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Abstract. We present a construction of a compact connected space which supports

a normal probability measure.

1. Introduction

If K is a compact Hausdorff space then we denote by P (K) the set of all probability

regular Borel measures on K. We write Z(K) for the family of all closed Gδ subsets of

K. Since every compact space is normal, Z ∈ Z(K) if and only if Z is a zero set, i.e.

Z = f−1(0) for some continuous function f : K → R.

A measure µ ∈ P (K) is normal if µ is order-continuous on the Banach lattice C(K).

Equivalently, µ(F ) = 0 whenever F ⊆ K is a closed set with empty interior ([1], Theorem

4.6.3). A typical example of a normal measure is the natural measure defined on the

Stone space of the measure algebra A of the Lebesgue measure λ on [0, 1]. Since the

algebra A is complete, its Stone space is extremely disconnected.

By a result from [2] if K is a locally connected compactum then no measure µ ∈ P (K)

can be normal, cf. [1], Proposition 4.6.20. Dales et al. posed a problem that can be stated

as follows (Question 2 in [1]).

Problem 1.1. Suppose that K is a compact and µ ∈ P (K) is a normal measure. Must

K be disconnected?

We show below that the answer is negative, namely we prove the following result.

Theorem 1.2. There is a compact connected space L of weight c which is the support

of a normal measure.

2. Preliminaries

Recall that µ ∈ P (K) is said to be strictly positive or fully supported by K if µ(U) > 0

for every non-empty open set U ⊆ K.

Lemma 2.1. Let K be a compact space, and suppose that µ is a strictly positive measure

on K such that µ(Z) = 0 for every Z ∈ Z(K) with empty interior. Then µ is a normal

measure.
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Proof. Assume that there is a closed set F ⊆ K with empty interior but with µ(F ) > 0.

Then we derive a contradiction by the following observation.

Claim. Every closed set F ⊆ K with empty interior is contained in some Z ∈ Z(K)

with empty interior.

Indeed, consider a maximal family F of continuous functions K → [0, 1] such that

f |F = 0 for f ∈ F and f · g = 0 whenever f, g ∈ F , f 6= g. Then F is necessarily

countable because K, being the support of a measure, satisfies the countable chain

condition. Write F = {fn : n ∈ N} and let f =
∑

n 2−nfn and Z = f−1(0). Then the

function f is continuous so that Z ∈ Z(K). We have Z ⊇ F and the interior of Z must

be empty by the maximality of F . �

If f : K → L is a continuous map and µ ∈ P (K) then the measure f [µ] ∈ P (L) is

defined by f [µ](B) = µ(f−1(B)) for every Borel set B ⊆ L.

We shall consider inverse systems of compact spaces with measures of the form

〈Kα, µα, π
α
β : β < α < κ〉,

where κ is an ordinal number and for all γ < β < α < κ we have

2(i) Kα is a compact space and µα ∈ P (Kα);

2(ii) παβ : Kα → Kβ is a continuous surjection;

2(iii) πβγ ◦ παβ = παγ ;

2(iv) παβ [µα] = µβ.

The following summarises basic facts on inverse systems satisfying 2(i)-(iv).

Theorem 2.2. Let K be the limit of the system with uniquely defined continuous sur-

jections πα : K → Kα for α < κ.

(a) K is a compact space and K is connected whenever all the space Kα are connected.

(b) There is the unique µ ∈ P (K) such that πα[µ] = µα for α < κ.

(c) If every µα is strictly positive then µ is strictly positive.

Engelking’s General Topology contains the topological part of 2.2 (measure-theoretic

ingredients call for a proper reference). We also use the following fact on closed Gδ sets

and inverse systems of length ω1.

Lemma 2.3. Let K be the limit of an inverse system 〈Kα, π
α
β : β < α < ω1〉. Then for

every Z ∈ Z(K), there are α < ω1 and Zα ∈ Z(Kα) with Z = π−1
α (Zα).

Proof. Sets of the form π−1
α (V ), where α < κ and V ⊆ Kα is open, give the canonical

basis of K (closed under countable unions). Therefore if Z ∈ Z(K) then Z =
⋂
n π

−1
αn

(Vn)

for some αn < ω1 and some open Vn ⊆ Kαn . Taking α > supn αn we can write Z =⋂
n π

−1
α (Wn) for some open Wn ⊆ Kα. Let Zα =

⋂
nWn. Then Zα is Gδ in Kα, π−1

α (Zα) =

Z and Zα = πα(Z) is closed. �
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3. Proof of Theorem 1.2

We first describe a basic construction which will be used repeatedly.

Lemma 3.1. Let K be a compact connected space, and let µ ∈ P (K) be a strictly positive

measure. If F ⊆ K is a closed set with µ(F ) > 0, then there are a compact connected

space K̂, a strictly positive measure µ̂ ∈ P (K̂) and a continuous surjection f : K̂ → K

such that f [µ̂] = µ and int((f−1(F )) 6= ∅.

Proof. Let F0 be the support of µ restricted to F , that is

F0 = F \
⋃
{U : U open and µ(F ∩ U) = 0}.

Let K̂ = {(x, t) ∈ K × [0, 1] : x ∈ F0 or t = 0}. Then K̂ is clearly a compact connected

space and f(x, t) = x defines a continuous surjection f : K̂ → K. Moreover, the set

f−1(F ) contains F0 × [0, 1], a set with non-empty interior. Hence int(f−1(F )) 6= ∅.
We can define µ̂ ∈ P (K̂) with the required property by setting

µ̂(B) = µ(f(B ∩ (K \ F )× {0})) + µ⊗ λ(F × [0, 1] ∩B),

for Borel sets B ⊆ K̂, where λ is the Lebesgue measure on [0, 1]. �

Lemma 3.2. Let K be a compact connected space, and let µ ∈ P (K) be a strictly

positive measure. Then there are a compact connected space K#, a strictly positive

measure µ# ∈ P (K#) and a continuous surjection g : K# → K such that g[µ#] = µ and

int((g−1(Z)) 6= ∅ for every Z ∈ Z(K) with µ(Z) > 0.

Proof. Let {Zα : α < κ} be an enumeration of all sets Z ∈ Z(K) of positive measure.

Setting K0 = K, µ0 = µ we define inductively an inverse system 〈Kα, µα, π
α
β : β < α < κ〉

satisfying 2(i)-(iv). Assume the construction for all α < ξ.

If ξ is the limit ordinal we use Theorem 2.2 and let Kξ be the limit of Kα, α < κ, and

µξ be the unique measure as in 2.3.

If ξ = α + 1 then we define Kξ and µξ ∈ P (Kξ) applying Lemma 3.1 to K = Kα,

µ = µα, F = (πα0 )−1(Zα).

Then we can define K# and µ# as the limit of 〈Kα, µα, π
α
β : β ≤ α < κ〉 and set

g = π0 : K# → K.

Indeed, if Z ∈ Z(K) and µ(Z) > 0 then Z = Zα for some α < κ so the interior of the

set

(πα+1
0 )−1(Zα) = (πα+1

α )−1((πα0 )−1(Zα),

is nonempty by the basic construction of Lemma 3.1. It follows that int(g−1(Zα)) 6= ∅,
and we are done. �

We are now ready for the proof of Theorem 1.2. Let L0 = [0, 1] and µ0 = λ. Using

Lemma 3.2 we define an inverse system 〈Lα, µα, παβ : β ≤ α < ω1〉, where Lα+1 = (Lα)#

3



and µα+1 = (µα)#. Consider the limit L of this inverse system with the limit measure

ν ∈ P (L).

We shall check that ν is a normal measure using Lemma 2.1. Take Z ∈ Z(L)

with ν(Z) > 0. It follows from Lemma 2.3 that Z = π−1
α (Zα) for some α < ω1 and

Zα ∈ Z(Lα). Then the set (πα+1
α )−1(Zα) has non-empty interior in Lα+1 = (Lα)# and,

consequently, int(Z) 6= ∅.
Note that in a compact space K of topological weight w(K) ≤ c there are at most c

many closed Gδ sets. It follows from the proof of Lemma 3.2 that w(K#) ≤ c whenever

w(K) ≤ c. Therefore w(Lα) ≤ c for every α < ω1 and w(L) = c. This finishes the proof

of our main result.

Let us remark that using Lemma 3.1 and the construction from Kunen [3] one can

prove the following variant of Theorem 1.2.

Theorem 3.3. Assuming the continuum hypothesis, there is a perfectly normal compact

connected space L supporting a normal probability measure.

Perfect normality of L means that every closed subset of L is Gδ so in particular the

space L from Theorem 3.3 is first-countable.
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