On isomorphic embeddings of C(K) spaces

Grzegorz Plebanek (University of Wrocław)

in collaboration with W. Marciszewski

Valencia 2010

Grzegorz Plebanek (University of Wrocław) On isomorphic embeddings of C(K) spaces

伺 ト イ ヨ ト イ ヨ ト

General question

Suppose that K and L are compact spaces and there is an isomorphic embedding $C(K) \hookrightarrow C(L)$. How K is related to L?

・ 同 ト ・ ヨ ト ・ ヨ ト ……

General question

Suppose that K and L are compact spaces and there is an isomorphic embedding $C(K) \hookrightarrow C(L)$. How K is related to L?

A concrete problem

Suppose that *L* is Corson compact and $C(K) \hookrightarrow C(L)$. Must *K* be Corson compact?

伺 と く ヨ と く ヨ と

Terminology

A compact space K is Corson compact (denoted $K \in \mathfrak{C}$) if K can be topologically embedded, fo some κ , into

$$\Sigma(\mathbb{R}^{\kappa}) = \{x \in \mathbb{R}^{\kappa} : |\{\alpha : x(\alpha) \neq 0\}| \le \omega\}.$$

Terminology

A compact space K is Corson compact (denoted $K \in \mathfrak{C}$) if K can be topologically embedded, fo some κ , into

$$\Sigma(\mathbb{R}^{\kappa}) = \{ x \in \mathbb{R}^{\kappa} : |\{ \alpha : x(\alpha) \neq 0\}| \le \omega \}.$$

Basic facts

- Amir & Lindenstrauss: If L is Eberlein compact then every K such that $C(K) \hookrightarrow C(L)$ is Eberlein compact.
- Every Eberlein compact embeds into c₀(κ) ⊆ Σ(ℝ^κ) so is Corson compact.
- Argyros et al.: Assuming MA + nonCH, if $L \in \mathfrak{C}$ then $M_1(K) \in \mathfrak{C}$. Consequently, if $L \in \mathfrak{C}$ and $C(K) \hookrightarrow C(L)$ then $K \in \mathfrak{C}$, too.

 \mathfrak{C} is the class of Corson compacta; denote by \mathfrak{C}^* those compact spaces K for which there is $L \in \mathfrak{C}$ such that $C(K) \hookrightarrow C(L)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 \mathfrak{C} is the class of Corson compacta; denote by \mathfrak{C}^* those compact spaces K for which there is $L \in \mathfrak{C}$ such that $C(K) \hookrightarrow C(L)$.

The problem

Is it provable in ZFC that $\mathfrak{C}^* = \mathfrak{C}$?

 \mathfrak{C} is the class of Corson compacta; denote by \mathfrak{C}^* those compact spaces K for which there is $L \in \mathfrak{C}$ such that $C(K) \hookrightarrow C(L)$.

The problem

Is it provable in ZFC that $\mathfrak{C}^* = \mathfrak{C}$?

Some examples & questions

• $[0, \omega_1] \notin \mathfrak{C}^*$ because $C[0, \omega_1]$ is not realcompact;

 \mathfrak{C} is the class of Corson compacta; denote by \mathfrak{C}^* those compact spaces K for which there is $L \in \mathfrak{C}$ such that $C(K) \hookrightarrow C(L)$.

The problem

Is it provable in ZFC that $\mathfrak{C}^* = \mathfrak{C}$?

Some examples & questions

- $[0, \omega_1] \notin \mathfrak{C}^*$ because $C[0, \omega_1]$ is not realcompact;
- βω ∉ C* because C(βω) = I_∞ does not have the Mazur property.

イロト 不同 トイヨト イヨト 三日

 \mathfrak{C} is the class of Corson compacta; denote by \mathfrak{C}^* those compact spaces K for which there is $L \in \mathfrak{C}$ such that $C(K) \hookrightarrow C(L)$.

The problem

Is it provable in ZFC that $\mathfrak{C}^* = \mathfrak{C}$?

Some examples & questions

- $[0, \omega_1] \notin \mathfrak{C}^*$ because $C[0, \omega_1]$ is not realcompact;
- βω ∉ C* because C(βω) = I_∞ does not have the Mazur property.
- Is K = 'the double arrow space' in \mathfrak{C}^* ?

A measure $\mu \in P(K)$ (i.e. a probability regular Borel measure on K) is **countably determined** if there is a countable family \mathcal{F} of closed subsets of K such that

$$\mu(U) = \sup\{\mu(F) : F \in \mathcal{F}, F \subseteq U\},\$$

for every open set $U \subseteq K$.

A measure $\mu \in P(K)$ (i.e. a probability regular Borel measure on K) is **countably determined** if there is a countable family \mathcal{F} of closed subsets of K such that

$$\mu(U) = \sup\{\mu(F) : F \in \mathcal{F}, F \subseteq U\},\$$

for every open set $U \subseteq K$.

Some partial answers (Marciszewski & GP)

Theorem. Suppose that every $\mu \in P(K)$ is countably determined. Then $K \in \mathfrak{C}^*$ implies $K \in \mathfrak{C}$.

A measure $\mu \in P(K)$ (i.e. a probability regular Borel measure on K) is **countably determined** if there is a countable family \mathcal{F} of closed subsets of K such that

$$\mu(U) = \sup\{\mu(F) : F \in \mathcal{F}, F \subseteq U\},\$$

for every open set $U \subseteq K$.

Some partial answers (Marciszewski & GP)

Theorem. Suppose that every $\mu \in P(K)$ is countably determined. Then $K \in \mathfrak{C}^*$ implies $K \in \mathfrak{C}$. **Corollary.** Let $K \in \mathfrak{C}^*$, Then $K \in \mathfrak{C}$ under any of the assumptions

• K is scattered, or

 $) \land \bigcirc$

A measure $\mu \in P(K)$ (i.e. a probability regular Borel measure on K) is **countably determined** if there is a countable family \mathcal{F} of closed subsets of K such that

$$\mu(U) = \sup\{\mu(F) : F \in \mathcal{F}, F \subseteq U\},\$$

for every open set $U \subseteq K$.

Some partial answers (Marciszewski & GP)

Theorem. Suppose that every $\mu \in P(K)$ is countably determined. Then $K \in \mathfrak{C}^*$ implies $K \in \mathfrak{C}$. **Corollary.** Let $K \in \mathfrak{C}^*$, Then $K \in \mathfrak{C}$ under any of the assumptions

- K is scattered, or
- K is linearly ordered, or

A measure $\mu \in P(K)$ (i.e. a probability regular Borel measure on K) is **countably determined** if there is a countable family \mathcal{F} of closed subsets of K such that

$$\mu(U) = \sup\{\mu(F) : F \in \mathcal{F}, F \subseteq U\},\$$

for every open set $U \subseteq K$.

Some partial answers (Marciszewski & GP)

Theorem. Suppose that every $\mu \in P(K)$ is countably determined. Then $K \in \mathfrak{C}^*$ implies $K \in \mathfrak{C}$. **Corollary.** Let $K \in \mathfrak{C}^*$, Then $K \in \mathfrak{C}$ under any of the assumptions

- K is scattered, or
- K is linearly ordered, or
- K is an 'inverse limit of simple extensions', or

A measure $\mu \in P(K)$ (i.e. a probability regular Borel measure on K) is **countably determined** if there is a countable family \mathcal{F} of closed subsets of K such that

$$\mu(U) = \sup\{\mu(F) : F \in \mathcal{F}, F \subseteq U\},\$$

for every open set $U \subseteq K$.

Some partial answers (Marciszewski & GP)

Theorem. Suppose that every $\mu \in P(K)$ is countably determined. Then $K \in \mathfrak{C}^*$ implies $K \in \mathfrak{C}$. **Corollary.** Let $K \in \mathfrak{C}^*$, Then $K \in \mathfrak{C}$ under any of the assumptions

- K is scattered, or
- K is linearly ordered, or
- K is an 'inverse limit of simple extensions', or
- K is Rosenthal compact.

Coming back to General question

Suppose that K and L are compact spaces and there is an isomorphic embedding $C(K) \hookrightarrow C(L)$. How K is related to L?

伺 と く ヨ と く ヨ と …

Coming back to General question

Suppose that K and L are compact spaces and there is an isomorphic embedding $C(K) \hookrightarrow C(L)$. How K is related to L?

Classical results

- Banach-Stone: If C(K) and C(L) are isometric then $K \cong L$.
- Kaplansky: If C(K) and C(L) are isomorphic as Banach lattices then K ≅ L.
- Amir, Cambern: If $T : C(K) \to C(L)$ is an isomorphism onto and $||T|| \cdot ||T^{-1}|| < 2$ then $K \cong L$.

Theorem 1. Suppose that $T : C(K) \to C(L)$ is a positive embedding such that $||T|| \cdot ||T^{-1}|| < 2$. Then K is a continuous image of a closed subspace of L.

向 ト イヨ ト イヨ ト

Theorem 1. Suppose that $T : C(K) \to C(L)$ is a positive embedding such that $||T|| \cdot ||T^{-1}|| < 2$. Then K is a continuous image of a closed subspace of L. **Theorem 2.** Suppose that K is zerodimensional and there is a positive embedding $T : C(K) \to C(L)$. Then there is a π -base of K, consisting of clopen subsets which are continuous images of some closed subspaces of L.

伺 と く ヨ と く ヨ と

Theorem 1. Suppose that $T : C(K) \to C(L)$ is a positive embedding such that $||T|| \cdot ||T^{-1}|| < 2$. Then K is a continuous image of a closed subspace of L. **Theorem 2.** Suppose that K is zerodimensional and there is a positive embedding $T : C(K) \to C(L)$. Then there is a π -base of K, consisting of clopen subsets which are continuous images of some closed subspaces of L.

What about 2^{ω_1} ?

- 4 同 2 4 回 2 4 回 2 4

Theorem 1. Suppose that $T : C(K) \to C(L)$ is a positive embedding such that $||T|| \cdot ||T^{-1}|| < 2$. Then K is a continuous image of a closed subspace of L. **Theorem 2.** Suppose that K is zerodimensional and there is a positive embedding $T : C(K) \to C(L)$. Then there is a π -base of K, consisting of clopen subsets which are continuous images of some closed subspaces of L.

What about 2^{ω_1} ?

There is no positive embedding $T : C(2^{\omega_1}) \to C(L)$ with $L \in \mathfrak{C}$. Can one show in ZFC that $2^{\omega_1} \notin \mathfrak{C}^*$?