Grzegorz Plebanek

Independent families in measure algebras

grzes@math.uni.wroc.pl

http://www.math.uni.wroc.pl/~grzes

Definition. A family $\{a_{\xi}: \xi < \kappa\}$ in a Boolean algebra $\mathfrak A$ is

- (i) centred if $\bigwedge_{\xi \in I} a_{\xi} \neq 0$ for every finite $I \subseteq \kappa$;
- (ii) **independent** if $\bigwedge_{\xi \in I} a_{\xi}^{\phi(\xi)} \neq 0$ for every finite $I \subseteq \kappa$ and every $\phi: I \to \{0, 1\}$.

Definition. A cardinal number κ is a **precali- bre** of a Boolean algebra $\mathfrak A$ if for every family $\{a_{\xi}: \xi < \kappa\} \subseteq \mathfrak A^+$ there is $X \in [\kappa]^{\kappa}$ such that $\{a_{\xi}: \xi \in X\}$ is centred.

Definition. A cardinal number κ is an **inde-pendence precalibre** of a Boolean algebra $\mathfrak A$ if for every family $\{a_{\xi}: \xi < \kappa\}$ of distinct elements of $\mathfrak A$ there is $X \in [\kappa]^{\kappa}$ such that $\{a_{\xi}: \xi \in X\}$ is independent.

Definition. For a measure algebra (\mathfrak{A}, μ) a cardinal number κ is a **measure precalibre** if in every family $\{a_{\xi} : \xi < \kappa\} \subseteq \mathfrak{A}$ with $\inf_{\xi < \kappa} \mu(a_{\xi}) > 0$ there is a centred subfamily of size κ .

Definition. For a measure algebra (\mathfrak{A}, μ)

- (i) a family $\{a_{\xi} : \xi < \kappa\} \subseteq \mathfrak{A}$ is **separated** if there is $\varepsilon > 0$ such that $\mu(a_{\xi} \triangle a_{\eta}) \ge \varepsilon$ for $\xi \ne \eta$;
- (ii) a cardinal number κ is a **measure inde- pendence precalibre** of $\mathfrak A$ if every separated family $\{a_{\xi}: \xi < \kappa\} \subseteq \mathfrak A$ contains an independent subfamily of size κ .

Definition. κ is (*)-precalibre of measure algebras if for every (\mathfrak{A},μ) and $\{a_{\xi}: \xi < \kappa\} \subseteq \mathfrak{A}$ satisfying (A) there is $X \in [\kappa]^{\kappa}$ such that $\{a_{\xi}: \xi \in X\}$ has property (P), where

(*)	(A)	(P)
precal.	$a_{\xi} \neq 0$	centred
ind. precal.	$a_{\xi} \neq a_{\eta}$	independent
m. precal.	$\mu(a_{\xi}) \geq \varepsilon$	centred
m. ind. precal.	$\mu(a_{m{\xi}} igtriangleup a_{m{\eta}}) \geq arepsilon$	independent

Remarks.

- (1) If $cof(\kappa) > \omega$ then κ is a measure precalibre iff κ is a precalibre (of measure algebras).
- (2) Every measure independence precalibre of measure algebras is a measure precalibre.
- (3) No $\kappa \leq \mathbf{c}$ is independence precalibre of measure algebras.

Measure precalibres.

- (1) ω is a measure precalibre.
- (2) κ < c may be (under MA +non CH) and may not be (under CH) a measure precalibre; Fremlin vol. 5 of Measure Theory or Džamonja & G.P. [04].
- (3) Problem. (Haydon) Let κ_n be regular and precalibre of measure algebras. Is $\kappa = \sup_{n < \omega} \kappa_n$ a measure precalibre?
- (4) Problem. (Fremlin) Is it rel. consistent that every regular κ is a precalibre of measure algebras?
- Fact. (Shelah, Argyros & Tsarpalias, Fremlin) If $cof(\kappa) = \omega$ and $2^{\kappa} = \kappa^+$ then κ^+ is not a precalibre of measure algebras.

Measure independence precalibres.

- (1) Fact. ω is a measure independence precalibre.
- (2) Theorem. (Argyros & Tsarpalias [82])

Assume that $\kappa = \operatorname{cof}(\kappa)$ and $\tau^{\omega} < \kappa$ for $\tau < \kappa$ (for instance: $\kappa = \mathbf{c}^+$. Then κ is an independence precalibre of all ccc Boolean algebras, so in particular of all measure algebras (Haydon [77]).

(3) Theorem. (Shelah [99]; Džamonja & G.P. [04]) Suppose that for some θ ,

$$\theta = \theta^{\omega} < \operatorname{cof}(\kappa) \le \kappa \le 2^{\theta}.$$

Then κ is a measure independence precalibre. If, moreover, $\kappa > 2^{\mathbf{C}}$ then κ is an independence precalibre of measure algebras.

Theorem. (Fremlin & G.P.) For $\kappa \ge \omega_2$ TFAE

- (i) κ is a measure precalibre;
- (ii) κ is a measure independence precalibre.

Theorem. (Fremlin [97]) Under MA + nonCH, ω_1 is a measure independence precalibre.

Theorem. (G.P. [97]) It is rel. consistent that ω_1 is a measure precalibre but not measure independence precalibre.

About the proof.

Theorem. (Hajnal's free set theorem) If $\kappa \geq \omega_2$ and $J: \kappa \to [\kappa]^{\leq \omega}$ is a set mapping such that $\xi \notin J_{\xi}$ for every $\xi < \kappa$ then there is $X \in [\kappa]^{\kappa}$ such that $\eta \notin J_{\xi}$ for all $\eta, \xi \in X$.

- (1) Lemma. Let $\kappa \geq \omega_2$ have uncountable cofinality. If $\{s_{\xi} : \xi < \kappa\} \subseteq [\kappa]^{<\omega}$ is a pairwise disjoint family, $\{J_{\xi} : \xi < \kappa\} \subseteq [\kappa]^{\leq\omega}$ are such that $s_{\xi} \cap J_{\xi} = \emptyset$ for every $\xi < \kappa$ then there is $X \subseteq \kappa$ of cardinality κ such that $s_{\xi} \cap J_{\eta} = \emptyset$ whenever $\xi, \eta \in X$.
- (2) Lemma. Let $B \subseteq \{0,1\}^{\kappa}$ be a measurable set and $X \subseteq \kappa$ be such that $B' \notin \mathfrak{A}[X]$. Then there are a finite set $s \subseteq \kappa \setminus X$, a countable set $J \subseteq \kappa \setminus s$, nonempty clopen sets $C(0), C(1) \sim s$, a set $Z \sim J$ with $\lambda(Z) > 0$ such that $Z \cap C(i) \subseteq B^i$ for i = 0, 1.

Consider a separated family $\{B_{\xi}: \xi < \kappa\}$ of subsets of $\{0,1\}^{\kappa}$. Let $B_{\xi} \sim I_{\xi}, I_{\xi} \in [\kappa]^{\omega}$. We can assume that

$$B_{\xi}$$
 $\notin \mathfrak{A}[X_{\xi}], \quad \text{where} \quad X_{\xi} = \bigcup_{\eta < \xi} J_{\eta}.$

Apply Lemma 2 to every $B_{\xi} \notin \mathfrak{A}[X_{\xi}]$: there are pairwise disjoint finite sets s_{ξ} in κ , nonempty clopen sets $C_{\xi}(0), C_{\xi}(1) \sim s_{\xi}$, and sets Z_{ξ} of positive measure, where every $Z_{\xi} \sim J_{\xi} \subseteq \kappa \setminus s_{\xi}$. We can assume that

$$J_{\xi} \cap s_{\eta} = \emptyset$$
 for all ξ, η ; $\{Z_{\xi} : \xi < \kappa\}$ is centred in \mathfrak{A} .

For any finite set $a \subseteq \kappa$ and $\varphi : a \to \{0, 1\}$

$$\lambda(\bigcap_{\xi \in a} B_{\xi}^{\varphi(\xi)}) \ge \lambda(\bigcap_{\xi \in a} Z_{\xi} \cap C_{\xi}(\varphi(\xi))) =$$

$$= \lambda(\bigcap_{\xi \in a} Z_{\xi}) \cdot \prod_{\xi \in a} \lambda(C_{\xi}(\varphi(\xi))) > 0.$$

Haydon's property. Say that κ has Haydon's property if every compact space K that carries a Radon measures of Maharam type κ can be continously mapped onto $[0,1]^{\kappa}$.

Theorem. (G.P. [97] + Haydon + Fremlin) For $\kappa \geq \omega_2$, TFAE

- (a) κ has Haydon's property;
- (b) κ is a measure precalibre.
- (c) κ is a measure independence precalibre.

Theorem. (Fremlin [97]) Under MA + non CH, ω_1 has Haydon's property and (therefore) is a measure independence precalibre.

Theorem. (G.P. [97]) Let \mathcal{N} be the null ideal of the measure on $\{0,1\}^{\omega_1}$. Suppose that $\operatorname{cov}(\mathcal{N}) > \omega_1$ but there is a family $\{N_{\xi} : \xi < \omega_1\} \subseteq \mathcal{N}$ such that $\bigcup_{\xi < \omega_1} N_{\xi}$ meets every perfect set in $\{0,1\}^{\omega_1}$. Then ω_1 is a measure precalibre but does not have Haydon's property and (therefore) is not a measure independence precalibre.

Theorem. (Kunen & van Mill [95] for $(b) \rightarrow (a)$; G.P. [95] for $(a) \rightarrow (b)$) TFAE

- (a) ω_1 is a measure precalibre;
- (b) every Radon measure on a first—countable (compact) space is of countable type.

Problem. Can we replace in (b) "first—countable" by "countably tight"?

Problem. Suppose that ω_1 is a measure precalibre; let $\{a_{\xi}: \xi < \omega_1\}$ be a separated family in a measure algebra. Can we find $X \in [\omega_1]^{\omega_1}$ such that $\{a_{\xi}: \xi \in X\}$ is free, i.e. $\bigwedge_{\xi \in I} a_{\xi} \land \bigwedge_{\xi \in J} a_{\xi}^c \neq 0$ for every finite $I, J \subseteq X$ with $\max I < \min J$?