnie silniejsza: biorac

v=>_ 4,
qeQ
mozemy tatwo okresli¢ miare o-skoniczong, ktéra przyjmuje warto$é oo na kazdym niepu-
stym przedziale.
Jezeli v < X to Twierdzenie |5.3.21 wzor w [5.3.3| pozwalaja zredukowaé catke wzgledem
v do klasycznej catki Lebesgue’a. Wiele podstawowych miar probabilistycznych na prostej
jest absolutnie ciggtych wzgledem \; na przyktad rozktad normalny (miara Gaussa), czyli
podstawowa miara probabilistyczna, jest zadana jako

V(A) = \/12_7//46962/2 dA(@).

W ogélnym przypadku, kazda v mozemy przedstawi¢ jako v = v, + v, gdzie, zgodnie z
Twierdzeniem [5.3.5] v, < Aivs L A. Rozwazmy w dalszym ciagu przypadek v 1. \. Taka
miara v moze by¢ dodatnia tylko na przeliczalnej ilosci punktéw. Mozemy wiec napisac

/
V:chétn—l—y,
n

dla pewnych ¢, > 0, pewnych punktéw t,, € R, gdzie miara v/ spelnia juz warunek p/{t} = 0
dla kazdego t. Klasycznym przyktadem miary skupionej na zbiorze przeliczalnym jest roz-
ktad Poissona v, czyli miara probabilistyczna skupiona na liczbach catkowitych nieujemnych
i spetniajaca, dla ustalonego parametru s > 0, warunek

v{n} =

Zauwazmy, ze dla miary postaci p =Y, ¢,0;,, catka redukuje si¢ do sumy szeregu:

/Rg dp = Zn:cng(tn)-

Pozostate miary maja te wlasnosé, ze znikaja na punktach (czyli sa bezatomowe, por.
Zadanie , ale sg skupione na zbiorze miary Lebesgue’a zero. Takie miary rzeczywiscie
istniejg, jak mogliSmy przekonaé sie w 4.5.

Wszystkie miary lokalnie skoriczone na prostej mozna wygenerowaé¢ w opisany ponizej
sposob. Zacznijmy od prostej uwagi.

e %s"

n!

LEMAT 5.4.2. Jezeli p i v sqg miarami na Bor(R) i dla kazdego a < b mamy
pla,b) = via,b) < oo,

to p=v.

Dowdéd. Rodzina
{B € Bor(R): BCI0,1],u(B) =v(B)}
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jest klasa monotoniczng wiec p(B) = v(B) dla wszystkich borelowskich podzbioréw [0, 1)
z Twierdzenia |1.7.2] Te uwage mozna odnie$¢ do kazdego odcinka postaci [n,n + 1). Osta-
tecznie, dla B € Bor(R) mamy

w(B)=> pwBNhnn+1)=> v(BNnn+1))=uv(B).

n

Niech F': R — R bedzie funkcja niemalejaca; przyjmijmy
AF([aab» = F(b) - F(a)a
dla a < b. Te definicje mozna w oczywisty sposob rozszerzy¢ na elementy pierscienia prze-
dzialéw, rozwazanego w rodziale 1. Jesli funkcja zbioru Ap ma by¢ przeliczalnie addytywna
to konieczne jest, aby funkcja F' byta lewostronnie ciagta, poniewaz wtedy dla ciggu h,, > 0,
h, — 0
F(z) — F(x — hy) = Ap[x — hy,x) — 0,

jako ze przekr6j N, [z — hy,x) jest pusty. Jak sie okazuje dla funkcji lewostronnie ciaglej
F, funkcja zbioru A jest przeliczalnie addytywna na pierécieniu odcinkéw i rozszerza sie
jednoznacznie do miary borelowskiej na prostej, co mozna wykazaé¢ analogicznie, jak w
przypadku miary Lebesgue’a. Istnieje jednak w tej chwili znacznie krotsza droga.

TWIERDZENIE 5.4.3. Dla kazdej lewostronnie cigglej niemalejgcej funkcji F' : R — R
istnieje jedyna miara (Lebesque’a-Stieltjesa) \p okreslona na Bor(R), taka Ze

Arla,b) = F(b) — F(a) dlaa <b.
Dowadd. Zatdzmy, dla ustalenia uwagi, ze

M = lim F(z) =00, K= lim F(z)= —oc.

r—00 r——00

Niech funkcja h bedzie zdefiniowana wzorem

hy) = sup{z : F(z) <y.}
Wtedy warunek a < h(y) jest réwnowazny warunkowi F'(a) < y na mocy lewostronnej
ciaglosci F', natomiast warunek h(y) < b oznacza y < F'(b). Tym samym dla a < b mamy

h[a,0)] = [F(a), F(b)).

Funkcja h : R — R jest niemalejaca, a wiec borelowska, patrz Zadanie [H[I1] Mozemy wiec
rozwazy¢ obraz miary

Ar = h[)\], gdzie Ap(B)=Ah'B]),

dla B € Bor(R), patrz Zadanie |§| Wtedy Ar spehia zadane rownanie. Jedynosé otrzy-
mujemy natychmiast z Lematu [p.4.2 A

Zauwazmy, ze kazda miara lokalnie skonczona p na prostej jest postaci p = Ap dla
pewnej funkcji F' — wystarczy przyjaé, ze F(z) = p[0,2) dlax > 01 F(x) = —pulz,0) poza
tym, por. Zadanie [J][I2] Nalezy zaznaczy¢, ze wszedzie tutaj stosowaliSmy zasade rozwa-
zania odcinkéw postaci [a, b) przy definiowaniu miar postaci Ag; trzeba mie¢ $wiadomos¢,
ze réwnie dobrze mozna rozwazaé wzor postaci Ap(a,b] = F(b) — F(a) — wtedy F jest
oczywiscie prawostronnie ciggta.
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W niektorych przypadkach catka wzgledem miary A\p wyraza si¢ w prosty sposob.

TWIERDZENIE 5.4.4. Jezeli funkcja niemalejgca F' ma cigglq pochodng to

/gdAF:/g-F’d)\,
R R
dla kazdej A\p-catkowalnej funkcyi g.

Dowdd. Jezeli g = xa) dla a < b to po lewej stronie wzoru mamy Apla, b) = F(b) — F(a),
a po prawej

b
/g-F’ d/\:/ F'(z) dz,
R a
czyli tyle samo. Mamy F” > 0 i mozemy zdefiniowaé¢ miare p wzorem
u(B) = / F'd\, B e Bor(R).
B

Jak dotad sprawdziliSmy, ze i = Ar na odcinkach, a wiec 4 = Ar z Lematu Innymi
stowy, wzér z twierdzenia jest wiec spetniony dla kazdej funkcji g = x s, gdzie B € Bor(R).
Dalej rozszerzamy wzér standardowo na funkcje proste oraz mierzalne (por. dowéd [5.3.2)).
A
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5. Zadania

5.5.1 Zauwazy¢, ze rozktad Hahna X = X+ U X~ dla miary znakowanej s jest ”jedno-
znaczny z doktadnoscia do zbior6w miary zero” (co to znaczy?). Czy rozklad o na réznice
dwoéch miar jest jedyny?

5.5.2 Zauwazy¢, ze jeSli miara znakowana v przyjmuje tylko wartosci rzeczywiste, to jest
ograniczona.

5.5.3 Niech f bedzie taka funkcjg mierzalng, ze przynajmniej jedna z funkcji f*, f~ jest
p—catkowalna i niech v(A) = [, f dp dla zbioréw A € ¥ (tutaj p jest miarg na X). Zapisaé
vt v~ oraz |v| za pomocy calek.

5.5.4 Zauwazy¢, ze dla miary znakowanej v, |v|(A) = 0 wtedy i tylko wtedy gdy v(B) =0
dla kazdego B C A (A, B € %).

5.5.5 Zauwazy¢, ze jezeliv < piv L ptorv =0.

5.5.6 Zauwazy¢, ze v < u wtedy 1 tylko wtedy gdy v, v~ < i 1 ze podobng wlasno$é ma
relacja singularnosci miar.

5.5.7 Twierdzenie RN nie musi zachodzi¢ dla pu, ktére nie sa o—skonczone. Niech Y bedzie
o—cialem generowanym przez przeliczalne podzbiory [0, 1]; rozwazyé miare liczaca p na X
oraz zerojedynkowa miar¢ v na .

5.5.8 Uzupei¢ szczegdty dowodu Wniosku wedtug podanego szkicu.

5.5.9 Niech u, v beda o—skonczonymi miarami na >, takimi ze v < p i p < v. Wykazac,
ze prawie wszedzie zachodzi zaleznosé

d d

K

dp dv

5.5.10 Niech pu,v beda miarami o-skonczonymi, v < p i niech funkcja f = j—l’: bedzie
wszedzie dodatnia. Sprawdzi¢, ze pu < v.

5.5.11 Niech (X, X, 1) bedzie przestrzenia probabilistyczna i niech A bedzie o—ciatem za-

wartym w Y. Wykazaé, ze dla kazdej X—mierzalnej funkcji catkowalnej f : X — R istnieje
A-mierzalna funkcja g, taka ze dla kazdego A € A

/AgduzfAfdu-

(Taka g = E(f|.A) nazywa sie w probabilistyce warunkowa wartoscia oczekiwana.)

5.5.12 Dystrybuanta miary probabilistycznej 1 na Bor(R) nazywamy funkcje F, : R — R,
dang wzorem F)(r) = p(—oo,x) dla x € R. Sprawdzi¢, ze F), jest niemalejaca funkcja
lewostronnie ciagta, przy czym lim, ., F,(z) = 1.

UWAGA: Czasami przyjmuje si¢ definicje F,(z) = p(—o0,z]; jak wplywa to na wlasnosci
F,?
5.5.13 Wykazac, ze dystrybuanta F), jest ciggta wtedy i tylko wtedy gdy p znika na punktach.

5.5.14 Miara znikajaca na punktach bywa nazywana miara ciggta. Wykazaé, ze probabili-
styczna miara p na Bor(R) jest ciggta wtedy i tylko wtedy, gdy jest bezatomowa.
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5.5.15 Jak juz wiemy (!) na zbiorze tréjkowym Cantora C' istnieje miara probabilistyczna
i, ktéra znika na punktach. Niech F(x) = u((—o0,z)) bedzie dystrybuanta tej miary.
Zauwazy¢, ze F jest funkcja ciagta, oraz F[C] = [0, 1]. Wywnioskowaé stad, ze obraz zbioru
miary zero przez funkcje ciagta nie musi by¢ miary zero, a nawet nie musi by¢ mierzalny.

5.5.16 Obliczy¢ (albo sprowadzi¢ do znanej catki); podaé uzasadnienia rachunkéw:
(1) Jg f(x) du gdzie p = dg, = do + 01, 0 = >0 &, (tutaj 0, oznacza miare probabili-
styczna skupiona w punkcie x).
(ii) Jio.2° dX;
(iti) Jioqy f dX; gdzie f(z) =z dlaz ¢ Q, f(z) =0dlaz € Q;
(1v) Jipan sinz du, gdzie p(A) = [, 2* d\(2);
(v) [z [ dX\; gdzie f(z) =2? dlaz € Q, f(z) =0 dlax ¢ Q;
(vi) T 1/(2* + 1) dA();
(vii) [ cosx du, gdzie p(A) = [, 1/(z* + 1) d\(z);
(viii) [g cosz du, gdzie p jest taka ze p(—oo,x) = arctgz + m/2;
(i) Jiooo)lx] dp, gdzie p jest taka ze p[n,n +1) = n=%;

(z) Jg(z — [x]) dp, gdzie

o= Z 5n+1/n;

n=1
(xi)
n?x + 2 n

li ——dA li
nibo 01 n?r+n+3 (z) s [0,00] ZN? + 3

dA(z).

5.5.17 Niech f: X — R bedzie mierzalng funkcja na przestrzeni miarowej (X, ¥, 1). Wtedy
wzor v(B) = p(f~[B]) definiuje miare borelowska na R, por. Zadanie [16| z poprzedniego
rozdziatu (taka miara w probabilistyce nazywa sie rozkladem zmiennej losowej).
Udowodnié, ze [y go f du = [z g dv(x) (o ile calki maja sens).

WSsKAZOWKA: Rozwazy¢ najpierw przypadek, gdy g jest funkcjg charakterystyczna; potem
funkcje proste itd.

6. Problemy

5.6.A Niech (X, X, u) bedzie przestrzenig miarowa. Dla dowolnego Z C X piszemy p*(Z) =
inf{u(A) : A € ¥, 7 C A}. Zauwazy¢, ze p* jest miara zewnetrzna (jest przeliczalnie
podaddytywna i monotoniczna), ale na ogdl nie jest addytywna.

Udowodni¢, ze dla ustalonego Z C X wzér v(ANZ) = u*(ANZ) definiuje miare¢ na o—ciele
{ANZ: A e ¥} podzbioréw Z.

5.6.B Istnieje przestrzen metryczna Z C [0, 1] i probabilistyczna miara v na Bor(Z), taka
ze v(K) =0dla K C Z zwartych.

WSsSKAZOWKA: Wziaé na poczatek Z C [0, 1] niemierzalny w sensie Lebesgue’a i miare v z
poprzedniego problemu.
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5.6.C Niech (X, X, ) bedzie przestrzenia probabilistyczna. Jak wiemy, A ~ B <— pu(AA
B) = 0 definiuje relacje réownowaznosci. Niech 8B = {[A] : A € X} oznacza rodzine klas
abstrakcji tej relacji.

Zauwazy¢, ze na ‘B mozna wprowadzi¢ naturalne dziatania

[Alv[Bl =[AUB], [AIA[B]=[ANB], —[A]=[AT].
Wtedy B staje sie algebra Boole’a (B, V, A, -,0,1) (to znaczy, ze wprowadzone dzialania
maja takie same wtasnosci jak "zwykte” dzialania mnogosciowe; 0 = [(], 1 = [X]). Tak
zdefiniowana algebre nazywamy algebra miary.

5.6.D Sprawdzi¢, ze algebra miary B jest przestrzenia metryczna, gdzie metryke zadajemy
wzorem d([A], [B]) = u(A A B). Udowodnié, ze metryka ta jest zupetna.

5.6.E Algebra miary Lebesgue’a A na [0, 1] jest przestrzenia osrodkows.



ROZDZIAYL, 6

Przestrzenie funkcji catkowalnych

Moim najwickszym odkryciem matema-
tycznym jest Stefan Banach.
Hugo Steinhaus

W rozdziale ostatnim wprowadzimy klasyczne przestrzenie Banacha postaci L, (p) 1 wy-
prowadzimy podstawowe ich wtasnosci. Oprocz tego rozwazymy ogdlne wlasnosci miar na
przestrzeniach euklidesowych i zastosujemy je do znalezienia zbioréw gestych w przestrze-
niach funkcji catkowalnych.

1. Klasyczne nieréwnosci

W podrozdziale wyprowadzimy klasyczne nierownosci catkowe Cauchy’ego-Holdera oraz
Minkowskiego. Niech, po raz kolejny, (X, X, 1) bedzie ustalona przestrzenia miarowa o-
skonczong; dalej milczaco przyjmujemy, ze wszystkie rozwazane funkcje sg mierzalne wzgle-

dem .
LEMAT 6.1.1. Dla dowolnych liczb dodatnich a,b,p,q, jezeli 1/p+1/q =1 to
P e
ab < «“ + —.
p q

Dowéd. Rozwazmy funkcje f(t) = t*~! na odcinku [0, a]. Z zalozenia p > 1 wiec istnieje
funkcja odwrotna do f dana wzorem g(s) = s/®~1. Zauwazmy, ze pola pod wykresami
funkcji f : [0,a] = Rig:[0,b] — R pokrywaja kwadrat [0, a] x [0,b]. Stad

a b
a b P q P be
ab</ ! dt+/ s/ ds = [] +[S] S
0 0 ply L4l P 4
poniewaz 1 +1/(p—1)=p/(p—1)=gq. A

DEFINICJA 6.1.2. Dla dowolnej funkcji (catkowalnej bgdz nie) f : X — R ip > 1 wyrazenie

11, = ([ 157 an) "

nazywamy p-tg normq catkowq funkcyi.

TWIERDZENIE 6.1.3 (Nier6wno$¢ Cauchy-ego-Holdera). Dla dowolnych funkcji f, g i liczb
p,q > 0, takich ze 1/p+1/q = 1, zachodzi nieréwnosé

17 gl an <171, lgll
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Dowdéd. Oczywisdcie nierownos¢ jest prawdziwa, gdy jedna z norm jest nieskonczona. W
przypadku skonczonym, dla dowolnego x € X podstawmy

Qo @ (@)l
(P gllq

do nieréwnosci w Lemacie [6.1.1} wtedy otrzymamy wszedzie nieréwnosé
fol L 1fP 1 gl

11l - Nlglle 2 IFIE a lglld
Catkujac te ostatnia nieréwnos¢ wzgledem miary otrzymujemy

dp 1 1
Jx 19| ol 1oy

T T T
1fllp-llglls —p q
co konczy dowod. A

TWIERDZENIE 6.1.4 (Nier6wnos$¢ Minkowskiego). Dla dowolnych funkcji f, g i liczby p > 1,
zachodzi nierownosé

1f+glle < £l + llgllp-

Dowdéd. Nieréwnosé oczywiscie zachodzi dla p = 1 (patrz Twierdzenie (3.2.3)). Dla p >
1 mozemy dobraé liczbe ¢ spelniajaca warunwk 1/p + 1/¢ = 1. Wtedy, uwzgledniajac
(p — 1)g = p i stosujac nieréwnosc¢ z

||f+g||p:/X|f+g|P du <
< U115+ gl ek [ lgl 1 + gl <
1/ 1/
171 (17 + 1077 i) ™+ gl ([ 17+ ol du) ™ =
1/q
= (A1l + gl - ([ 17+ g die) ™ = (171 + gl - 15 + gl

Teraz, dzielac (skrajne) strony nieréwnosci przez || f + g||§/ 4, otrzymujemy nierownos¢ Min-
kowskiego. Nalezy jednak zaznaczy¢, ze dla poprawnosci tego argumentu konieczne jest,
aby sprawdzi¢, ze jesli || f][,, [|g]l, < oo to || f + g|l, < oo, patrz Zadanie 6|1} A

2. Przestrzenie Banacha funkcji catkowalnych

Niech E bedzie przestrzenia liniowa nad ciatem liczb rzeczywistych lub zespolonych.
Oznacza to, ze w E okreslone jest dzialanie dodawania (wektorow) oraz mnozenia wektoréw
przez skalary z ciata, przy czym zachowane sg aksjomaty dobrze znane z algebry liniowe]
przestrzeni euklidesowych.

DEFINICJA 6.2.1. Funkcje || - || : E — Ry nazywamy normg jezeli dla dowolnych x,y € E
1 ¢ z ciala skalarow zachodzq zaleznosci

(i) ||x|| = 0 wtedy i tylko wtedy gdy x = 0;

(i) llc- all = [el - 1]

(ii1) ||z +yll < [lzll + llyll-
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Warunek (ii) w definicji nazywa sie jednorodnoscia, a warunek (iii) oczywiscie nieréw-
noécig trojkata. W kazdej przestrzeni unormowanej (E, || - ||) mozemy zdefiniowaé¢ metryke
wzorem

p(r,y) = llz -y,

dla x,y € E. Zauwazmy, ze tak wtasnie definiowana jest metryka w przestrzeni euklidesowe;
R™ gdzie norma euklidesowa zadana jest wzorem

1/2
lz]| = (ZI@"F) :
i<n

DEFINICJA 6.2.2. Przestrzen unormowang (E, ||-||) nazywamy przestrzeniqg Banacha, jezeli
metryka wyznaczona przez norme jest zupelna.

Wspomniana zupetnos$é oznacza, ze dla ciagu xz,, wektorow z E, speliajacego warunek

Cauchy’ego

im i = 0.
istnieje © € E, taki ze ||z, — x| — 0 (czyli granica tego ciagu). Przestrzenie euklidesowe
sa wiec przestrzeniami Banacha, ale w analizie funkcjonalnej rozwaza sie wiele przestrzeni
Banacha nieskoniczenie wymiarowych, na ogoét ztozonych z pewnych funkcji. Na przyktad
norma || f|| = sup, |f(t)| czyni z przestrzeni funkcji ciagtych C0, 1] przestrzen Banacha.
Naszym celem bedzie wprowadzenie przestrzeni Banacha funkcji catkowalnych.

Funkcja || - ||, zdefiniowana w nie bez powodu nosi nazwe p-tej normy: nier6wnosé
Minkowskiego to po prostu nieréwnos¢ trojkata dla || - ||,. Jednorodnosé || - ||, wynika
natychmiast z wlasnosci calki. Jedyny problem, to taki, ze, formalnie rzecz biorac, || ||, nie
spetnia pierwszego aksjomatu normy, jako ze || f||, = 0 oznacza jedynie, ze f = 0 prawie
wszedzie. Aby pokonaé te przeszkode dokonujemy nastepujacego zabiegu.

DEFINICJA 6.2.3. Dla ustalonej przestrzeni miarowej (X, X, ) symbolem L,(p) oznaczamy
przestrzen wszystkich funkcji mierzalnych f : X — R, dla ktorych || f||, < oo. Przyjmujemy
przy tym zasade, Ze utoZsamiamy elementy L,(u) rowne prawie wszedzie.

Formalnie rzecz biorac, L,(x) nie sktada si¢ wiec z funkcji, ale z klas abstrakcji relacji
réwnowaznosci

f = g prawie wszedzie.

Powszechnie stosuje sie jednak umowe, ze elementy L, (i) nazywamy po prostu funkcjami;
nie prowadzi to do wigkszych niejasnosci. Tym samym L, (p) jest przestrzenia unormowa-
na z p-norma catkowa. L,(u) bywa oznaczana tez L,(X, X, 1) lub, w innych przypadkach,
L,(X). Na przyktad piszemy najczesciej L,[0,1] i L,(R) dla odpowiednich przestrzeni cal-
kowych wzgledem miary Lebesgue’a na [0, 1] lub R.

TWIERDZENIE 6.2.4. Przestrzen L,(p) z normg || - ||, jest przestrzenig Banacha.
Dowdéd. Rozwazmy p = 1. Niech f,, € Li(u) bedzie ciagiem Cauchy’ego, to znaczy

/X\fn—fk| dp — 0,
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gdy n, k — oo. Wtedy dla € > 0 z nier6wnosci Czebyszewa

J 1= Rl dp> e e |ful@) = ful@)] > <),

wynika, ze ciag f, jest Cauchy’ego wedtug miary. Z Twierdzenia [2.4.6|istnieje wiec rosnacy
ciag liczb naturalnych ny i funkcja f, taki ze f,, — f prawie wszedzie. Z kolei z lematu
Fatou

/ f] dp < liminf/ [ fo| dpt < 00,
X k X

jako ze z warunku Cauchy’ego wynika oczywiscie ograniczono$é ciagu catek [y |f,| du.
Stosujac jeszcze raz lemat Fatou otrzymujemy

/ If — ful du :/ liminf |f, — f,| dy < hm,inf/ o, = | du < e,
X X j X
dla dostatecznie duzych k. Ostatecznie, poniewaz

JoIF =gl dn < [ 1F = gl an+ [ 1= ful di

wigc istotnie f jest granicg ciagu f, w przestrzeni L,(u).
Dowdd dla p > 1 jest dos¢ automatyczna modyfikacja przedstawionego argumentu,
patrz Zadanie [6]2] A

Oprocz rzeczywistych przestrzeni funkcji catkowalnych rozwaza sie ich odpowiedniki
zespolone. Dla przestrzeni (X, %, ) i funkeji f : X — C, powiemy, ze f jest funkcja
mierzalng gdy f~![B] € ¥ dla kazdego borelowskiego podzbioru C (przypomnijmy, ze C
mozna utozsamiaé¢ z R x R). Mozemy taka funkcje przedstawi¢ w postaci f = f1 +1i - fo
dla funkcji rzeczywistych fi, fo : X — R. Nietrudno sprawdzi¢, ze f jest mierzalna wtedy i
tylko wtedy gdy f1, f2 sa mierzalne, patrz Zadanie[6][5] Dla funkcji f : X — C mierzalnej jej
modut | f| = /2 + f2 jest wigc tez mierzalny. Funkcja f jest catkowalna przy niezmienione;j
definicji: [y |f| du < 0o, natomiast wzor

Jordu= [ pdutic [ g2

mozna przyjaé za definicje catki. Klasyczne nierownosci z podrozdziatu 6.1 i T'wierdzenie
pozostaja prawdziwe dla funkcji zespolonych.

3. Jednakowa calkowalnosé

Jak widzieliSmy w dowodzie Twierdzenia zbieznos¢ ciagu f, do funkeji f w Lq(p)
pociaga za soba zbieznos¢ wedtug miary. Prosty przyktad

fa=mn- X[0,1/n]
pokazuje, ze zbiezno$¢ wedlug miary jest jednak istotnie stabsza niz ta w Li(u). W przy-
padku miary skonczonej czesto stosuje sie nastepujace kryterium zbieznosci w Ly (p).
Przypomnijmy, ze dla funkcji catkowalnej f : X — R na przestrzeni miarowej (X, 3, u),
wzor v(A) = [, |f] du okredla miare v i v < p. Dlatego na mocy Lematu many
warunek

(Ve > 0)(36 > 0)(VA € %) [M(A) <5 /A | dp < 4 .
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O ciagu funkcji calkowalnych f,, méwimy, ze jest on jednakowo calkowalny gdy powyzszy
warunek jest spetlniony jednostajnie po n, to znaczy

(Ve > 0)(35 > 0)(VA € =)(¥n) {M(A) <5 /A ol dp < e} .

TWIERDZENIE 6.3.1. JezZeli u(X) < oo to cigg f, jest zbiezny w Ly (p) wtedy i tylko wtedy
gdy cigg fn zbiega wedlug miary oraz funkcje f, sq jednakowo catkowalne

Dowdd. Niech [y |f, — f| dg — 0 dla f,, f € Ly1(u). Jak poprzednio,
o= fldu> e pfa s | fule) = f@)] > <)

dla kazdego ¢ > 0, co dowodzi, ze f, -~ f. Sprawdzmy zatem jednakowa calkowalnosé.
Dla ustalonego € > 0 mamy [y |f, — f| du < e dla n > ny. Mozemy dobra¢ § > 0, takie ze
dla wszystkich funkcji h € {f, f1,..., fu,} zachodzi [, |h| du < € jesli tylko u(A) < 6. Dla
n > ng mamy z kolei

J bl di < [ 1= Fldut [ 11 dp <2

co pokazuje, ze cigg f, jest jednakowo catkowalny.
Udowodnimy przeciwna implikacje. Ustalmy € > 0 i niech

Ange = {2 2 [fu(@) — fu(z)| > €}
Wtedy dla dowolnej liczby 6 > 0 mamy p(A, ;) < ¢ dla duzych n, k i dlatego

X Ak X\Ay ke

<[ Aaldn+ [ 1Al dpte - p(x),
An,k An,k

co, z warunku jednakowej catkowalnosci, pociaga za soba [ |f, — fx| du — 0. Ciag f,, jest
ciaggiem Cauchy’ego w Lq(p), a wiec jest zbiezny (patrz twierdzenie [6.2.4). A

4. Miary na przestrzeniach euklidesowych

W tym podrozdziale oméwimy kilka wlasno$ci miar na przestrzeniach euklidesowych.
Jak sie za chwile okaze, niektére wtasnosci miary Lebesgue’a przystuguja wszystkim takim
miarom i jest to raczej zastuga struktury o-ciata zbiorow borelowskich niz samej konstrukeji
miary. Cze$¢ tych faktow w istocie wymaga jedynie zatozenia metrycznosci przestrzeni i
w tej czesci ustalimy przestrzen metryczna (X, d) — w przypadku, gdy X = R™ metryka
euklidesowa d dana jest wzorem

d(z,y) = [ (zx —yp)?.
k<n
Jak poprzednio piszemy B,(x) aby oznaczy¢ kule B,(z) = {y : d(z,y) < r}. Zbiér U
nazywamy otwartym gdy dla kazdego = € U istnieje § > 0, taka ze Bs(z) C U; analogicznie
definiujemy zbiory domkniete i o-ciato Bor(X).
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LEMAT 6.4.1. W przestrzeni metrycznej (X,d) kazdy zbior domkniety F' mozna zapisaé
w postaci F' = (N, V,, gdzie zbiory V,, C X sa otwarte. Kazdy zbior otwarty w X jest
przeliczalng sumg zbiorow domknietych.

Dowdd. Niech V,, bedzie zbiorem tych x € X, dla ktérych istnieje a € F'| takie ze d(x,a) <
1/n. Z wtasnosci metryki tatwo sprawdzié, ze zbiér V,, jest otwarty. Oczywiscie FF C V,,
dla kazdego n. Jezeli z € N, V, to dla kazdego n istnieje a,, € F, taki ze d(a,,z) < 1/n.
Oznacza to, ze a, — x i, z domknigtosci F', x € F. Drugie stwierdzenie wynika z praw de
Morgana. A

TWIERDZENIE 6.4.2. Niech p bedzie skornczong miarg na o-ciele Bor(X) w przestrzeni
metrycznej X. Wiedy dla kazdego B € Bor(X) zachodzq zaleinosci

(*)  w(B) =sup{u(F): F € B} =inf{u(V): B SV},
gdzie F' oznacza zawsze zbior domkniety, a V' zbior otwarty.

Dowdd. Oznaczmy przez A rodzine tych B € Bor(X), dla ktérych speliony jest warunek
(*). Jezeli zbiér F' jest domkniety to F' = N, V, dla pewnych zbioréw otwartych, patrz
Lemat przy czym mozemy zatozy¢, ze V,, | F. 7 ciaglosci z gory miary skonczonej
wynika, ze u(V,,) — u(F). Stad natychmiast wynika , ze F' € A.

Wystarczy teraz wykazaé, ze A jest o-cialem, aby upewnié¢ sie ze A = Bor(X). Jezeli
A € A to dla kazdego € > 0 istnieja zbior otwarty V' i domkniety F', takie ze F C A C Vi
p(V\ F) < e. Wtedy

VECACF i p(F\Ve)=pu(V\F)<e,

co pokazuje, ze A¢ € A.

Biorac A, € Ai A = U, A,, pokazemy, ze A € A. Dla ¢ > 0 i kazdego n z warunku
A, € Aistnieja zbiory domkniete F,, C A, iotwarte V,, O A,, o whasnosci u(V,,\ F,) < £/2".
Niech V' = U, V;, i niech F' = U, <x F},, gdzie liczba N jest tak dobrana, ze

M(UFn)<N<U Fn)+5§

n<N

takie N istnieje na mocy ciaglosci z dotu miary. Wtedy zbior V' O A jest otwarty (jako
suma zbioréw otwartych), a zbiér F' C A jest domkniety (jako suma skoniczonej ilosci takich
zbioréw). Ponadto,

p(VAF) <p(UVa \UF) + nUF \F) <> e/2" +e = 2.

n

W ten sposéb otrzymujemy A € A i dowdd zostat zakonczony. A

TWIERDZENIE 6.4.3 (Luzina). Niech g bedzie funkcjg borelowskq na przestrzeni metrycznej
X. Wtedy dla dowolnej miary skoriczonej na Bor(X) i e > 0 istnieje zbior domkniety
F C X, taki ze (X \ F) < € i g jest funkcjq ciggleg na zbiorze F.

Dowdéd. Sprawdzmy najpierw, ze twierdzenie zachodzi dla funkcji prostej. Istotnie, jezeli

gzzaz"XB“

i<n
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gdzie zbiory borelowskie B; sa parami roztaczne to z Twierdzenia [6.4.1] dla kazdego i < n
istnieje zbior domkniety F; C B;, przy czym u(B; \ F;) < ¢/n. Wtedy mozna przyjaé
F = Ui, Fi; funkcja g jest ciagta na tym zbiorze (jako ze zbiory F; sa parami rozlaczne).

Rozwazmy funkcje nieujemna g ie > 0. Wtedy istnieje Xy € Bor(X) taki ze u(X\Xo) <
£/2 1 funkcja ¢ jest ograniczona na Xj. Istnieje zatem ciag funkcji prostych g, zbiezny
jednostajnie do g na zbiorze X, patrz Twierdzenie[2.2.3| Z pierwszej czesci dowodu mozemy
dobra¢ zbiory domknigte F},, takie ze

w(Xo\ F,) < e/2mtt
i g, jest ciagta na F},. Biorac F' =(),, F,, mamy
WX\ F) < p(X\ Xo) + (Xo\ F) <e/2+) /2" = e

Ponadto na zbiorze F' wszystkie funkcje g, sa ciagte i zbiezne jednostajnie do g — dlatego
g jest ciggla na F.
Przypadek ogdlny funkcji g : X — R wynika tatwo przez rozklad ¢ = ¢ —¢g~. A

Miare p zdefiniowana na Bor(R™) nazwiemy lokalnie skoriczong jezeli
[k, K)") < oo

dla kazdego k, por.[dl Dla miar lokalnie skoficzonych mamy nastepujacy wniosek z poprzed-
niego twierdzenia.

WNIOSEK 6.4.4. Niech p bedzie miarg borelowskq lokalnie skonczong na przestrzeni eukli-
desowej R™ i niech B € Bor(R"™) bedzie zbiorem miary p skonczonej.
(a) Dla kazdego ¢ > 0 istnieje zbior zwarty F i otwarty V', takie ze F C B C V i
w(V\F)<e.
(b) Jezeli funkcja g : B — R jest borelowska to dla € > 0 istnieje zbior zwarty F C A,
taki ze p(A\ F) < ¢ i g jest ciggla na F.

Dowdd. Skoro p(B) < oo to u(B N [—k,k]") jest dla duzych k bliskie u(A) i dlatego
zagadnienie redukuje sie do zbioru ograniczonego B; mozemy teraz zastosowaé poprzed-
nie twierdzenie do przestrzeni metrycznej postaci [—k, k|™; przypomnijmy, ze podzbiory
domknigte i ograniczone w przestrzeniach euklidesowych sg zwarte. A

WNIOSEK 6.4.5. Niech p bedzie miarg lokalnie skonczong na R™ ¢ niech V bedzie rodzing
zbiorow otwartych, spetniajgcqg warunk:

(i) ViuVe e V dla Vi,V € V;

(i) dla kazdego otwartego U C R™ istniejg Vi € V, takie ze U = Uy, Vi.
Wtedy dla kazdego B € Bor(R™) miary u skonczonej i € > 0 istnieje V. € V, taki ze
uw(BAV) <e.

Dowdéd. Dla € > 0 dobierzmy zbiér otwarty U D B, taki ze u(U \ B) < /2. Z zalozenia
wynika, ze istnieje wstepujacy ciag V,, € V, taki ze U = U,, V,,. Wtedy u(V,,) — p(U) wiec
dla duzych n mamy p(U \ V,,) <e/21

pw(BAV,) < pu(U\V,)+u(U\B)<e/24+¢c/2=c¢.
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5. Zbiory geste w L,

W przestrzeni Banacha E z normg || - || zbior D C E jest gesty jezeli dla kazdego
r € Eie > 0 istnieje d € D, taki ze ||d — z|| < e. Inaczej moéwigc kazdy x € E jest
granica pewnego ciggu d, € D. Przestrzen Banacha jest osrodkowa gdy zawiera zbior
gesty przeliczalny. Ponizej rozwazamy przestrzenie postaci Li(p), ale wyniki naturalnie
uogélniajg si¢ na przestrzenie Ly (p).
LEMAT 6.5.1. Funkcje proste calkowalne stanowig zbior gesty w Ly ().
Dowéd. Niech f € Li(u) bedzie funkcja nieujemna. Wtedy istnieje ciag funkcji prostych

S, zbiezny monotonicznie i prawie wszedzie do f. Otrzymujemy

/(f_3n>dﬂ_>07
b
wiec || f — su|li — 0. A

TWIERDZENIE 6.5.2. W przestrzeni Li(u) funkcji catkowalnych wzgledem lokalnie skon-
czonej miary p na n-wymiarowej przestrzeni euklidesowej funkcje ciggle stanowiq zbior

gesty.
Dowdd. (1) Niech g = xv, gdzie V jest otwarta kostka postaci
V= (al, bl) X ... X (an,bn).

Nietrudno pokazaé, ze dla kazdego ¢ > 0 istnieje funkcja ciagta g : R* — [0, 1], taka ze
glx)=1dlaz e Vyig(z)=0dlax ¢V, gdzie

V(;:(al—l—é,bl—é) ><...><(an+(5,bn—5).
Wtedy xv — g = 0 poza zbiorem V' \ V; i dlatego
Ixv —glli <p(V\Vs) =0 da §—0.

Zauwazmy, ze stad wynika, ze funkcje ciggle aproksymuja tez yy w przypadku, gdy V jest
skonczong suma otwartych kostek.

(2) Niech xp € Li(p), czyli u(B) < co. Na mocy Wniosku dla € > 0 istnieje zbiér
V', bedacy skonczona suma kostek i taki ze u(B A V) < e. Wtedy

I —xvll = n(BAV) <e.

Dlatego z (1) wynika, ze funkcje ciagte aproksymuja funkcje x g w normie || - [|;.
(3) Jezeli s = Y;cp aixa, jest catkowalng funkcja prosta to z (2) dla kazdego ¢ < k
istnieje funkcja ciagta g;, taka ze

1 < 8/(k']\/[)a

Hgi - X4
dla danego € > 0, gdzie M = max;<i(|a;| + 1). Wtedy funkcja g = ;<. a;9; jest ciagha i
lg = sl < Z/ |aillxa, — gil dp <e.
i<k

(4) Ostatecznie, dla funkcji f € Li(u) teze otrzymujemy z Lematu A
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W istocie mozna pokazaé, ze funkcje klasy C*° (majace wszystkie pochodne czastkowe
ciagte) leza gesto w Li(u) dla p jak w twierdzeniu powyzej — nalezy tylko sprawdzi¢ te
mocniejsza wlasnosé w czesci (1) dowodu.

TWIERDZENIE 6.5.3. Dla kazdej miary lokalnie skonczonej p na R"™ przestrzen Banacha

Li(p) jest osrodkowa.

Dowdéd. Niech V bedzie rodzing wszystkich skonczonych sum kostek otwartych postaci
V= (al,bl) X ... X (an,bn),

gdzie a;,b; € Q. Wtedy V jest rodzing przeliczalna. Z Wniosku [6.4.5] wynika, ze jezeli
pu(B) < oo to dla kazdego ¢ > 0 istnieje V € V, u(V A B) < e. Dlatego rozumujac jak w
dowodzie Twierdzenia [6.5.2] mozna sprawdzi¢, ze rodzina funkcji postaci

> aixv,, gdzieq; € Q,V; €V

i<k

stanowi zbior gesty w Li(u). A
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6. Zadania

6.6.1 Sprawdzi¢, ze |a + b|P < 2P/9(|a|? + |b|P), gdzie 1/p + 1/q = 1; wynioskowaé stad, ze
L, (1) jest przestrzenig liniows.

6.6.2 Sprawdzi¢, ze nastepujace fakty dowodzi sie analogicznie jak dla Ly(u) (p > 1)
(1) Ly(p) jest zupetna;

(1) funkcje proste leza gesto w Ly (p);

(111) C[0,1] lezy gesto w Ly[0, 1].

6.6.3 Ustali¢, czy zachodza jakies inkluzje pomiedzy L,(R) dla réznych p. A jak jest w
przypadku L,[0, 1]7

6.6.4 Ustali¢, ktore z ponizszych stwierdzen sa prawdziwe zawsze, a ktore w przypadku
(X)) < oo; f, jest tutaj ciagiem funkeji mierzalnych.

(1) jesli f,, sa catkowalne i zbiezne jednostajnie do f to f, zbiegaja w Ly;

(1) jesli f, sa calkowalne i zbiezne niemal jednostajnie do f to f, zbiegaja w L;

(111) jesli 0 < f1 < fo < ...1sup, [ fn du < oo to granica jest catkowalna;

(iv) jesli f, zbiegaja w Li(u) to pewien podciag zbiega prawie wszedzie;

(v) jesli f, sa catkowalne i zbiezne do 0 prawie wszedzie to f, sa jednakowo catkowalne;
(vi) jesli | f.| < g, gdzie [ g du < oo to f, sa jednakowo catkowalne;

(vii) jesli || < g, [ g du < oo, f, zbiegaja prawie wszedzie to f, zbiegaja w Li(u)
(viii) jesli f, € Lo(p) N Ly(p) 1 f,, zbiegaja w Li(u) to f,, zbiegaja w Lo(u); na odwrot?
(iz) (viil) przy dodatkowym zalozeniu, ze f,, sa wspdlnie ograniczone.

6.6.5 Zauwazy¢, ze dla funkcji f : X — C, f = f1 + 1 - f5, jej mierzalnosé jest réwnowazna
mierzalnosci czedci rzeczywistej f1 1 urojonej fo. Ponadto, f jest calkowalna wtedy i tylko
wtedy gdy fi, fo sa calkowalne.

6.6.6 Dla funkcji f : X — R na przestrzeni miarowej (X, X, 1) oznaczmy przez || f||eo jej
istotne supremum, to znaczy

|| f[loe = inf{sup|f| : u(A) = 0}.
X\A

Wykazaé, ze || - ||« jest norma zupelna na przestrzeni L., (u), ztozonych z tych funkeji, dla
ktérych || f]|eo < 00, po utozsamieniu funkeji réwnych prawie wszedzie.

6.6.7 Wykaza¢, ze dla f € Ly[0,1] zachodzi wzoér limy, oo || ]|, = ||/ ] oo
6.6.8 Sprawdzi¢, ze przestrzen L..[0, 1] nie jest osrodkowa.

6.6.9 O mierze u powiemy ze jest osrodkowa jesli L (u) jest osrodkowsa przestrzenia Bana-
cha. Wykaza¢, ze p jest osrodkowa wtedy i tylko wtedy gdy istnieje przeliczalna rodzina
S C ¥ ze dla kazdego A € &

inf{u(AAS): SeS}=0.

7. Problemy

6.7.A Niech (X, X, ) bedzie bezatomowa przestrzenia probabilistyczna. Wykazaé, ze ist-
nieje mierzalna funkcja f : X — [0, 1], taka ze f[u] = .
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WSKAZOWKA: Wystarczy zbudowaé g : X — {0, 1} taka ze g[u| = v, gdzie v jest miarg
Haara na zbiorze Cantora. Wybraé¢ dla kazdego n roztaczne zbiory A. € ¥, e € {0, 1}", tak
ze M(Aa) =27"1 Aé-,\[) U Agf\l = Ag-

6.7.B Wykazaé, ze jesli (X1,%q1, 1) 1 (Xo, 29, o) sa dwiema osrodkowymi bezatomowy-
mi przestrzeniami probabilistycznymi, to odpowiadajace im algebry Boole’a 24; i %Iy sa
izomorficzne w nastepujacym sensie: istnieje zachowujaca dziatania boolowskie bijekcja
g : Ay — Ay, ktora jest izometrig Ay, Ao jako przestrzeni metrycznych.

WsKAZOWKA: Wybraé¢ A, € Xy, takie jak w problemie A oraz takie ze rodzina S; wszyst-
kich sum skonczonych A., € € {0,1}", n € N jest gesta. Analogicznie wybraé¢ taka rodzine
B. € .

Okresli¢ g([Ac]) = [Be] i przedtuzyé g na S; z zachowaniem dziatan; wtedy g jest izometrig
i przedhuza si¢ na domkniecie dziedziny.

6.7.C Wykazaé, ze dla przestrzeni miarowych z poprzedniego problemu L, (i) jest liniowo
izometryczne z L,(p2) (gdzie 1 < p < 00).
WSKAZOWKA: Okreslic odwzorowanie liniowe 7' : L,(p1) — Ly(p2) najpierw na funk-
cjach prostych, korzystajac z poprzedniego zadania. Wykorzystaé fakt, ze izometrie mozna
przedtuza¢ na domkniecie dziedziny.

6.7.D (dla znajacych ultrafiltry). Niech F bedzie dowolnym ultrafiltrem niegtéwnym na N.
Udowodnié, ze zbiér Z C {0, 1}V, gdzie

Z:{XF: FE?},

jest zbiorem niemierzalnym wzgledem miary Haara.
WSKAZOWKA: Taki zbidr jest zdarzeniem resztowym wiec gdyby byl mierzalny, to miatby
miare 0 badZ 1; rozwazy¢ przesuniecie Z o element 1 (wzgledem dzialania grupowego).

6.7.E Ile jest réznych miar (skonczonych, o—skoniczonych, dowolnych) na o—ciele Bor(R)?
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