Weakly compact sets in separable Banach spaces

Grzegorz Plebanek

University of Wrocław

29th Summer Conference on Topology and its Applications New York, July 2014

joint work with A. Avilés and J. Rodríguez (University of Murcia)

X denotes a (separable) Banach space and B_X is its unit ball. X^{*} is the dual space of all continuous functionals on X.

- The space l_p of all series summable in the p > 1 power; $||x|| = (\sum_n |x(n)|^p)^{1/p}$. $(l_p)^* = l_q$, $(l_p)^{**} = l_p$.
- 2 The space c_0 of sequences converging to 0. $||x|| = \sup_n |x(n)|, (c_0)^* = l_1.$
- The space l_1 of absolutely summable series. $||x|| = \sum_n |x(n)|, \ (l_1)^* = l_{\infty}.$
- The space C[0,1] of continuous functions with the sup norm.

Weakly compact sets in Banach spaces

The topology *weak* on X is the weakest topology making all $x^* \in X^*$ continuous. Sets of the form $V(x^*) = \{x \in X : |x^*(x)| < \varepsilon\}, x^* \in X^*$ are the subbase of the weak topology at $0 \in X$.

Notation

 $\mathscr{K}(B_X)$ denotes the family of weakly compact subsets of the ball.

Main objective

Classify separable Banach spaces according to properties of $\mathcal{K}(B_X)$, considered as a set partially ordered by inclusion and/or some other relations.

Example

 $B_X \in \mathscr{K}(B_X)$ iff $X^{**} = X$.

Comparing posets (P, \leq) and (Q, \leq) : Tukey reductions

Definition

We say that P is Tukey reducible to Q and write $P \preccurlyeq Q$ if there is a function $f : P \rightarrow Q$ such that $f^{-1}(B)$ is bounded in P whenever $B \subseteq Q$ is bounded.

In other words...

 $P \preccurlyeq Q$ means for every $q \in Q$ there is $h(q) \in P$ such that for every $x \in P$, if $f(x) \le q$ then $x \le h(q)$. $h: Q \to P$ satisfies: h(C) is cofinal in P for every cofinal $C \subseteq Q$. Q is reacher as a cofinal structure and $cf(P) \le cf(Q)$. Here cf(Q) denotes the least cardinality of a set $C \subseteq Q$ which is **cofinal**, i.e. for every $q \in Q$ there is $c \in C$ with $q \le c$.

Notation

P and *Q* are Tukey equivalent, $P \sim Q$, whenever $P \preccurlyeq Q$ and $Q \preccurlyeq P$. $P \prec Q$ means $P \preccurlyeq Q$ but **not** $Q \preccurlyeq P$.

Tukey reductions, continued

Some simple posets

$$\{0\}\prec\omega\prec\omega^\omega\prec\mathscr{K}(\mathbb{Q})\prec[\mathfrak{c}]^{<\omega}$$

ω^{ω}

For
$$g_1.g_2\in\omega^\omega$$
, $g_1\leq g_2$ if $g_1(n)\leq g_2(n)$ for every $n\in\omega$.

For the properties of $\mathscr{K}(\mathbb{Q})$ see **Fremlin** 91 and **Gartside & Mamatelashvili** 2014.

Remarks on cofinalities

- We have $\mathrm{cf}(\omega) = \omega$, $\mathrm{cf}([\mathfrak{c}]^{<\omega}) = \mathfrak{c}$
- $cf(\omega^{\omega})$ is denoted by \mathfrak{d} .
- $\omega_1 \leq \mathfrak{d} \leq \mathfrak{c}$.
- Fremlin 1991: $cf(\mathscr{K}(\mathbb{Q})) = \mathfrak{d}$.

Classification of $\mathcal{K}(E)$ and its consequence

Theorem (**Fremlin 91)**

If E is coanalytic in some Polish space then either

- $(\mathcal{E}) \sim \mathcal{K}(\mathbb{N}) \sim \omega$ (*E* loc. compact noncompact),

 𝒮(E) ∼ 𝟸(ℚ) (E coanalytic but not Polish).

Corollary

If X is a Banach space with X^* separable then

- 2 does not occur: weakly loc. compact implies compact.

Proof.

If X^* is separable then $(B_{X^{**}}, weak^*)$ is compact metric and $(B_X, weak)$ is $F_{\sigma\delta}$.

X has PCP if for every weakly closed bounded $A \subseteq X$, $(A, weak) \rightarrow (A, norm)$ has a point of conntinuity. Edgar & Wheeler: $(B_X, weak)$ is Polish iff X^* is separable and X has PCP.

Possible Tukey classification of Banach spaces

Example

If
$$X = C[0,1]$$
 then $\mathscr{K}(B_X) \sim [\mathfrak{c}]^{<\omega}.$

Conjecture

If X is a separable Banach space then $\mathcal{K}(B_X)$ is Tukey equivalent to one of the following:

$$\{0\}, \quad \omega^{\omega}, \quad \mathscr{K}(\mathbb{Q}), \quad [\mathfrak{c}]^{<\omega}.$$

SWCG Banach space

Definition

A Banach space X is WCG if $X = \overline{\text{lin}}(K)$ for some $K \in \mathscr{K}(X)$.

Every separable X is WCG...

Definition

A Banach space X is SWCG if there is $L \in \mathscr{K}(X)$ such that for every $K \in \mathscr{K}(X)$ and $\varepsilon > 0$ there is n such that $K \subseteq n \cdot L + \varepsilon \cdot B_X$.

In other words

X is SWCG if and only if there are $L_n \in \mathscr{K}(B_X)$ such that for every $K \in \mathscr{K}(B_X)$ and $\varepsilon > 0$ we have $K \subseteq L_n + \varepsilon \cdot B_X$ for some n.

Examples

 $L_1[0,1]$ is *SWCG*; try $L = \{f \in L_1[0,1] : |f| \le 1\}$. l_1 is SWCG; try $K_n = \{x \in B_{l_1} : x(k) = 0 \text{ for } k \ge n\}$. c_0 is not SWCG; how many weakly compact sets we need to generate c_0 strongly?

Asymptotic structures

Definition

Say that $(P, \leq_{\varepsilon}: \varepsilon > 0)$ is an **asymptotic structure** if every \leq_{ε} is a binary relation on *P* and for $\eta < \varepsilon$, $x \leq_{\eta} y$ implies $x \leq_{\varepsilon} y$.

Definition

Given asymptotic structures $(P, \leq_{\varepsilon}: \varepsilon > 0)$ and $(Q, \leq_{\varepsilon}: \varepsilon > 0)$, we say that $P \preccurlyeq Q$ if for every $\varepsilon > 0$ there is $\delta > 0$ such that

$$(P,\leq_{\varepsilon})\preccurlyeq (Q,\leq_{\delta}).$$

Remarks

Given an asymptotic structure $(P, \leq_{\varepsilon}: \varepsilon > 0)$ and an ordinary poset (Q, \leq) ,

- $P \preccurlyeq Q$ means $(P, \leq_{\varepsilon}) \preccurlyeq (Q, \leq)$ for every $\varepsilon > 0$;
- $Q \preccurlyeq P$ means $(Q, \leq) \preccurlyeq (P, \leq_{\delta})$ for some $\delta > 0$.

Notation

 $\mathbb{AK}(B_X)$ is $\mathscr{K}(B_X)$ equipped with relations \leq_{ε} , where $K \leq_{\varepsilon}$ means $K \subseteq L + \varepsilon \cdot B_X$.

Examples and remarks

- X is SWCG iff $\mathbb{AK}(B_X) \preccurlyeq \omega$.
- If X = c₀ then AK(B_X) ~ ℋ(Q). Hence cf(AK(B_X)) = ∂ so c₀ is strongly generated by ∂ weakly compact sets.
- If $\mathbb{AK}(B_X) \sim P$ for some poset P then $P \preccurlyeq \mathscr{K}(B_X) \preccurlyeq P^{\omega}$.
- To show that P ≼ AK(B_X) we need to define f : P → ℋ(B_X) such that for every L ∈ ℋ(B_X) there is p ∈ P such that whenever f(x) ⊆ L+ε⋅B_X then x ≤ p.

Problem

Is it true that for every separable X, either $\mathbb{AK}(B_X) \preccurlyeq \omega$ or $\omega^{\omega} \preccurlyeq \mathbb{AK}(B_X)$?

Remarks

For every Banach space X, either $\mathscr{K}(B_X) \sim \{0\}$ or $\omega^{\omega} \preccurlyeq \mathscr{K}(B_X)$. Assuming $\mathfrak{d} > \omega_1$, for the *nonseparable* space $X = l_1(\omega_1)$,

- neither $\mathbb{AK}(B_X) \preccurlyeq \omega$ (because X is not SWCG),
- nor $\omega^{\omega} \preccurlyeq \mathbb{AK}(B_X)$ (because $cf(\mathbb{AK}(B_X)) = \omega_1$).

Theorem

If a separable space X does not contain an isomorphic copy of l_1 then $\mathbb{AK}(B_X) \sim \mathscr{K}(B_X)$ and, moreover, is Tukey equivalent to either

- $\{0\}$ (if X is reflexive), or
- **2** ω^{ω} (if X is not reflexive, X^{*} is separable and X has PCP), or
- \$\mathcal{K}(\mathbb{Q})\$ (if X is not reflexive, X* is separable and X does not have PCP), or
- $[c]^{<\omega}$ (if X^* is not separable).

The proof uses a result of **López Pérez & Soler Arias 2012** and some Ramsey type results due to **Todorčević** 2010 and others.

Theorem

Assuming the axiom of analytic determinacy, every separable space Banach space X satisfies one of the following

- $\mathbb{AK}(B_X) \sim \mathscr{K}(B_X) \sim \{0\}$,

• $\mathbb{AK}(B_X) \sim \mathscr{K}(B_X) \sim [\mathfrak{c}]^{<\omega}$

Theorem (under analytic determinacy)

If \mathscr{I} is an analytic ideal on ω , $\mathscr{I}^{\perp} = \{A \subseteq \omega : A \cap I \text{ finite for } I \in \mathscr{I}\}$ then \mathscr{I}^{\perp} is Tukey equivalent to one of the following $\{0\}, \omega, \omega^{\omega}, \mathscr{K}(\mathbb{Q}), [\mathfrak{c}]^{<\omega}$.

The proof is based on results on analytic gaps due to **Todorčević** and analytic multigaps due to **Avilés and Todorčević** 2013-2014.

Two positive results

Let Y be a subspace of X.

- $\mathscr{K}(B_Y) \preccurlyeq \mathscr{K}(B_X).$ *Proof.* $\mathscr{K}(B_Y) \ni K \to K \in \mathscr{K}(B_X)$ is Tukey because if $K \subseteq L \in \mathscr{K}(B_X)$ then $K \subseteq L \cap Y \in \mathscr{K}(B_Y).$
- If Y is complemented in X (i.e. $X = Y \oplus Z$ for some closed Z) then $\mathbb{AK}(B_Y) \preccurlyeq \mathbb{AK}(B_X)$. *Proof.* Let $P: X \to Y$ be a projection. If $K \in \mathcal{K}(B_Y)$, $L \in \mathcal{K}(B_X)$ and $K \subseteq L + \varepsilon \cdot B_X$ then $K \subseteq P(L) + \varepsilon \cdot ||P|| \cdot B_Y$.

Following Mercourakis & Stamaki

There is a subspace Y of $X = L_1[0,1]$ (which is SWCG so $\mathbb{AK}(B_X) \sim \omega$) such that $\mathbb{AK}(B_Y) \sim \omega^{\omega}$.

Unconditional bases

- Let E = ⟨e_n : n ∈ ω⟩ be an unconditional basic sequence in X, i.e. there is C > 0 such that ||∑_{n∈J} a_n · e_n|| ≤ C · ||∑_{n∈J} a_n · e_n|| for any finite sets I ⊆ J ⊆ ω and any scalars a_n ∈ ℝ.
- Lemma. Let $\mathcal{N}(E) = \{A \subseteq \omega : (e_n)_{n \in A} \text{ is weakly null}\}$. Then $\mathcal{N}(E) \preccurlyeq \mathbb{AK}(B_X)$.
- Let A be an adequate family on ω, i.e. A is hereditary and A ∈ A whenever all finite subsets of A are in A.
- Following **Argyros & Mercourakis** 1993 define a norm $||\cdot||$ on c_{00} by

$$||x|| = \sup_{T \in \mathscr{A}} \sum_{n \in T} |x(n)|.$$

Let X be the completion of c_{00} with respect to such a norm.

- We have $\mathscr{N}(E) \sim \mathscr{A}^{\perp} \preccurlyeq \mathbb{AK}(B_X).$
- Consistently, there is a Banach space X and $E \subseteq X$ such that $\mathbb{AK}(E)$ is not Tukey equivalent to any of $\{0\}, \omega, \omega^{\omega}, \mathscr{K}(\mathbb{Q}), [\mathfrak{c}]^{<\omega}$.