On isomorphisms and embeddings of Banach spaces of continuous functions

Grzegorz Plebanek

Insytut Matematyczny, Uniwersytet Wrocławski

C*-algebras and Banach algebras, Warsaw, July 2013

Preliminaries

K and *L* always stand for compact topological spaces. For a given *K*, C(K) is the Banach space of all continuous real-valued functions $f : K \to \mathbb{R}$, with the usual norm: $||g|| = \sup_{x \in K} |f(x)|$. A linear operator $T : C(K) \to C(L)$ is an **isomorphic embedding** if there are M, m > 0 such that for every $g \in C(K)$

 $m \cdot ||g|| \leq ||Tg|| \leq M \cdot ||g||.$

We write $C(K) \hookrightarrow C(L)$ if such an embedding extists. Isomorphic embedding $T : C(K) \to C(L)$ which is onto is called an **isomorphism**; we then write $C(K) \sim C(L)$ whenever the spaces are isomorphic (as Banach spaces).

Some classical results

Let $T : C(K) \to C(L)$ be an isomorphisms of Banach spaces. Then then $K \simeq L$ under any of the following additional assumptions

- Banach-Stone: T preserves distance, or
- Kaplansky: T preserves order, or
- **Gelfand-Kolmogoroff:** *T* preserves multiplication.

Theorem (Miljutin)

If K is an uncountable metric space then $C(K) \sim C([0,1])$.

Theorem (Bessaga-Pełczyński)

For $\alpha < \beta < \omega_1$, $C[0, \alpha] \sim C[0, \beta]$ iff $\beta < \alpha^{\omega}$.

Some extensions and problems

- Amir, Cambern: If $T : C(K) \to C(L)$ is an isomorphism with $||T|| \cdot ||T^{-1}|| < 2$ then $K \simeq L$.
- Jarosz (1984): If $T : C(K) \to C(L)$ is an embedding with $||T|| \cdot ||T^{-1}|| < 2$ then K is a continuous image of some compact subspace of L.

Problem

- Calculate the Banach-Mazur distance between C[0, 1] and C(2^ω).
- Decide for which pairs of compacta K and L, $C(K) \sim C(L)$ or $C(K) \hookrightarrow C(L)$.
- Which classes \mathcal{P} of compacta are stable under isomorphisms, i.e. $L \in \mathcal{P}$ and $C(K) \sim C(L)$ imply $K \in \mathcal{P}$?
- For which spaces K there is a totally disconnected L such that $C(K) \sim C(L)$?

Some more recent results

- Koszmider (2004): There is a compact connected space K such that every bounded operator T : C(K) → C(K) is of the form T = g · I + S, where S : C(K) → C(K) is weakly compact. cf. GP(2004).
- Koszmider: Consequently, $C(K) \not\sim C(K) \times \mathbb{R} \simeq C(K+1)$, and C(K) is not isomorphic to C(L) with L totally disconnected.
- Aviles-Koszmider (2011): There is a space K which is not Radon-Nikodym compact but is a continuous image of an RN compactum; it follows that C(K) is not isomorphic to C(L) with L totally disconnected.
- Under CH, C(βω \ω) ≡ I_∞/c₀ is isometrically universal for Banach spaces of density ≤ c; there are models of set theory in which some 'relatively small' C(K) spaces cannot be embedded into C(βω \ω), even isomorphically, see Todorcevic (2011), Koszmider & Brech (2012), Krupski & Marciszewski (2012).

Results on positive embeddings

An embedding $T : C(K) \to C(L)$ is **positive** if $C(K) \ni g \ge 0$ implies $Tg \ge 0$.

Theorem

Let $T : C(K) \to C(L)$ be a positive isomorphic embedding. Then there is $p \in \mathbb{N}$ and a finite valued mapping $\varphi : L \to [K]^{\leq p}$ which is onto $(\bigcup_{y \in L} \varphi(y) = K)$ and upper semicontinuous.

Remark: p is the integer part of $||T|| \cdot ||T^{-1}||$. Upper semicontinuity: $\{y : \varphi(y) \subseteq U\} \subseteq L$ is open for every open $U \subseteq K$.

Results on positive embeddings 2

Corollary

If C(K) can be embedded into C(L) by a positive operator then $\tau(K) \leq \tau(L)$ and if L is Frechet (or sequentially compact) then K is Frechet (sequentially compact).

Here $\tau(K)$ denotes the topological tightness. Recall that $\tau(K) \leq \omega$ means: if $x \in \overline{A}$ then $x \in \overline{A_0}$ for some countable $A_0 \subseteq A$. K is Frechet if $x \in \overline{A}$ for any $A \subseteq K$ implies that there is a sequence $a_n \in A$ coverging to x.

Main result

Theorem

Suppose that $T : C(K) \rightarrow C(L)$ is either an isomorphism or a positive embedding.

Then there is nonempty open $U \subseteq K$ such that \overline{U} is a continuous image of some compact subspace of L. In fact the family of such U forms a π -base in K.

Corollary

If $C[0,1]^{\kappa} \sim C(L)$ then L maps continuously onto $[0,1]^{\kappa}$.

Corson compacta

K is **Corson compact** if $K \hookrightarrow \Sigma(\mathbb{R}^{\kappa})$ for some κ , where

$$\Sigma(\mathbb{R}^{\kappa}) = \{ x \in \mathbb{R}^{\kappa} : |\{ \alpha : x_{\alpha} \neq \mathbf{0}\}| \leq \omega \}.$$

This is equivalent to saying that C(K) contains a family \mathcal{F} separating points of K and point-countable (i.e. $|\{f \in \mathcal{F} : f(x) \neq 0\}| \leq \omega$ for every $x \in K$).

Theorem (Amir-Lindenstrauss)

Every Eberlein compact space (weakly compact subset of a Banach space) embeds into $c_0(\kappa) \subseteq \Sigma(\mathbb{R}^{\kappa})$ for some κ and hence is Corson compact.

Corson compacta and isomorphisms

Problem

Suppose that $C(K) \sim C(L)$, where L is Corson compact. Must K be Corson compact?

- The answer is 'yes' under $MA(\omega_1)$, because the axiom implies that if $\mathcal{F} \subseteq C(K)$ is a point countable and μ is a measure on K then $\{f \in \mathcal{F} : \int f \, d\mu \neq 0\}$ is countable.
- Eberlein compact are stable under isomorphisms: if L is Eberlein and $C(K) \sim C(L)$ then K is Eberlein (since, by Amir-Lindenstrauss, L Eberlein iff C(L) is WCG).

Theorem (Marciszewski & GP)

If $C(K) \hookrightarrow C(L)$ and L is Corson compact then K is Corson compact itself provided K is either scattered, linearly ordered or Rosenthal compact.

Corson compacta and isomorphisms - a provisional solution

Corollary

If $C(K) \sim C(L)$ where L is Corson compact then K has a π – base of sets having Corson compact closures. In particular, K is itself Corson compact whenever K is homogeneous.

Some technology

If μ is a finite regular Borel measure on K then μ is a continuous functional C(K): $\mu(g) = \int g \, d\mu$ for $\mu \in C(K)$. In fact, $C(K)^*$ can be identified with the space of all signed regular measures of finite variation (i.e. is of the form $\mu_1 - \mu_2$, $\mu_1, \mu_2 \ge 0$). Let $T : C(K) \to C(L)$ be a linear operator. Given $y \in L$, let $\delta_y \in C(L)^*$ be the Dirac measure. We can define

$$L \ni y \to \nu_y \in C(K)^*,$$

by $u_y(g) = Tg(y)$ for $g \in C(K)$ $(\nu_y = T^*\delta_y)$.

Basic lemma

Lemma

Let $T : C(K) \rightarrow C(L)$ be an embedding such that for $g \in C(K)$

```
m\cdot ||g|| \leq ||Tg|| \leq ||g||.
```

Then for every $x \in K$ and m' < m there is $y \in L$ such that $\nu_y(\{x\}) > m'$ (recall that $\nu_y = T^* \delta_y$).

Corollary If $C(K) \sim C(L)$ then |K| = |L|.

Proof.

Given $x \in K$, choose $\theta(x) \in L$ such that $\nu_{\theta(x)}(\{x\}) > m/2$. Then $\theta : K \to L$ is finite-to one.