Independence-precalibers of measure algebras

D.H.FREMLIN & G.PLEBANEK

University of Essex, Colchester, England; Wrocław University

Notation We follow FREMLIN 06?. In particular, ν_{κ} is the usual measure on $\{0, 1\}^{\kappa}$, \mathcal{N}_{κ} its null ideal and $(\mathfrak{B}_{\kappa}, \bar{\nu}_{\kappa})$ its measure algebra.

1 Definition (a) Let \mathfrak{A} be a Boolean algebra and κ , λ cardinals. We say that (κ, λ) is an **independence-precaliber pair** of \mathfrak{A} if whenever $\langle a_{\xi} \rangle_{\xi < \kappa}$ is a family of distinct elements of \mathfrak{A} then there is a $\Gamma \in [\kappa]^{\lambda}$ such that $\{a_{\xi} : \xi \in \Gamma\}$ is Boolean-independent. If (κ, κ) is an independence-precaliber pair of $(\mathfrak{A}, \bar{\mu})$ we will say that κ is an **independence-precaliber** of $(\mathfrak{A}, \bar{\mu})$.

(b) Let $(\mathfrak{A}, \bar{\mu})$ be a measure algebra and κ , λ cardinals. We say that (κ, λ) is a **measure-independence-precaliber pair** of $(\mathfrak{A}, \bar{\mu})$ if whenever $\langle a_{\xi} \rangle_{\xi < \kappa}$ is a family in \mathfrak{A} such that $\inf_{\eta < \xi < \kappa} \bar{\mu}(a_{\xi} \bigtriangleup a_{\eta}) > 0$ then there is a $\Gamma \in [\kappa]^{\lambda}$ such that $\{a_{\xi} : \xi \in \Gamma\}$ is Boolean-independent. If (κ, κ) is a measure-independence-precaliber pair of $(\mathfrak{A}, \bar{\mu})$ we will say that κ is a **measure-independence-precaliber** of $(\mathfrak{A}, \bar{\mu})$.

Remark Of course any independence-precaliber (pair) of a measure algebra is a measureindependence-precaliber (pair). If (κ, λ) is a measure-independence-precaliber pair of a totally finite measure algebra $(\mathfrak{A}, \overline{\mu})$, and $\theta^{\omega} < \kappa$ for every $\theta < \kappa$, then (κ, λ) is an independence-precaliber pair of \mathfrak{A} . **P** If $\langle a_{\xi} \rangle_{\xi < \kappa}$ is any family of distinct elements of \mathfrak{A} , then $\overline{\{a_{\xi} : \xi < \kappa\}}$ must have density κ for the measure metric, and therefore must have a metrically isolated subset of size κ , which will have a Boolean-independent subset of size λ . **Q** (See Proposition 11 below.)

2 Proposition ω is a measure-independence-precaliber of every probability algebra.

proof Let $(\mathfrak{A}, \overline{\mu})$ be a probability algebra and $\langle a_n \rangle_{n \in \mathbb{N}}$ a sequence in \mathfrak{A} such that $\overline{\mu}(a_m \Delta a_n) \geq \delta > 0$ whenever $m \neq n$. Let $u \in L^2_{\overline{\mu}}$ be a cluster point of $\langle \chi a_n \rangle_{n \in \mathbb{N}}$ for $\mathfrak{T}_s(L^2_{\overline{\mu}}, L^2_{\overline{\mu}})$, and set c = [0 < u < 1]. Then $c \neq 0$. **P**? Otherwise, $u = \chi a$ for some a. Now there must be infinitely many n such that

$$\bar{\mu}(a \bigtriangleup a_n) \int (u - \chi a_n) \times (\chi a - \chi(1 \setminus a)) < \frac{\delta}{2},$$

which is impossible. **XQ**

We can therefore choose inductively a strictly increasing sequence $\langle n_k \rangle_{k \in \mathbb{N}}$ such that $0 < \bar{\mu}(a_{n_k} \cap b) < \bar{\mu}b$ whenever $0 \neq b \subseteq c$ and b belongs to the algebra generated by $\{c\} \cup \{a_{n_i} : i < k\}$; in which case $\{a_{n_k} : k \in \mathbb{N}\}$ will be Boolean-independent.

3 Lemma Let κ be an uncountable cardinal and $(\mathfrak{A}, \overline{\mu})$ a probability algebra. Let \mathfrak{D} be a closed subalgebra of \mathfrak{A} such that \mathfrak{A} is relatively atomless over \mathfrak{D} , and $a \in \mathfrak{A} \setminus \mathfrak{D}$; set $\delta = \rho(a, \mathfrak{D})$. Then there are a sequence $\langle e_n \rangle_{n \in \mathbb{N}}$ in \mathfrak{A} and a $c \in \mathfrak{A}$ such that

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -TEX

 $\bar{\mu}e_n = \frac{1}{2}$ for every nthe e_n are stochastically independent of each other and \mathfrak{D} a, c belong to the closed subalgebra \mathfrak{B} generated by $\mathfrak{D} \cup \{e_n : n \in \mathbb{N}\}$ taking $\psi : \mathfrak{B} \to \mathfrak{B}$ to be the measure-preserving automorphism such that $\psi d = d$ for every $d \in \mathfrak{D}, \ \psi e_0 = 1 \setminus \psi e_0, \ \psi e_n = e_n$ for n > 0, then $\psi c = c$ $c \cap e_0 \subseteq 1 \setminus a, \ c \setminus e_0 \subseteq a$ $\bar{\mu}c \ge \delta$.

proof Define $u \in L^{\infty}(\mathfrak{D})$ by saying that $\int_{d} u = \bar{\mu}(a \cap d)$ for every $d \in \mathfrak{D}$. Set $d_{0} = \llbracket u > \frac{1}{2} \rrbracket$. Let $e'_{0} \subseteq a$ be such that $\bar{\mu}(e'_{0} \cap d) = \frac{1}{2}\bar{\mu}(d \cap d_{0})$ for every $d \in \mathfrak{D}$ (331B); let $e''_{0} \subseteq 1 \setminus a$ be such that $\bar{\mu}(e'_{0} \cap d) = \frac{1}{2}\bar{\mu}(d \setminus d_{0})$ for every $d \in \mathfrak{D}$; set $e_{0} = (d_{0} \setminus e'_{0}) \cup e''_{0}$, so that $\bar{\mu}(e_{0} \cap d) = \frac{1}{2}\bar{\mu}d$ for every $d \in \mathfrak{D}$. Now choose e_{n} , for $n \geq 1$, such that $\bar{\mu}(e_{n} \cap d) = \frac{1}{2}\bar{\mu}d$ for every d in the algebra generated by $\mathfrak{D} \cup \{e_{i} : i < n\}$, and a belongs to the closed subalgebra \mathfrak{B} generated by $\mathfrak{D} \cup \{e_{i} : i < n\}$. [To see that this is possible, start from any sequence $\langle b_{n} \rangle_{n \in \mathbb{N}}$ in \mathfrak{A} of elements of measure $\frac{1}{2}$ stochastically independent of each other and of \mathfrak{D} , and let \mathfrak{B} be the closed subalgebra of \mathfrak{A} generated by $\mathfrak{D} \cup \{a, e_{0}\} \cup \{b_{n} : n \in \mathbb{N}\}$; use FREMLIN 02, 333C to see that $(\mathfrak{B}, \bar{\mu} \upharpoonright \mathfrak{B})$ can be identified with the probability algebra free product of $(\mathfrak{D}_{1}, \bar{\mu} \upharpoonright \mathfrak{D}_{1})$ and $(\mathfrak{B}_{\omega}, \bar{\nu}_{\omega})$, where \mathfrak{D}_{1} is the subalgebra of \mathfrak{A} generated by $\mathfrak{D} \cup \{e_{0}\}$.] Because $(\mathfrak{B}, \bar{\mu} \upharpoonright \mathfrak{B})$ is equally isomorphic to the probability algebra free product of $(\mathfrak{D}, \bar{\mu} \upharpoonright \mathfrak{D})$ and $(\mathfrak{B}_{\omega}, \bar{\nu}_{\omega})$, we have a unique measure-preserving automorphism $\psi : \mathfrak{B} \to \mathfrak{B}$ such that $\psi d = d$ for every $d \in \mathfrak{D}, \psi e_{0} = 1 \setminus \psi e_{0}$ and $\psi e_{n} = e_{n}$ for n > 0.

Set $c' = d_0 \setminus a$, $c'' = a \setminus d_0$. Then at least one of c', c'' has measure at least $\frac{1}{2}\delta$; call this c^* ; set $c = c^* \cup \psi c^*$, so that $c \in \mathfrak{B}$ and $\psi c = c$.

If $c^* = c'$ then $c^* \subseteq d_0 \cap e_0$, $\psi c^* \subseteq d_0 \setminus e_0 \subseteq a$, $c \cap e_0 = c'$ is disjoint from $a, c \setminus e_0 = \psi c' \subseteq a$ and $\bar{\mu}c = 2\bar{\mu}c' \geq \delta$. If $c^* = c''$ then $c^* \cap e_0 = 0$,

$$c \cap e_0 = \psi c^* \subseteq e_0 \setminus d_0 = e_0'' \subseteq 1 \setminus a,$$

 $c \setminus e_0 = c'' \subseteq a$ and $\bar{\mu}c = 2\bar{\mu}c'' \ge \delta$. So we have what we need.

4 Corollary If κ is an infinite cardinal, $(\mathfrak{A}, \overline{\mu})$ a Maharam homogeneous probability algebra, and $\langle a_{\xi} \rangle_{\xi < \kappa}$ a family in \mathfrak{A} such that $\inf_{\eta < \xi < \kappa} \overline{\mu}(a_{\eta} \bigtriangleup a_{\xi}) = \delta > 0$, then there are a family $\langle e_{\xi n} \rangle_{\xi < \kappa, n \in \mathbb{N}}$, a function $\alpha : \kappa \to \kappa$ and a family $\langle c_{\xi} \rangle_{\xi < \kappa}$ in \mathfrak{A} such that

 $\bar{\mu}e_{\xi n} = \frac{1}{2}$ for all ξ , n,

 $\langle e_{\xi n} \rangle_{\xi < \kappa, n \in \mathbb{N}}$ is stochastically independent,

 $a_{\alpha(\xi)}, c_{\xi}$ belong to the closed subalgebra \mathfrak{B} of \mathfrak{A} generated by $\{e_{\eta n} : \eta < \kappa, n \in \mathbb{N}\}$ for every ξ ,

if $\phi_{\xi} : \mathfrak{B} \to \mathfrak{B}$ is the measure-preserving automorphism defined by setting $\phi_{\xi}(e_{\xi 0}) = 1 \setminus e_{\xi 0}$ and $\phi_{\xi}(e_{\eta n}) = e_{\eta n}$ for all $(\eta, n) \neq (\xi, 0)$, then $\phi_{\xi} c_{\xi} = c_{\xi}$, $\bar{\mu}c_{\xi} \geq \frac{1}{2}\delta$ for every ξ , $c_{\xi} \cap e_{\xi 0} \subseteq 1 \setminus a_{\alpha(\xi)}, \ c \setminus e_{\xi 0} \subseteq a_{\alpha(\xi)}$ for every ξ .

proof If $\mathfrak{D} \subseteq \mathfrak{A}$ is a closed subalgebra with Maharam type less than κ , then there must be a $\xi < \kappa$ such that $\rho(a_{\xi}, \mathfrak{D}) \geq \frac{1}{2}\delta$. We can therefore choose \mathfrak{D}_{ξ} , $e_{\xi n}$, c_{ξ} , ψ_{ξ} and $\alpha(\xi)$ inductively, as follows. $\mathfrak{D}_0 = \{0, 1\}$. Given that \mathfrak{D}_{ξ} is the closed subalgebra of \mathfrak{A} generated by $\{e_{\eta n} : \eta < \xi, n \in \mathbb{N}\}$, let $\alpha(\xi) < \kappa$ be such that $\rho(a_{\alpha(\xi)}, \mathfrak{D}_{\xi}) \geq \frac{1}{2}\delta$; using Lemma 3, choose $e_{\xi n}$, of measure $\frac{1}{2}$, stochastically independent of each other and of \mathfrak{D}_{ξ} , and c_{ξ} , such that

$$a_{\alpha(\xi)}$$
 and c_{ξ} belong to the closed subalgebra $\mathfrak{D}_{\xi+1}$ generated by $\mathfrak{D}_{\xi} \cup \{e_{\xi n} : n \in \mathbb{N}\},$
 $\bar{\mu}c_{\xi} \geq \frac{1}{2}\delta,$
 $c_{\xi} \cap e_{\xi 0} \subseteq 1 \setminus a_{\alpha(\xi)}, c_{\xi} \setminus e_{\xi 0} \subseteq a_{\alpha(\xi)},$
taking $\psi_{\xi} : \mathfrak{D}_{\xi+1} \to \mathfrak{D}_{\xi+1}$ to be the measure-preserving automorphism such that $\psi d = d$ for every $d \in \mathfrak{D}_{\xi}, \psi_{\xi}e_{\xi 0} = 1 \setminus \psi_{\xi}e_{\xi 0}, \psi_{\xi}e_{\xi n} = e_{\xi n}$ for $n > 0$, then $\psi_{\xi}c = c_{\xi}.$

Let $\mathfrak{B} = \mathfrak{D}_{\kappa}$ be the closed subalgebra of \mathfrak{A} generated by the stochastically independent family $\langle e_{\xi n} \rangle_{\xi < \kappa, n \in \mathbb{N}}$. This works.

5 Proposition If λ , κ are infinite cardinals, $\kappa \geq \omega_2$ and (κ, λ) is a measure-precaliber pair of a totally finite measure algebra $(\mathfrak{A}, \bar{\mu})$ then it is a measure-independence-precaliber pair of $(\mathfrak{A}, \bar{\mu})$.

proof (a) To begin with, suppose that $(\mathfrak{A}, \overline{\mu})$ is a Maharam homogeneous probability algebra, that (κ, λ) is a measure-precaliber pair of $(\mathfrak{A}, \overline{\mu})$ and that $\langle a_{\xi} \rangle_{\xi < \kappa}$ is a family in \mathfrak{A} such that $\overline{\mu}(a_{\eta} \bigtriangleup a_{\xi}) \ge \delta > 0$ whenever $\eta < \xi$. Take $\langle e_{\xi n} \rangle_{\xi < \kappa, n \in \mathbb{N}}$, $\mathfrak{B}, \alpha : \kappa \to \kappa$ and $\langle c_{\xi} \rangle_{\xi < \kappa}$ as in Corollary 4. For each $\xi < \kappa$ let J_{ξ}^* be the minimal subset of $\kappa \times \mathbb{N}$ such that c_{ξ} belongs to the closed subalgebra generated by $\{e_j : j \in J\}$, and set $L_{\xi} = \{\eta : (\eta, n) \in J\}$. As in FREMLIN 06?, 534Je, $(\xi, 0) \notin J_{\xi}^*$. By Hajnal's Free Set Theorem there is a $\Gamma_0 \in [\kappa]^{\kappa}$ such that $\xi \notin L_{\eta}$ for all distinct $\xi, \eta \in \Gamma_0$. If $I, J \subseteq C$ are disjoint finite sets and $c = \inf_{\xi \in I \cup J} c_{\xi}$, then c is stochastically independent of the $e_{\xi 0}$, for $\xi \in I \cup J$, and

$$\begin{split} \bar{\mu}(\inf_{\eta\in J}a_{\alpha(\eta)}\setminus\sup_{\xi\in I}a_{\alpha(\xi)}) &\geq \bar{\mu}(\inf_{\xi\in I}(e_{\xi0}\setminus a_{\alpha(\xi)})\cap\inf_{\eta\in J}a_{\alpha(\eta)}\setminus e_{\eta0}))\\ &\geq \bar{\mu}(\inf_{\xi\in I}(c_{\xi}\cap e_{\xi0})\cap\inf_{\eta\in J}c_{\eta}\setminus e_{\eta0}))\\ &= \bar{\mu}(c\cap\inf_{\xi\in I}e_{\xi0}\setminus\sup_{\eta\in J}e_{\eta0}) = 2^{-\#(I\cup J)}\bar{\mu}c. \end{split}$$

Now, because (κ, λ) is a measure-precaliber pair of $(\mathfrak{A}, \overline{\mu})$, there is a $\Gamma \in [\Gamma_0]^{\lambda}$ such that $\{c_{\xi} : \xi \in \Gamma\}$ is centered, in which case $\langle a_{\alpha(\xi)} \rangle_{\xi \in \Gamma}$ is Boolean-independent.

(b) For the general case, we have only to note that, for a totally finite measure algebra $(\mathfrak{A}, \bar{\mu})$, (κ, λ) is an (independence-)measure-precaliber pair of $(\mathfrak{A}, \bar{\mu})$ iff it is an (independence-)measure-precaliber pair of every Maharam homogeneous principal ideal of $(\mathfrak{A}, \bar{\mu})$ (cf. FREMLIN 06?, 524Ha).

6 Proposition If $\omega \leq \lambda \leq \kappa$ and (κ, λ) is a measure-independence-precaliber pair of every probability algebra then it is a measure-precaliber pair of every probability algebra.

proof Let $(\mathfrak{A}, \bar{\mu})$ be a probability algebra and $\langle a_{\xi} \rangle_{\xi < \lambda}$ a family in \mathfrak{A} such that $\inf_{\xi < \kappa} \bar{\mu} a_{\xi} = \delta > 0$. Let $(\mathfrak{C}, \bar{\nu})$ be the probability algebra free product of $(\mathfrak{A}, \bar{\mu})$ and $(\mathfrak{B}_{\kappa}, \bar{\nu}_{\kappa})$, and $\langle e_{\xi} \rangle_{\xi < \kappa}$ a stochastically independent family in \mathfrak{B}_{κ} of elements of measure $\frac{1}{2}$. Set $c_{\xi} = a_{\xi} \otimes e_{\xi}$ for each ξ ; then $\bar{\nu}(c_{\eta} \bigtriangleup c_{\xi}) = \bar{\mu}(a_{\eta} \cup a_{\xi}) \ge \delta$ whenever $\xi < \eta$. There is therefore a $\Gamma \in [\kappa]^{\lambda}$ such that $\langle c_{\xi} \rangle_{\xi \in \Gamma}$ is Boolean-independent, in which case $\{a_{\xi} : \xi \in \Gamma\}$ must be centered.

7 Lemma Let $n \ge 1$ be an integer, κ a regular uncountable cardinal, $X \subseteq (\{0, 1\}^n)^{\kappa}$ a closed set, and $f_{\xi} : \{0, 1\}^n \to \{0, 1\}$ a function. Set $f(x) = \langle f_{\xi}(x(\xi)) \rangle_{\xi < \omega_1}$ for $x \in X$. If $f[X] = \{0, 1\}^{\kappa}$, there are i < n and $C \in [\kappa]^{\kappa}$ such that $\pi_{iC}[X] = \{0, 1\}^C$, where $\pi_{iC}(x)(\xi) = x(\xi)(i)$ for $x \in X, \xi \in C, i < n$.

proof Induce on *n*. If n = 1 then every f_{ξ} has to be surjective, therefore bijective, and f is a bijection, so we can take $C = \kappa$, i = 0. For the inductive step to n + 1, identify $(\{0,1\}^{n+1})^{\kappa}$ with $(\{0,1\}^n)^{\kappa} \times \{0,1\}^{\kappa}$, so that we have $X \subseteq (\{0,1\}^n)^{\kappa} \times \{0,1\}^{\kappa}$ and $f_{\xi} : \{0,1\}^n \times \{0,1\} \to \{0,1\}$ such that $f[X] = \{0,1\}^{\kappa}$, where $f(x,y)(\xi) = f_{\xi}(x(\xi), y(\xi))$ for $\xi < \kappa$, $x \in (\{0,1\}^n)^{\kappa}$, $y \in \{0,1\}^{\kappa}$. Let $X' \subseteq X$ be a minimal closed set such that $f[X'] = \{0,1\}^{\kappa}$.

Set $Y = \{y : (x, y) \in X'\}$, so that Y is a closed subset of $\{0, 1\}^{\kappa}$. Set

$$A = \{\xi : \xi < \kappa, \forall y \in Y \forall I \in [\xi]^{<\omega} \exists y', y'' \in Y, y' \upharpoonright I = y'' \upharpoonright I = y \upharpoonright I, y'(\xi) = 0, y''(\xi) = 1\}$$

If $I \in [A]^{<\omega}$ and $u \in \{0,1\}^I$ there is a $y \in Y$ such that $y \upharpoonright I = u$ (induce on max I), so $\{y \upharpoonright A : y \in Y\} = \{0,1\}^A$ and if $\#(A) = \kappa$ we can take C = A, i = n and stop. Otherwise, for $\xi \in \kappa \setminus A$ take $y_{\xi} \in Y$, $I_{\xi} \in [\xi]^{<\omega}$ and $v(\xi) \in \{0,1\}$ such that $y(\xi) = v(\xi)$ whenever $y \in Y$ and $y \upharpoonright I_{\xi} = y_{\xi} \upharpoonright I_{\xi}$. Let $J \in [\kappa]^{<\omega}$, $u \in \{0,1\}^J$ be such that $B = \{\xi : \xi \in \kappa \setminus A, I_{\xi} = J, y_{\xi} \upharpoonright I_{\xi} = u\}$ has cardinal κ . For $\xi \in B$, $s \in \{0,1\}^n$ set $g_{\xi}(s) = f_{\xi}(s, v(\xi))$.

Now consider $\{(x,y): (x,y) \in X', y \mid J = u\}$. This is a non-empty open subset of X'and $f \mid X'$ is irreducible, so there is an open cylinder set $V \subseteq \{0,1\}^{\kappa}$ such that $y \mid J = u$ whenever $(x,y) \in X'$ and $f(x,y) \in V$. Let $K \in [\kappa]^{<\omega}$ be such that V is determined by coordinates in K. Set $D = B \setminus K$, $Z = \{x \mid D : (x,y) \in X'\}$, $g(z) = \langle g_{\xi}(z(\xi)) \rangle_{\xi \in D}$ for $z \in Z$. If $w \in \{0,1\}^D$, there is a $w' \in V$ such that $w' \mid D = w$; there is an element $(x,y) \in X'$ such that f(x,y) = w'; now $y \mid J = u$ so $y \mid B = v \mid B$ and

$$g_{\xi}(x(\xi)) = f(x(\xi), y(\xi)) = w'(\xi) = w(\xi)$$

for every $\xi \in D$, that is, $g(x \upharpoonright D) = w$. Thus $g[Z] = \{0, 1\}^D$, while $Z \subseteq (\{0, 1\}^n)^{\kappa}$.

By the inductive hypothesis, there are $C \in [D]^{\kappa}$ and an i < n such that $\pi_{iC}[Z] = \{0,1\}^{C}$; now, re-interpreting the formula π_{iC} appropriately, we have $\pi_{iC}[X] = \{0,1\}^{C}$ and the induction continues.

8 Proposition Let M be a set, κ a regular uncountable cardinal and X a closed subset of $\{0,1\}^M$. If there is a continuous surjection $h: X \to \{0,1\}^{\kappa}$, then there is a $C \in [M]^{\kappa}$ such that $x \mapsto x \upharpoonright C : X \to \{0,1\}^C$ is surjective.

proof Shrinking X if necessary, we may suppose that h is irreducible. For each $\xi < \kappa$, $\{x : x \in X, h(x)(\xi) = 1\}$ is an open-and-closed set in X, so there is a finite set $I_{\xi} \subseteq \kappa$ such that $h(x)(\xi) = h(x')(\xi)$ whenever $x, x' \in X$ and $x \upharpoonright I_{\xi} = x' \upharpoonright I_{\xi}$. Let $A \in [\kappa]^{\kappa}$ be such that $\langle I_{\xi} \rangle_{\xi \in A}$ is a constant-size Δ -system with root I say. Let u be any member of $\{x \upharpoonright I : x \in X\}$; then there is a cylinder set $V \subseteq \{0, 1\}^{\kappa}$ such that $x \upharpoonright I = u$ whenever $x \in X$ and $h(x) \in V$; shrinking A slightly if necessary, we can suppose that V is determined by coordinates in $\kappa \setminus A$. For $\xi \in A$, set $J_{\xi} = I_{\xi} \setminus I$ and define $f_{\xi} : \{0, 1\}^{J_{\xi}} \to \{0, 1\}$ by saying that $f_{\xi}(v) = h(x)(\xi)$ whenever $x \in X, x \upharpoonright I = u$ and $x \upharpoonright J_{\xi} = v$. Now observe that for any

 $w \in \{0,1\}^A$ we have a $w' \in V$ extending w, so that there is an $x \in X$ with h(x) = w', $x \upharpoonright I = u$ and $f_{\xi}(x \upharpoonright J_{\xi}) = w(\xi)$ for every $\xi \in A$.

We can therefore apply Lemma 7 to $\{x \upharpoonright \bigcup_{\xi \in A} J_{\xi} : x \in X\}$, identifying $\bigcup_{\xi \in A} J_{\xi}$ with $n \times A$ where *n* is the common value of $\#(J_{\xi})$ for $\xi \in A$, to see that there is an uncountable $C \subseteq \bigcup_{\xi \in A} J_{\xi}$ such that $\{x \upharpoonright C : x \in X\} = \{0, 1\}^{\kappa}$.

9 Corollary If ω_1 has Haydon's property then ω_1 is a measure-independence-precaliber of every probability algebra.

proof Let $(\mathfrak{A}, \bar{\mu})$ be a probability algebra and $\langle a_{\xi} \rangle_{\xi < \omega_1}$ a family in \mathfrak{A} such that $\inf_{\eta < \xi < \omega_1} \bar{\mu}(a_{\eta}, a_{\xi}) > 0$. Then we have a Radon probability measure ν on $\{0, 1\}^{\omega_1}$ defined by saying that

$$\nu\{x:x|I=u\} = \bar{\mu}(\inf_{\xi\in I, u(\xi)=1} a_{\xi} \setminus \sup_{\xi\in I, u(\xi)=0} a_{\xi})$$

whenever $I \in [\omega_1]^{<\omega}$ and $u \in \{0,1\}^I$. Let Z be the support of ν . Since ν has Maharam type ω_1 , there is a continuous surjection from Z onto $[0,1]^{\omega_1}$; so we can find a closed subset Z' of Z and a continuous surjection $h: Z' \to \{0,1\}^{\omega_1}$. By Proposition 8, there is a $C \in [\omega_1]^{\omega_1}$ such that $\{z | C : z \in Z'\} = \{0,1\}^C$. But this means that $\langle a_\xi \rangle_{\xi \in C}$ is Boolean-independent.

10 Proposition Suppose that there is a family $\langle W_{\xi} \rangle_{\xi < \omega_1}$ in \mathcal{N}_{ω_1} such that every closed subset of $\{0, 1\}^{\omega_1} \setminus \bigcup_{\xi < \omega_1} W_{\xi}$ is scattered. Then ω_1 is not a measure-independence-precaliber of every probability algebra.

proof As in FREMLIN 06?, 534N (following PLEBANEK 97), there is a zero-dimensional compact Hausdorff space X such that $\omega_1 \in \operatorname{Mah}_R(X)$ but there is no continuous surjection from X onto $\{0, 1\}^{\omega_1}$. Let μ be a Maharam homogeneous Radon probability measure on X with Maharam type ω_1 and $(\mathfrak{A}, \overline{\mu})$ its measure algebra. Because X is zero-dimensional, there is a family $\langle K_{\xi} \rangle_{\xi < \omega_1}$ of open-and-closed sets in X such that $\mu(K_{\xi} \triangle K_{\eta}) \geq \frac{1}{3}$ whenever $\eta < \xi$; now $\langle K_{\xi} \rangle_{\xi < \omega_1}$ has no Boolean-independent subfamily of size ω_1 , so $\langle K_{\xi}^{\bullet} \rangle_{\xi < \omega_1}$ has no Boolean-independent subfamily of size ω_1 .

11 Proposition Suppose that θ and κ are cardinals such that $\max(2^{\mathfrak{c}}, \theta^{\omega}) < \mathrm{cf} \kappa \leq \kappa \leq 2^{\theta}$. Then κ is an independence-precaliber of every totally finite measure algebra.

proof Džamonja & Plebanek p04, Theorem 6.3.

Remark Note that if we have only

$$\theta^{\omega} < \operatorname{cf} \kappa \le \kappa \le 2^{\theta}$$

then κ is a measure-precaliber of every measure algebra (DŽAMONJA & PLEBANEK P04, 4.7; FREMLIN P06?, 524V), therefore a measure-independence-precaliber of every probability algebra (DŽAMONJA & PLEBANEK P04, 6.6). If $\lambda^{\omega} < \kappa$ for every $\lambda < \kappa$, then any family of size κ in any metric space has a discrete subfamily of size κ , so κ will be an independence-precaliber of every probability algebra. But the result here also covers the case $\kappa = 2^{2^{\epsilon}} = \omega_{\omega+1}$. **12 Problem** From FREMLIN 06?, 534L, and Propositions 2, 5 and 6 above, we see that for $\kappa \geq \omega_2$ the following are equiveridical:

 κ is a measure-independence-precaliber of every probability algebra;

 κ is a measure-precaliber of every probability algebra;

 κ has Haydon's property.

By Proposition 10 and the remarks in the notes to 534 of FREMLIN 06?, it is possible that

 ω_1 is a measure-precaliber of every probability algebra,

 ω_1 is not a measure-independence-precaliber of every probability algebra.

By Corollary 9, we see that if ω_1 has Haydon's property then it is a measure-independenceprecaliber of every probability algebra. But we do not know whether the converse is true.

References

Džamonja M. & Plebanek G. [p04] 'Precalibre pairs of measure algebras', 2.4.04

Fremlin D.H. [02] Measure Theory, Vol. 3: Measure Algebras. Torres Fremlin, 2002.

Fremlin D.H. [03] Measure Theory, Vol. 4: Topological Measure Theory. Torres Fremlin, 2003.

Fremlin D.H. [06?] Measure Theory, Vol. 5: Set-theoretic measure theory, in preparation. Partial drafts available via http://www.essex.ac.uk/maths/staff/fremlin/mt.htm; paragraph numbers indicated here are not to be trusted.

Plebanek G. [97] 'Non-separable Radon measures and small compact spaces', Fundamenta Math. 153 (1997) 25-40.