Baire measurability in $C(2^{\kappa})$

Grzegorz Plebanek (Uniwersytet Wrocławski)

joint work with **A. Avilés** and **J. Rodríguez** (Universidad de Murcia)

Integration, Vector Measures and Related Topics IV March 2011

Terminology and notation

- For any family A ⊆ P(X) we write σ(A) for the σ-algebra generated by A.
- If $\mathcal{F} \subseteq \mathbb{R}^X$ is a family of functions ten $\sigma(\mathcal{F})$ denotes the σ -algebra generated by \mathcal{F} , i.e. the least σ -algebra making all $f \in \mathcal{F}$ measurable.

Baire and Borel sets

In every completely regular topological space X there are two natural σ -algebras:

• Bor(X) generated by all open sets, and

• Baire(X) generated by all continuous functions $X \to \mathbb{R}$. Baire(X) = Bor(X) whenever X is a metric space, in general $Baire(X) \subseteq Bor(X)$.

Banach spaces C(K)

For a compact space K we can equipp C(K) with three natural topologies

- $(C(K), || \cdot ||);$
- (C(K), weak);
- $(C(K), \tau_p).$

We can discuss five σ -algebras on C(K). Recall that

- $Baire(C(K), \tau_p) = \sigma(\delta_x : x \in K)$, where $\delta_x(g) = g(x)$
- $Baire(C(K), weak) = \sigma(\mu : \mu \in C(K)^*)$, where $\mu(g) = \int g \, d\mu$.

Borel structures in $C(2^{\kappa})$

Bor
$$(C(2^{\kappa}), \tau_p) = Bor(C(2^{\kappa}), weak) = Bor(C(2^{\kappa})),$$

for every κ because $C(2^{\kappa})$ has a τ_p -Kadec renorming (Edgar).

Baire structures in $C(2^{\kappa})$ for $\kappa \leq \mathfrak{c}$

Baire(
$$C(2^{\kappa}), \tau_p$$
) = Baire($C(2^{\kappa}), weak$),
for $\kappa \leq \mathfrak{c}$ because every probability measure μ on $2^{\mathfrak{c}}$ is a
weak*-limit $\mu = \lim_{n \to \infty} (1/n) \sum_{i \leq n} \delta_{x_i}$ for some sequence $x_i \in 2^{\kappa}$
(Fremlin).
For $\kappa \leq \mathfrak{c}$ we have thus **the** Bairs \mathfrak{c} algebra on $C(2^{\kappa})$ and its Bar

For $\kappa \leq \mathfrak{c}$ we have thus **the** Baire σ -algebra on $C(2^{\kappa})$ and its Borel σ -algebra.

Theorem

 $Baire(C(2^{\omega_1}), \tau_p) = Bor(C(2^{\omega_1}), \tau_p)$ and, consequently, all the five algebras on $C(2^{\omega_1})$ coincide.

Why
$$Baire(C(2^{\omega_1}), \tau_p) = Bor(C(2^{\omega_1}), \tau_p)?$$

Lemma

Suppose that K is such a compact space that for every $n \in \mathbb{N}$ and every closed $F \subseteq K^n$, F is a decreasing intersection of a sequence $(F_p)_{p \in \mathbb{N}}$ of closed separable subspaces $F_p \subseteq K^n$. Then $Baire(C(K), \tau_p) = Bor(C(K), \tau_p)$.

Lemma

Every closed $F \subseteq 2^{\omega_1}$ is a decreasing intersection of a sequence $(F_p)_{p \in \mathbb{N}}$ of closed separable subspaces $F_p \subseteq 2^{\omega_1}$.

Kunen cardinals

 κ is a Kunen cardinal if $\mathcal{P}(\kappa) \otimes \mathcal{P}(\kappa) = \mathcal{P}(\kappa \times \kappa)$, i.e.

 $\sigma(\{A \times B : A, B \subseteq \kappa\})$ contains all subsets of $\kappa \times \kappa$.

- If κ is Kunen then $\kappa \leq \mathfrak{c}$.
- ω_1 is a Kunen cardinal.
- c is Kunen cardinal under MA + non CH, but, consistently,
 c = ω₂ is not Kunen.
- If κ is a Kunen cardinal then there is no universal measure on $\mathcal{P}(\kappa)$.

Fremlin's result and a corollary

 $Baire(I_1(\kappa), weak) = Bor(I_1(\kappa), weak)$ iff κ is a Kunen cardinal. If $Baire(C(2^{\kappa}), \tau_p) = Bor(C(2^{\kappa}), \tau_p)$ then κ is a Kunen cardinal.

Theorem - the main result

 $Baire(C(2^{\kappa}), \tau_p) = Bor(C(2^{\kappa}), \tau_p)$ iff κ is a Kunen cardinal.

Corollary

$C(2^{\kappa})$ is measure-compact whenever κ is a Kunen cardinal.

A Banach space E is measure compact if for every weakly measurable $f : \Omega \to E$ there is a Bochner measurable $g : \Omega \to E$ such that $x^*g = x^*f \ \mu$ -a.e. (for any probability space (Ω, Σ, μ)). Equivalently, for every finite measure ν on Baire(E, weak) there is a separable subspace E_0 such that $\mu^*(E_0) = \mu(E)$.

Remark

Assuming the absence of weakly inaccessible cardinals, $C(2^{\kappa})$ is measure-compact for any κ . (Plebanek [1991])

Corollary

Under MA + non CH, $Bor(2^{\omega_1})$ is countable generated.

If $D \subseteq 2^{\omega_1}$ is a countable dense set then $Bor(2^{\omega_1}) = \sigma(\delta_x : x \in D).$