On isomorphisms and embeddings of C(K) spaces

Grzegorz Plebanek

Insytut Matematyczny, Uniwersytet Wrocławski

Hejnice, January 2013

Preliminaries

K and L always stand for compact spaces.

For a given K, C(K) is the Banach space of all continuous real-valued functions $f: K \to \mathbb{R}$, with the usual norm: $||g|| = \sup_{x \in K} |f(x)|$. A linear operator $T: C(K) \to C(L)$ is an **isomorphic embedding** if there are M, m > 0 such that for every $g \in C(K)$

$$m \cdot ||g|| \leq ||Tg|| \leq M \cdot ||g||$$
.

Here we can take M=||T||, $m=1/||T^{-1}||$. Isomorphic embedding $T: C(K) \to C(L)$ which is onto is called an **isomorphism**; we then write $C(K) \sim C(L)$.

Some ancient results

- Banach-Stone: If C(K) is isometric to C(L) then $K \simeq L$.
- Amir, Cambern: If $T: C(K) \to C(L)$ is an isomorphism with $||T|| \cdot ||T^{-1}|| < 2$ then $K \simeq L$.
- Jarosz (1984): If $T: C(K) \to C(L)$ is an embedding with $||T|| \cdot ||T^{-1}|| < 2$ then K is a continuous image of some compact subspace of L.
- Miljutin: If K is an uncountable metric space then $C(K) \sim C([0,1])$.

In particular $C(2^\omega) \sim C[0,1]; \ C[0,1] \times \mathbb{R} = C([0,1] \cup \{2\}) \sim C[0,1].$

Some ancient problems

Problem

For which spaces K, $C(K) \sim C(K+1)$?

Here $C(K+1) = C(K) \times \mathbb{R}$.

This is so if K contains a nontrivial converging sequence:

$$C(K) = c_0 \oplus X \sim c_0 \oplus X \oplus \mathbb{R} \sim C(K+1).$$

Note that $C(\beta\omega)\sim C(\beta\omega+1)$ (because $C(\beta\omega)=I_{\infty}$) though $\beta\omega$ has no converging sequences.

Problem

For which spaces K there is a totally disconnected L such that $C(K) \sim C(L)$?

Some more recent results

- Koszmider (2004): There is a compact connected space K such that every bounded operator $T: C(K) \to C(K)$ is of the form $T = g \cdot I + S$, where $S: C(K) \to C(K)$ is weakly compact. cf. **GP(2004)**.
 - Consequently, $C(K) \not\sim C(K+1)$, and C(K) is not isomorphic to C(L) with L totally disconnected; .
- Aviles-Koszmider (2011): There is a space K which is not Radon-Nikodym compact but is a continuous image of an RN compactum; it follows that C(K) is not isomorphic to C(L) with L totally disconnected.

Some questions

- Suppose that C(K) and C(L) are isomorphic. How K is topologically related to L?
- Suppose that C(K) can be embedded into C(L), where L has some property \mathcal{P} . Does K has property \mathcal{P} ?

Results on positive embeddings

An embedding $T: C(K) \to C(L)$ is **positive** if $C(K) \ni g \geqslant 0$ implies $Tg \geqslant 0$.

Theorem

Let $T: C(K) \to C(L)$ be a positive isomorphic embedding. Then there is $p \in \mathbb{N}$ and a finite valued mapping $\varphi: L \to [K]^{\leq p}$ which is onto $(\bigcup_{y \in L} \varphi(y) = K)$ and upper semicontinuous (i.e. $\{y: \varphi(y) \subseteq U\} \subseteq L$ is open for every open $U \subseteq K$).

Corollary

If C(K) can be embedded into C(L) by a positive operator then $\tau(K) \leq \tau(L)$ and if L is Frechet (or sequentially compact) then K is Frechet (sequentially compact).

Remark: p is the integer part of $||T|| \cdot ||T^{-1}||$.

A result on isomorphisms

Theorem

If $C(K) \sim C(L)$ then there is nonempty open $U \subseteq K$ such that \overline{U} is a continuous image of some compact subspace of L. In fact the family of such U forms a π -base in K.

Corollary

If $C[0,1]^{\kappa} \sim C(L)$ then L maps continuously onto $[0,1]^{\kappa}$.

Corson compacta

K is **Corson compact** if $K \hookrightarrow \Sigma(\mathbb{R}^{\kappa})$ for some κ , where

$$\Sigma(\mathbb{R}^{\kappa}) = \{ x \in \mathbb{R}^{\kappa} : |\{\alpha : x_{\alpha} \neq 0\}| \leqslant \omega \}.$$

This is equivalent to saying that C(K) contains a point-countable family separating points of K.

Problem

Suppose that $C(K) \sim C(L)$, where L is Corson compact. Must K be Corson compact?

The answer is 'yes' under $MA(\omega_1)$.

Theorem

If $C(K) \sim C(L)$ where L is Corson compact then K has a π – base of sets having Corson compact closures. In particular, K is itself Corson compact whenever K is homogeneous.

Basic technique

If μ is a finite regular Borel measure on K then μ is a continuous functional C(K): $\mu(g) = \int g \, \mathrm{d}\mu$ for $\mu \in C(K)$.

In fact, $C(K)^*$ can be identified with the space of all signed regular measures of finite variation (i.e. is of the form $\mu_1 - \mu_2$, $\mu_1, \mu_2 \ge 0$).

Let $T: C(K) \to C(L)$ be a linear operator. Given $y \in L$, let $\delta_y \in C(L)^*$ be the Dirac measure.

We can define $\nu_y \in C(K)^*$ by $\nu_y(g) = Tg(y)$ for $g \in C(K)(\nu_y = T^*\delta_y)$.

Lemma

Let $T: C(K) \rightarrow C(L)$ be an embedding such that for $g \in C(K)$

$$m \cdot ||g|| \leq ||Tg|| \leq ||g||$$
.

Then for every $x \in K$ and m' < m there is $y \in L$ such that $\nu_y(\{x\}) > m'$.

An application

Theorem (W. Marciszewski, GP (2000))

Suppose that C(K) embeds into C(L), where L is Corson compact. Then K is Corson compact provided

- K is linearly ordered compactum, or
- K is Rosenthal compact.

Problem

Can one embed $C(2^{\omega_1})$ into C(L), L Corson?

No, under MA+ non CH.

No, under CH (in fact whenever $2^{\omega_1} > \mathfrak{c}$).