
Baire measurability in some C (K ) spaces

Grzegorz Plebanek (Uniwersytet Wroc lawski)

joint work with A. Avilés and J. Rodŕıguez
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The weak topology in Banach spaces

If (X , || · ||) is a Banach space then the local base at 0 ∈ X of the
weak topology on X is generated by the sets (for x∗ ∈ X ∗, ε > 0),

V (x∗, ε) = {x ∈ X : |x∗(x)| < ε}.

Note that the ball BX = {x ∈ X : ||x || ≤ 1} is weakly closed:

BX =
⋂

||x∗||≤1

{x ∈ X : x∗(x) ≤ 1}.

Borel structures in Banach spaces

If X is a separable Banach space then
Bor(X ,weak) = Bor(X , || · ||).

There are nonseparable Banach spaces X for which
Bor(X ,weak) = Bor(X , norm); this is so for every X
admitting an equivalent LUR(=“good”) norm.
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Borel structures in C (K ) spaces

For a compact space K we can equipp C (K ) with three natural
topologies:
(C (K ), || · ||); (C (K ),weak); (C (K ), τp), and we have
Bor(C (K ), || · ||) ⊇ Bor(C (K ),weak) ⊇ Bor(C (K ), τp).

Sample result and problems on Borel structures

Edgar: Bor(C (2κ), τp) = Bor(C (2κ), || · ||).

Marciszewski & Pol:
Bor(C (S), τp) 6= Bor(C (S),weak) 6= Bor(C (S), || · ||), where,
if S is the Stone space of the measure algebra. In fact,
{g ∈ C (S) :

∫
g dλ > 0} is not τp-Borel. Recall that

C (S) ' C (βω) ≡ l∞.

Talagrand: Bor(C (βω),weak) 6= Bor(C (βω), || · ||).

Question: Bor(C (ω∗), τp) 6= Bor(C (ω∗),weak)? (yes, under
CH) Bor(C (βω), τp) 6= Borel(βω,weak)?
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Baire structures

In any Banach space X , Baire(X ,weak) is the least σ-algebra
making all x∗ ∈ X ∗ measurable, i.e. Baire(X ,weak) is generated
by the sets of the form

L(x∗, a) = {x ∈ X : x∗(x) < a}.

In particular, Baire(C (K ),weak) is generated by

L(µ, a) = {g ∈ C (K ) :

∫
g dµ < a},

while Baire(C (K ), τp) is generated by

L(t, a) = {g ∈ C (K ) : g(t) < a}.
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Weak Baire versus weak Borel

Baire(X ,weak) = Borel(X ,weak) whenever X is separable.
Typically, Baire(X ,weak) is much smaller than Borel(X ,weak).
Take, for instance X = l∞.

Theorem (Fremlin)

Baire(l1(ω1),weak) = Borel(l1(ω1),weak).
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The space C (2ω1)

Theorem.

Baire(C (2ω1), τp) = Borel(C (2ω1), τp) = Borel(C (2ω1), || · ||),

so all the Baire and Borel structures coincide.

Basic Lemma. Every closed F ⊆ 2ω1 is a decreasing intersection
of a sequence (Fp)p∈N of closed separable subspaces Fp ⊆ 2ω1 .
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Cardinals with Kunen’s rectangle property

Write R(κ) if
P(κ)⊗ P(κ) = P(κ× κ),

i.e. the family of all rectangles {A× B : A,B ⊆ κ} generates the
σ-algebra of all subsets of κ× κ.

If R(κ) then κ ≤ c.

R(ω1).

R(c) under MA.

Consistently, c = ω2 and ¬R(c).
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Fremlin’s result and a corollary

Baire(l1(κ),weak) = Bor(l1(κ),weak) iff R(κ).
Since l1(ω1) ↪→ C (2ω1), if
Baire(C (2κ), τp) = Bor(C (2κ), τp) then R(κ).

Theorem

Baire(C (2κ), τp) = Bor(C (2κ), τp) if (and only if) R(κ).
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Baire measurability of the norm

If X is a Banach space then the norm || · || : X → R is
Baire(X ,weak)-measurable iff BX = {x ∈ X : ||x || ≤ 1} is weakly
Baire set. Since

BX =
⋂

||x∗||≤1

{x ∈ X : x∗(x) ≤ 1}

this is so if the intersection is countable.

(BX∗ ,weak∗) sep. ⇒ BX weakly Baire ⇒ (X ∗,weak∗) sep.
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Baire measurability of the norm in C (K )

Let A be a Boolean algebra and K = ULT(A) its Stone space.
Let P(A) be the space of finitely additive prob. measures on A.
P(A) is compact in the topology inherited from P(A) ⊆ [0, 1]A.
Every µ ∈ P(A) defines uniquely a functional from C (K )∗.

µ ∈ P(A) is strictly positive if µ(a) > 0 for a ∈ A+.

If µ ∈ P(A) then (a, b)→ µ(a
a
b) is a (pseudo)metric on A.

Say that µ ∈ P(A) is of countable type if A is separable in
that pseudometric.
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(1)⇒ (2) ⇒ (3) ⇒ (4), where
K = ULT(A), BC(K) = {g ∈ C (K ) : ||g || ≤ 1}, P(A) ⊆ C (K )∗

1 there is a strictly positive µ ∈ P(A) of countable type;

2 P(A) is separable;

3 BC(K) is weakly Baire;

4 there is a sequence µn ∈ P(A) distinguishing g ∈ C (K ).

Mägerl & Namioka: P(K ) is separable iff there is a
sequence µn ∈ P(A) such that for every a ∈ A+, µn(a) ≥ 1/2
for some n.

Talagrand: (2) 6⇒ (1) and (4) 6⇒ (2) under CH.

Džamonja & GP: (2) 6⇒ (1).

APR: There is A showing that (4) 6⇒ (2).

Likely, the same A shows (3) 6⇒ (2).
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Construction of A

Let B be the measure algebra of the product measure λ on 2c.

|B| = c so we may faithfully index J = {Nb : b ∈ B} some
independent family J of subsets of N.

Work in BN; if a ∈ BN then a = (a(n))n∈N.

Define Gb ∈ BN as Gb(n) = b for n ∈ Nb and Gb(n) = 0
otherwise.

A is the subalgebra in BN generated by all Gb’s.

In other words, A is freely generated by Gb modulo
Gb1 ∧ . . . ∧ Gbk = 0 whenever b1 ∧ . . . ∧ bk = 0.

P(B) is not separable and this implies that P(A) is not
separable either.

For every n ∈ N, µn(a) = λ(a(n)) defines µn ∈ P(A).

µn’s distinguish functions g ∈ C (K ), where K is the Stone
space of A.
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