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Banach spaces

X denotes a (separable) Banach space and BX is its unit ball.
X ∗ is the dual space of all continuous functionals on X .

1 The space lp of all series summable in the p > 1 power;

||x ||= (∑n |x(n)|p)1/p. (lp)∗ = lq, (lp)∗∗ = lp.

2 The space c0 of sequences converging to 0.
||x ||= supn |x(n)|, (c0)∗ = l1.

3 The space l1 of absolutely summable series.
||x ||= ∑n |x(n)|, (l1)∗ = l∞.

4 The space C [0,1] of continuous functions with the sup norm.



Weakly compact sets in Banach spaces

The topology weak on X is the weakest topology making all
x∗ ∈ X ∗ continuous. Sets of the form
V (x∗) = {x ∈ X : |x∗(x)|< ε}, x∗ ∈ X ∗ are the subbase of the
weak topology at 0 ∈ X .

Notation

K (BX ) denotes the family of weakly compact subsets of the ball.

Main objective

Classify separable Banach spaces according to properties of
K (BX ), considered as a set partially ordered by inclusion and/or
some other relations.

Example

BX ∈K (BX ) iff X ∗∗ = X .



Comparing posets (P ,≤) and (Q,≤): Tukey reductions

Definition

We say that P is Tukey reducible to Q and write P 4 Q if there is
a function f : P → Q such that f −1(B) is bounded in P whenever
B ⊆ Q is bounded.

In other words. . .

P 4 Q means for every q ∈ Q there is h(q) ∈ P such that for every
x ∈ P, if f (x)≤ q then x ≤ h(q).
h : Q→ P satisfies: h(C ) is cofinal in P for every cofinal C ⊆ Q.
Q is reacher as a cofinal structure and cf(P)≤ cf(Q).
Here cf(Q) denotes the least cardinality of a set C ⊆ Q which is
cofinal, i.e. for every q ∈ Q there is c ∈ C with q ≤ c .

Notation

P and Q are Tukey equivalent,P ∼Q, whenever P 4Q and Q 4 P.
P ≺ Q means P 4 Q but not Q 4 P.



Tukey reductions, continued

Some simple posets

{0} ≺ ω ≺ ωω ≺K (Q)≺ [c]<ω .

ωω

For g1.g2 ∈ ωω , g1 ≤ g2 if g1(n)≤ g2(n) for every n ∈ ω.

For the properties of K (Q) see Fremlin 91 and Gartside &
Mamatelashvili 2014.

Remarks on cofinalities

We have cf(ω) = ω, cf([c]<ω ) = c

cf(ωω ) is denoted by d.

ω1 ≤ d≤ c.

Fremlin 1991: cf(K (Q)) = d.



Classification of K (E ) and its consequence

Theorem (Fremlin 91)

If E is coanalytic in some Polish
space then either

1 K (E)∼K [0,1] ∼ {0}
(E compact), or

2 K (E)∼K (N) ∼ ω

(E loc. compact noncompact),

3 K (E)∼K (R\Q) ∼ ωω

(E Polish not loc. compact), or

4 K (E)∼K (Q)
(E coanalytic but not Polish).

Corollary

If X is a Banach space with X ∗

separable then

1 K (BX )∼ {0}
(X reflexive), or

2 does not occur: weakly loc.
compact implies compact.

3 K (BX )∼ ωω

(X not reflexive, has PCP), or

4 K (E)∼K (Q)
(X does not have PCP).

Proof.

If X ∗ is separable then (BX ∗∗ ,weak
∗) is compact metric and (BX ,weak) is Fσδ .

X has PCP if for every weakly closed bounded A⊆ X , (A,weak)→ (A,norm)
has a point of conntinuity.
Edgar & Wheeler: (BX ,weak) is Polish iff X ∗ is separable and X has PCP.



Possible Tukey classification of Banach spaces

Example

If X = C [0,1] then K (BX )∼ [c]<ω .

Conjecture

If X is a separable Banach space then K (BX ) is Tukey equivalent
to one of the following:

{0}, ω
ω , K (Q), [c]<ω .



SWCG Banach space

Definition

A Banach space X is WCG if X = lin(K ) for some K ∈K (X ).

Every separable X is WCG. . .

Definition

A Banach space X is SWCG if there is L ∈K (X ) such that for
every K ∈K (X ) and ε > 0 there is n such that K ⊆ n ·L+ ε ·BX .

In other words

X is SWCG if and only if there are Ln ∈K (BX ) such that for
every K ∈K (BX ) and ε > 0 we have K ⊆ Ln + ε ·BX for some n.

Examples

L1[0,1] is SWCG ; try L = {f ∈ L1[0,1] : |f | ≤ 1}.
l1 is SWCG; try Kn = {x ∈ Bl1 : x(k) = 0 for k ≥ n}.
c0 is not SWCG; how many weakly compact sets we need to
generate c0 strongly?



Asymptotic structures

Definition

Say that (P,≤ε : ε > 0) is an asymptotic structure if every ≤ε is
a binary relation on P and for η < ε, x ≤η y implies x ≤ε y .

Definition

Given asymptotic structures (P,≤ε : ε > 0) and (Q,≤ε : ε > 0), we
say that P 4 Q if for every ε > 0 there is δ > 0 such that

(P,≤ε ) 4 (Q,≤δ ).

Remarks

Given an asymptotic structure (P,≤ε : ε > 0) and an ordinary poset
(Q,≤),

P 4 Q means (P,≤ε ) 4 (Q,≤) for every ε > 0;

Q 4 P means (Q,≤) 4 (P,≤δ ) for some δ > 0.



Asymptotic structures of weakly compact sets

Notation

AK(BX ) is K (BX ) equipped with relations ≤ε , where K ≤ε

means K ⊆ L+ ε ·BX .

Examples and remarks

X is SWCG iff AK(BX ) 4 ω.

If X = c0 then AK(BX )∼K (Q). Hence cf(AK(BX )) = d so
c0 is strongly generated by d weakly compact sets.

If AK(BX )∼ P for some poset P then P 4 K (BX ) 4 Pω .

To show that P 4 AK(BX ) we need to define f : P →K (BX )
such that for every L ∈K (BX ) there is p ∈ P such that
whenever f (x)⊆ L+ ε ·BX then x ≤ p.



Open problem

Problem

Is it true that for every separable X , either AK(BX ) 4 ω or
ωω 4 AK(BX )?

Remarks

For every Banach space X , either K (BX )∼ {0} or ωω 4 K (BX ).
Assuming d> ω1, for the nonseparable space X = l1(ω1),

neither AK(BX ) 4 ω (because X is not SWCG),

nor ωω 4 AK(BX ) (because cf(AK(BX )) = ω1).



Banach spaces not containing l1

Theorem

If a separable space X does not contain an isomorphic copy of l1
then AK(BX )∼K (BX ) and, moreover, is Tukey equivalent to
either

1 {0} (if X is reflexive), or

2 ωω (if X is not reflexive, X ∗ is separable and X has PCP), or

3 K (Q) (if X is not reflexive, X ∗ is separable and X does not

have PCP), or

4 [c]<ω (if X ∗ is not separable).

The proof uses a result of López Pérez & Soler Arias 2012 and
some Ramsey type results due to Todorčević 2010 and others.



Under analytic determinacy

Theorem

Assuming the axiom of analytic determinacy, every separable space
Banach space X satisfies one of the following

1 AK(BX )∼K (BX )∼ {0} ,

2 ω 4 AK(BX ) 4 ωω and K (BX )∼ ωω ,

3 AK(BX )∼K (BX )∼ K (Q) ,

4 AK(BX )∼K (BX )∼ [c]<ω .

Theorem (under analytic determinacy)

If I is an analytic ideal on ω, I ⊥ = {A⊆ ω : A∩ I finite for I ∈I } then I ⊥

is Tukey equivalent to one of the following {0},ω,ωω ,K (Q), [c]<ω .

The proof is based on results on analytic gaps due to Todorčević and analytic
multigaps due to Avilés and Todorčević 2013-2014.



Subspaces

Two positive results

Let Y be a subspace of X .

K (BY ) 4 .K (BX ).
Proof. K (BY ) 3 K → K ∈K (BX ) is Tukey because if
K ⊆ L ∈K (BX ) then K ⊆ L∩Y ∈K (BY ).

If Y is complemented in X (i.e. X = Y ⊕Z for some closed
Z ) then AK(BY ) 4 AK(BX ).
Proof. Let P : X → Y be a projection. If K ∈K (BY ),
L ∈K (BX ) and K ⊆ L+ ε ·BX then K ⊆ P(L) + ε · ||P|| ·BY .

Following Mercourakis & Stamaki

There is a subspace Y of X = L1[0,1] (which is SWCG so
AK(BX )∼ ω) such that AK(BY )∼ ωω .



Unconditional bases

Let E = 〈en : n ∈ ω〉 be an unconditional basic sequence in X ,
i.e. there is C > 0 such that ||∑n∈J an ·en|| ≤ C · ||∑n∈J an ·en||
for any finite sets I ⊆ J ⊆ ω and any scalars an ∈ R.

Lemma. Let N (E ) = {A⊆ ω : (en)n∈A is weakly null}. Then
N (E ) 4 AK(BX ).

Let A be an adequate family on ω, i.e. A is hereditary and
A ∈A whenever all finite subsets of A are in A .

Following Argyros & Mercourakis 1993 define a norm || · ||
on c00 by

||x ||= sup
T∈A

∑
n∈T
|x(n)|.

Let X be the completion of c00 with respect to such a norm.

We have N (E )∼A ⊥ 4 AK(BX ).

Consistently, there is a Banach space X and E ⊆ X such that
AK(E ) is not Tukey equivalent to any of
{0},ω,ωω ,K (Q), [c]<ω .


