A survey on small measures on compact spaces and Boolean algebras

Grzegorz Plebanek

Insytut Matematyczny, Uniwersytet Wrocławski

Winter School i Abstract Analysis, Hejnice, January 2014

Measures on...

... compact spaces

Given a compact space K, P(K) denotes the space of all probability regular Borel measures o K. Then $P(K) \subseteq C(K)^*$ is given its weak* topology, i.e. the weakest topology making functions $P(K) \ni \mu \to \int g \, d\mu$ continuous for all $g \in C(K)$.

... Boolean algebras

For a Boolean algebra \mathfrak{A} , $P(\mathfrak{A})$ denotes the space of all finitely additive probability measures on \mathfrak{A} . $P(\mathfrak{A})$ is a closed subset of $[0,1]^{\mathfrak{A}}$; so it is a compact Hausdorff space.

- If K is totally disconnected compactum and $\mathfrak{A} = \operatorname{clopen}(K)$ then P(K) is homeomorphic to $P(\mathfrak{A})$ via $\mu \to \mu | \mathfrak{A}$.
- If A is a Boolean algebra then P(A) is homeomorphic to P(K), where K is the Stone space of A.

Small measures on compact spaces

A measure $\mu \in P(K)$

- has countable type if there is a countable family *F* ⊆ Bor(*K*) such that inf{µ(B△F) : *F* ∈ *F*} = 0, for every *B* ∈ Bor(*K*).
- is countably determined (CD) if there is a countable family
 F ⊆ closed(*K*) such that inf{µ(U \ F) : F ⊆ U, F ∈ F} = 0, for
 every open U ⊆ K.
- is strongly countably determined (SCD) if there is a countable family $\mathcal{F} \subseteq \operatorname{closed} G_{\delta}(K)$ such that $\inf\{\mu(U \setminus F) : F \subseteq U, F \in \mathcal{F}\} = 0$ for every open $U \subseteq K$.

 $\mathsf{SCD} \Rightarrow \mathsf{CD} \Rightarrow \mathsf{countable type.}$

A measure μ has countable type iff the measure algebra of μ embeds into the measure algebra of the Lebesgue measure iff $L_1(\mu)$ is a separable Banach space.

For $x \in K$ the measure δ_x is CD. δ_x is SCD iff x is a G_{δ} point.

Every *CD* measure has a separable support.

Small measures on Boolean algebras

A measure $\mu \in P(\mathfrak{A})$

- has countable type if there is a countable algebra C ⊆ A such that inf{µ(a△c) : c ∈ C} = 0 for every a ∈ A.
- is countably determined (CD) if ...
- is strongly countably determined (SCD) if there is a countable algebra 𝔅 ⊆ 𝔅 such that inf{µ(a \ c) : c ≤ a, c ∈ 𝔅} = 0 for every open a ∈ 𝔅.

The type of $\mu \in P(\mathfrak{A})$ is uncountable iff there is $\{a_{\xi} : \xi < \omega_1\} \subseteq \mathfrak{A}$ such that $\inf_{\xi \neq \eta} \mu(a_{\xi} \triangle a_{\eta}) > 0$.

Measures of uncountable type

Theorem (Fremlin '97)

Assume $MA(\omega_1)$. If \mathfrak{A} is a Boolean algebra then there is $\mu \in P(\mathfrak{A})$ of uncountable type iff \mathfrak{A} contains an uncountable independent family. If K is a compact space then there is $\mu \in P(K)$ of uncountable type iff K maps continuously onto $[0, 1]^{\omega_1}$.

Theorem (Kunen & van Mill '95; GP '95)

The following are equivalent

- every measure on a Corson compact space has countable type;
- 2 2^{ω_1} cannot be covered by ω_1 many null sets;
- every measure on a first-countable compact space has countable type.

The class $\mathcal{C}\mathcal{D}$ of spaces admitting only CD measures

The class $\mathcal{C}\mathcal{D}$

- contains scattered compacta and metric compacta;
- ② Pol '82: is stable under taking closed subspaces, continuous images, countable product and the functor K → P(K);
- Mercourakis '96: contains Radon-Nikodym compacta;
- contains Eberlein compacta (weakly compact subsets of Banach spaces;
- Sapounakis '80: contains compact lines;
- Brandsma & van Mill '98: contains monotonically normal compact spaces (this follows from (2), (5) and M.E. Rudin result, that every monotonically normal compact space is a continuous image of a compact line).
- Borodulin-Nadzieja '07: contains Stone spaces of minimally generated Boolean algebras.

Measures and Rosenthal compacta

Definition

K is Rosenthal compact if K is homeomorphic to a subset of $B_1(X)$, of Baire-1 functions on some Polish space X, equipped with the topology of pointwise convergence.

Theorem

Every measure on a Rosenthal compact space has countable type.

See Bourgain's thesis from 1974, Todorcevic '99 proof from '99 and Marciszewski & GP '12.

Problem (Roman Pol)

Is every measure on a Rosenthal compact space countably determined ?

Spaces with SCD measures

Theorem (Pol '82) Every $\mu \in P(K)$ is SCD iff P(K) is first-countable.

Theorem (GP '00)

It is relatively consistent that every measure on a first-countable compact space is SCD.

Problem (David H. Fremlin, 32 \pounds)

Is this a consequence of $MA(\omega_1)$?

Theorem (Mikołaj Krupski & GP)

Every compact space either carries a SCD measure or carries a measure of uncountable type.

Efimov spaces and measures

Definition

A Efimov space is a compact space containing no nontrivial converging sequences and no copy of $\beta\omega$

- K contains no copy of βω iff K admits no continuous surjection onto [0, 1]^c.
- Hence if K contains no converging sequence and every µ ∈ P(K) has countable type then K is Efimov.
- Dzamonja & GP '07: Under CH there is such a space K.
- Dow & Pichardo-Mendoza '09: Under CH there is a minimally generated Boolean algebra 𝔅 such that its Stone space K is Efimov. It follows from Borodulin-Nadzieja '07 that every µ ∈ P(K) is CD (in fact every nonatomic µ ∈ P(K) is SCD).

The topology of P(K)

Definition

A topological space X has countable tightness, $\tau(X) = \omega$, if for every $A \subseteq X$ and $x \in \overline{A}$ there is a countable $I \subseteq A$ such that $x \in \overline{I}$.

Problem (GP)

Assume that $\tau(P(K)) = \omega$. Does every $\mu \in P(K)$ have countable type? Suppose that P(K) is a Frechet space. Is every $\mu \in P(K)$ countably determined?

Theorem (Sobota & GP)

If $P(K \times K)$ has countable tightness then every measure on K has countable type (and so does every measure on $K \times K$).

The topology of P(K)

Corollary

- Every measure on a Rosenthal compact space has countable type (using Godefroy '80: if K is Rosenthal then so are K × K and P(K × K)).
- P(K × K) has countable tightness iff C(K × K) has property (C) of Corson (see Pol '82, Frankiewicz, GP, Ryll-Nardzewski '01).
- For every K, either P(K × K) has uncountable tightness or a G_δ point.

Problem (Roman Pol)

Does countable tightness of P(K)) imply countable tightness of $P(K \times K)$?