Measures, densisties and some compactifications of ω

Grzegorz Plebanek

joint work with Piotr Borodulin-Nadzieja

Hejnice 2008

伺 ト イ ヨ ト イ ヨ ト

Basic motivation

Is there a Banach space E, possibly in the form E = C(K), which has the Mazur property but does not have the Gelfand–Phillips property?

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Basic motivation

Is there a Banach space E, possibly in the form E = C(K), which has the Mazur property but does not have the Gelfand–Phillips property?

A problem

Is there a compactification K of ω such that

- no subsequence of ω is convergent in K;
- every measure on K can be approached sequentially by measures concentrated on ω ?

- 4 同 2 4 回 2 4 回 2 4

Basic terminology & notation

If \mathfrak{A} is a Boolean algebra then $P(\mathfrak{A})$ denotes the set of all finitely additive probability measures on \mathfrak{A} .

For K compact zerodim., P(K) = P(Clopen(K)).

Consider a topology on $P(\mathfrak{A})$ generated by the mappings $\mu \to \mu(a)$ for $a \in \mathfrak{A}$; for instance $\mu_n \to \mu$ means that $\mu_n(a) \to \mu(a)$ for every $a \in \mathfrak{A}$. Then $P(\mathfrak{A})$ is a compact space.

Basic terminology & notation

If \mathfrak{A} is a Boolean algebra then $P(\mathfrak{A})$ denotes the set of all finitely additive probability measures on \mathfrak{A} .

For K compact zerodim., P(K) = P(Clopen(K)).

Consider a topology on $P(\mathfrak{A})$ generated by the mappings $\mu \to \mu(a)$ for $a \in \mathfrak{A}$; for instance $\mu_n \to \mu$ means that $\mu_n(a) \to \mu(a)$ for every $a \in \mathfrak{A}$. Then $P(\mathfrak{A})$ is a compact space.

Sequential closure

If K is compact and zerodim., and $X \subseteq K$ then write

- conv(X) for all μ ∈ P(K) which are finite combinations of Dirac measures δ_x, x ∈ X;
- $S_1(X)$ for all the limit of converging sequences from conv(X);
- S(X) = ∪_{ξ<ω1} S_ξ(X) for the least sequentially closed set of measures containing conv(X).

A problem

Is there a compactification K of ω such that

• no subsequence of ω is convergent in K;

•
$$S(\omega) = P(K)?$$

同 ト イ ヨ ト イ ヨ ト

A problem

Is there a compactification K of ω such that

• no subsequence of ω is convergent in K;

•
$$S(\omega) = P(K)?$$

Remark

Checking $S(\omega) = P(K)$ may be done in two steps:

• $\delta_t \in S(\omega)$ for $t \in K \setminus \omega$;

•
$$S(K) = P(K)?$$

3

Minimally generated algebras

 \mathfrak{A} is minimally generated if $\mathfrak{A} = \bigcup_{\xi < \alpha} \mathfrak{A}_{\xi}$, where \mathfrak{A}_{ξ} form an increasing continuous chain, $\mathfrak{A}_0 = \{0,1\}, \mathfrak{A}_{\xi+1}$ is a minimal extension of \mathfrak{A}_{ξ} for $\xi < \alpha$. Introduced by Koppelberg; investigated by Fedorčuk, Shelah, Dow, Koszmider. Related papers: Borodulin-Nadzieja [2007], Džamonja & GP [2007]

Minimally generated algebras

 \mathfrak{A} is minimally generated if $\mathfrak{A} = \bigcup_{\xi < \alpha} \mathfrak{A}_{\xi}$, where \mathfrak{A}_{ξ} form an increasing continuous chain, $\mathfrak{A}_0 = \{0,1\}, \mathfrak{A}_{\xi+1}$ is a minimal extension of \mathfrak{A}_{ξ} for $\xi < \alpha$. Introduced by Koppelberg; investigated by Fedorčuk, Shelah, Dow, Koszmider. Related papers: Borodulin-Nadzieja [2007], Džamonja & GP [2007]

When S(K) = P(K)

Let $\mathfrak{A} = \operatorname{Clopen}(K)$ be minimally generated.

- If $\alpha = \omega_1$ then $S_1(K) = P(K)$; moreover
- under ◊, there is K such that K contains no converging sequences but every nonatomic μ ∈ P(K) is G_δ (Džamonja & GP).
- S(K) = P(K); cf. Borodulin-Nadzieja [2007].

-

More on $\overline{S(K)} = P(\overline{K})$

- If $K = \{0,1\}^{\mathfrak{c}}$ then $S_1(K) = P(K)$, see
 - Losert [1979] under CH;
 - Frankiewicz & GP [1995] under MA;
 - Fremlin [20??] in ZFC.

イロト イポト イヨト イヨト 二日

More on S(K) = P(K)

If
$$K = \{0, 1\}^{c}$$
 then $S_1(K) = P(K)$, see

- Losert [1979] under CH;
- Frankiewicz & GP [1995] under MA;
- Fremlin [20??] in ZFC.

More on S(K) = P(K)

It is rel. consistent that $S_1(K) = P(K)$ for ever compact space K such that $\chi(x, K) < \mathfrak{c}$ for every $x \in K$ (GP [2000]); cf. Mercourakis [1996].

イロト イポト イヨト イヨト 二日

Back to our problem

Recall that we look for a compactification $\omega \subseteq K$, such that ω has no converging subsequences, and $S(\omega) = P(K)$. Suppose that we construct K as $ULT(\mathfrak{A})$ for some minimally generated \mathfrak{A} on ω . We shall get $S(\omega) = P(K)$ if we ensure that

 $\delta_x \in S(\omega)$ for $x \in K \setminus \omega$.

Back to our problem

Recall that we look for a compactification $\omega \subseteq K$, such that ω has no converging subsequences, and $S(\omega) = P(K)$. Suppose that we construct K as $ULT(\mathfrak{A})$ for some minimally generated \mathfrak{A} on ω . We shall get $S(\omega) = P(K)$ if we ensure that

 $\delta_x \in S(\omega)$ for $x \in K \setminus \omega$.

A partial example

For $A \subseteq \omega$ write $d(A) = \lim_{n \to \infty} |A \cap n|/n$. Suppose that the ideal of sets of density zero contains base A_{ξ} , $\xi < \omega_1$, where $A_{\xi} \subseteq^* A_{\xi+1}$ for every ξ . Let \mathfrak{A} be generated by all A_{ξ} and finite sets, and let $K = \text{ULT}(\mathfrak{A})$. Consider $p \in K$ containing all $\omega \setminus A_{\xi}$. Then no sequence of ω converges to p. But $S_1(\omega) = P(\omega)$, in particular

$$\delta_p = \lim_{n \to \infty} 1/n \sum_{i < n} \delta_i.$$

Can we use Balcar-Pelant-Simon tree?

If \mathcal{T} is a π -base of infinite subsets of ω , such that \mathcal{T} is a \subseteq^* tree of height \mathfrak{h} , then \mathcal{T} generates a minimally generated algebra.

-

Can we use Balcar-Pelant-Simon tree?

If \mathcal{T} is a π -base of infinite subsets of ω , such that \mathcal{T} is a \subseteq^* tree of height \mathfrak{h} , then \mathcal{T} generates a minimally generated algebra.

A question

Is it consistent, that for every \subseteq^* -decreasing sequence $A_{\xi} \subseteq \omega$, $\xi < \mathfrak{h}$ there is some density d such that $d(A_{\xi}) = 1$ for $\xi < \mathfrak{h}$? Here a density may be defined as

$$d_X(A) = \lim_n \frac{|A \cap X \cap n|}{|X \cap n|}$$
 for some $X \subseteq \omega$, or

$$d_g(A) = \lim_n rac{\sum_{i \in n \cap A} g(i)}{\sum_{i < n} g(i)}$$
 for some $g : \omega o \mathbb{R}_+$, or

limits (of limits of limits...) of such.

- 4 周 ト 4 戸 ト 4 戸 ト