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Terminology and notation

For any family A ⊆ P(X ) we write �(A) for the �-algebra
generated by A.

If ℱ ⊆ ℝX is a family of functions ten �(ℱ) denotes the
�-algebra generated by ℱ , i.e. the least �-algebra making all
f ∈ ℱ measurable.

Baire and Borel sets

In every completely regular topological space X there are two
natural �-algebras:

Bor(X ) generated by all open sets, and

Baire(X ) generated by all continuous functions X → ℝ.

Baire(X ) = Bor(X ) whenever X is a metric space, in general
Baire(X ) ⊆ Bor(X ).
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Banach spaces C (K )

For a compact space K we can equipp C (K ) with three natural
topologies

(C (K ), ∣∣ ⋅ ∣∣);

(C (K ),weak);

(C (K ), �p).

We can discuss five �-algebras on C (K ). Recall that

Baire(C (K ), �p) = �(�x : x ∈ K ), where �x(g) = g(x)

Baire(C (K ),weak) = �(� : � ∈ C (K )∗), where
�(g) =

∫
g d�.
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Borel structures in C (2�)

Bor(C (2�), �p) = Bor(C (2�),weak) = Bor(C (2�)),
for every � because C (2�) has a �p-Kadec renorming (Edgar).

Baire structures in C (2�) for � ≤ c

Baire(C (2�), �p) = Baire(C (2�),weak),
for � ≤ c because every probability measure � on 2c is a
weak∗-limit � = limn(1/n)

∑
i≤n �xi for some sequence xi ∈ 2�

(Fremlin).
For � ≤ c we have thus the Baire �-algebra on C (2�) and its Borel
�-algebra.

Theorem

Baire(C (2!1), �p) = Bor(C (2!1), �p) and, consequently, all the five
algebras on C (2!1) coincide.
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Why Baire(C (2!1), �p) = Bor(C (2!1), �p)?

Lemma

Suppose that K is such a compact space that for every n ∈ ℕ and
every closed F ⊆ Kn, F is a decreasing intersection of a sequence
(Fp)p∈ℕ of closed separable subspaces Fp ⊆ Kn.
Then Baire(C (K ), �p) = Bor(C (K ), �p).

Lemma

Every closed F ⊆ 2!1 is a decreasing intersection of a sequence
(Fp)p∈ℕ of closed separable subspaces Fp ⊆ 2!1 .
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Kunen cardinals

� is a Kunen cardinal if P(�)⊗ P(�) = P(�× �), i.e.
�({A× B : A,B ⊆ �}) contains all subsets of �× �.

If � is Kunen then � ≤ c.

!1 is a Kunen cardinal.

c is Kunen cardinal under MA + non CH, but, consistently,
c = !2 is not Kunen.

If � is a Kunen cardinal then there is no universal measure on
P(�).
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Fremlin’s result and a corollary

Baire(l1(�),weak) = Bor(l1(�),weak) iff � is a Kunen cardinal.
If Baire(C (2�), �p) = Bor(C (2�), �p) then � is a Kunen cardinal.

Theorem - the main result

Baire(C (2�), �p) = Bor(C (2�), �p) iff � is a Kunen cardinal.
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Corollary

C (2�) is measure-compact whenever � is a Kunen cardinal.

A Banach space E is measure compact if for every weakly
measurable f : Ω→ E there is a Bochner measurable g : Ω→ E
such that x∗g = x∗f �-a.e. (for any probability space (Ω,Σ, �)).
Equivalently, for every finite measure � on Baire(E ,weak) there is
a separable subspace E0 such that �∗(E0) = �(E ).

Remark

Assuming the absence of weakly inaccessible cardinals, C (2�) is
measure-compact for any �. (Plebanek [1991])

Corollary

Under MA + non CH, Bor(2!1) is countable generated.

If D ⊆ 2!1 is a countable dense set then
Bor(2!1) = �(�x : x ∈ D).
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