Half-filling families of finite sets

Grzegorz Plebanek (Uniwersytet Wrocławski)

Modern Set Theory: Foundations & Applications Workshop held at ESSLLI 2011, Ljubljana, August 2011

Grzegorz Plebanek (Uniwersytet Wrocławski) Half-filling families of finite sets

1/2-filling families

- Throughtout X denotes an infinite space.
- Fin(X) denotes the family of all finite subsets of X.
- $\mathcal{A} \subseteq Fin(X)$ is hereditary if $a \in \mathcal{A}$ and $a' \subseteq a$ imply $a' \in \mathcal{A}$.
- Definition. A hereditary family A is a 1/2-filling family on X if for every B ∈ Fin(X) there is a ∈ A such that

$$a \subseteq b \text{ and } |a| \geq \frac{1}{2}|b|.$$

• A set $Y \subseteq X$ is \mathcal{A} -homogenous if $Fin(Y) \subseteq \mathcal{A}$.

Schreier family

Question. If \mathcal{A} is a 1/2-filling family on an infinite space X, is there an infinite set $Y \subseteq X$ which is \mathcal{A} -homogenous? **Answer: No.** Let $\mathcal{A} = \{a \in Fin(\mathbb{N}) : |a| \le \min a\}$. Then \mathcal{A} is 1/2-filling and has no infinite homogenous set.

Fremlin's problem

Let \mathcal{A} be a 1/2-filling family on an uncountable space X.

- **1** Does there exist an **infinite** homogenous set $Y \subseteq X$?
- **2** Does there exist an **uncountable** homogenous set $Y \subseteq X$?

Basic construction: filling families from the measure

- Let F_ξ ⊆ [0, 1] be closed sets with λ(F_ξ) ≥ 1/2 for ξ < ω₁.
 A = {a ∈ Fin(ω₁) : ∩ F_ξ ≠ ∅}.
- \mathcal{A} is 1/2-filling on ω_1 .
- Consistently, for instance under CH, F_ξ's may be taken so that F = {F_ξ : ξ < ω₁} contains no uncountable subfamily with nonempty intersection.

ε∈a

- In such a case, there is no \mathcal{A} -homogeneous uncountable subset of ω_1 .
- There are many infinite countable A-homogeneous $Y \subseteq \omega_1$.
- Under MA(ω₁), *F* contains an uncountable subfamily with nonempty intersection; hence there are uncountable homogeneous Y ⊆ ω₁ for *A*.

Strong fillings

Say that heredativy $\mathcal{A} \subseteq Fin(X)$ is a strong 1/2-filling on X if for every $b \in Fin(X)$ and $\varphi : b \to \mathbb{N}$ there is $a \in \mathcal{A}$ such that $a \subseteq b$ and

$$\sum_{x\in a}\varphi(x)\geq \frac{1}{2}\sum_{x\in b}\varphi(x).$$

- Strong 1/2-fillings are 1/2-fillings (take $\varphi\equiv$ 1).
- Džamonja & GP Every strong 1/2-filling comes from some measure, as in the basic construction. Hence,
- Strong 1/2-fillings do have infinite homogeneous sets.
- Problem. Suppose that A is a 1/2-filling on uncountable X.
 Is there uncountable Y ⊆ X such that A_Y is strong 1/2-filling on Y?

Compact families in Fin(X)

Let $A \subseteq Fin(X)$ be hereditary. Say that \mathcal{A} is **compact** if there is no infinite \mathcal{A} -homogeneous set $Y \subseteq X$. If \mathcal{A} is compact then the space $K(\mathcal{A}) = \mathcal{A} \subseteq P(X) \simeq 2^X$,

$$P(X) \ni E \longleftrightarrow \chi_E \in 2^X,$$

is compact.

Proof. If $E \notin K(\mathcal{A})$ then there is $b \in Fin(E)$ such that $b \notin \mathcal{A}$. Then $V = \{T \in 2^X : b \subseteq T\}$ is an open neighbourhood of E disjoint from $K(\mathcal{A})$.

Application of Fremlin's problem

Problem. Do McShane and Pettis integrals coincide for functions valued in weakly compactly generated Banach spaces? **Avilés, GP, Rodríguez:** No, there is a counterexample valued in a Banach space C(K) for some compact space K.

- Suppose that A ⊆ Fin([0, 1]) is a compact 1/2-filling. Then there is a counterexample in the Banach space C(K(A))).
- Say that A ⊆ Fin([0, 1]) is a MS-filling if for arbitrary partition [0, 1] = ∪_{n=1}[∞] Y_n there is a ∈ A such that

$$\lambda^* \left(\bigcup_{Y_n \cap a \neq \emptyset} Y_n \right) \geq \frac{1}{2}.$$

• There is a compact MS-filling!