Magic Properties of
 Solutions of the Diophantine Equation
 $$
\mathbf{A}^{4}-\mathbf{B}^{4}=\mathbf{C}^{4}-\mathbf{D}^{4}=\mathbf{E}^{4}-\mathbf{F}^{4}
$$

By Jarosław Wróblewski

Suppose we have a primitive (i.e. with no common divisor of the terms being positive integers) solution of

$$
A^{4}-B^{4}=C^{4}-D^{4}=E^{4}-F^{4}
$$

ordered in such a way, that

$$
A>B, \quad C>D, \quad E>F, \quad A>C>E .
$$

OBSERVATION 1: In each of the 3 pairs $(A, B),(C, D),(E, F)$ both numbers have the same parity. There are 2 pairs of even numbers and 1 pair of odd numbers.

OBSERVATION 2: Well, those 4 even numbers are in fact divisible by 4 .
Let

$$
\begin{array}{ll}
x_{1}=\frac{A+B}{2} & y_{1}=\frac{A-B}{2} \\
x_{2}=\frac{C+D}{2} & y_{2}=\frac{C-D}{2}
\end{array}
$$

and forget E, F for the moment.
The two straight lines on the plane passing through points

$$
P_{1}=\left(y_{1}^{2}, x_{1} y_{1}\right), \quad Q_{2}=\left(-x_{2}^{2},-x_{2} y_{2}\right)
$$

and

$$
P_{2}=\left(y_{2}^{2}, x_{2} y_{2}\right), \quad Q_{1}=\left(-x_{1}^{2},-x_{1} y_{1}\right)
$$

intersect somewhere, let us call the intersection point P_{3}.
OBSERVATION 3: Then P_{3} has integer coordinates, moreover it has a square of an integer as the first coordinate and

$$
P_{3}=\left(y_{3}^{2}, x_{3} y_{3}\right)
$$

for appropriate integers x_{3}, y_{3}.
OBSERVATION 4: Put

$$
Q_{3}=\left(-x_{3}^{2},-x_{3} y_{3}\right)
$$

Then P_{1}, P_{2}, Q_{3} lie on a straight line as well as Q_{1}, Q_{2}, Q_{3} do.
OBSERVATION 5: We have

$$
x_{1} y_{1}\left(x_{1}^{2}+y_{1}^{2}\right)=x_{2} y_{2}\left(x_{2}^{2}+y_{2}^{2}\right)=x_{3} y_{3}\left(x_{3}^{2}+y_{3}^{2}\right)
$$

and we can get back forgotten E and F by

$$
E=x_{3}+y_{3}, \quad F=\left|x_{3}-y_{3}\right| .
$$

OBSERVATION 6: The equal products above are divisible by 480 .
OBSERVATION 7: It follows easily from previous observations that among 6 numbers $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}$ there is exactly one odd number. But the odd guy is always one of the x 's and all y 's are always even.

OBSERVATION 8: Let a power of a prime p^{n} be a common divisor of some x_{j} and y_{j}. Then the same power p^{n} is also a divisor of some other x_{k} and y_{k}. In the third pair x_{ℓ}, y_{ℓ} only one number can be divisible by p. If p is not of the form $4 m+1$, the number divisible by p is y_{ℓ}.

For p of the form $4 m+1$:
if $p=5$, then any of the numbers x_{ℓ}, y_{ℓ} can be divisible by 5 ;
if $p=17$, then in 2 known solutions y_{ℓ} or the factor $x_{\ell}^{2}+y_{\ell}^{2}$ is divisible by 17 .
Let

$$
\begin{aligned}
r_{0} & =\operatorname{GCD}\left(x_{1}, x_{2}, x_{3}\right) \\
r_{1} & =\operatorname{GCD}\left(x_{1}, y_{2}, y_{3}\right) \\
r_{2} & =\operatorname{GCD}\left(y_{1}, x_{2}, y_{3}\right) \\
r_{3} & =\operatorname{GCD}\left(y_{1}, y_{2}, x_{3}\right)
\end{aligned}
$$

OBSERVATION 9: We have

$$
r_{0} \equiv 1(\bmod 4),
$$

but r_{0} may be something like $33=3 \cdot 11$.
Let

$$
\begin{array}{ll}
a_{1}=x_{1} /\left(r_{0} \cdot r_{1}\right) & b_{1}=y_{1} /\left(r_{2} \cdot r_{3}\right) \\
a_{2}=x_{2} /\left(r_{0} \cdot r_{2}\right) & b_{2}=y_{2} /\left(r_{3} \cdot r_{1}\right) \\
a_{3}=x_{3} /\left(r_{0} \cdot r_{3}\right) & b_{3}=y_{3} /\left(r_{1} \cdot r_{2}\right)
\end{array}
$$

and

$$
\begin{aligned}
& z_{23}=\operatorname{GCD}\left(a_{1}, y_{2}+x_{2} i, y_{3}+x_{3} i\right) \\
& z_{31}=\operatorname{GCD}\left(a_{2}, y_{3}+x_{3} i, y_{1}+x_{1} i\right) \\
& z_{12}=\operatorname{GCD}\left(a_{3}, y_{1}+x_{1} i, y_{2}+x_{2} i\right) \\
& z_{32}=\operatorname{GCD}\left(b_{1}, y_{2}+x_{2} i, y_{3}-x_{3} i\right) \\
& z_{13}=\operatorname{GCD}\left(b_{2}, y_{3}+x_{3} i, y_{1}-x_{1} i\right) \\
& z_{21}=\operatorname{GCD}\left(b_{3}, y_{1}+x_{1} i, y_{2}-x_{2} i\right)
\end{aligned}
$$

where GCD is taken in Gaussian integers and leaves freedom of choosing a factor of ± 1 or $\pm i$.

OBSERVATION 10: We can choose z 's in such a way that the following equalities hold

$$
\begin{gathered}
x_{1}=r_{0} r_{1} z_{23} \overline{z_{23}} \\
y_{1}=r_{2} r_{3} z_{32} \overline{z_{32}} \\
x_{2}=r_{0} r_{2} z_{31} \overline{z_{31}} \\
y_{2}=r_{3} r_{1} z_{13} \overline{z_{13}} \\
x_{3}=r_{0} r_{3} z_{12} \overline{z_{12}} \\
y_{3}=r_{1} r_{2} z_{21} \overline{z_{21}} \\
y_{1}+x_{1} i=z_{12} z_{21} z_{31} \overline{z_{13}} \\
y_{2}+x_{2} i=z_{23} z_{32} z_{12} \overline{z_{21}} \\
y_{3}+x_{3} i=z_{31} z_{13} z_{23} \overline{z_{32}}
\end{gathered}
$$

OBSERVATION 11: The product

$$
\left(x_{1}^{2}+y_{1}^{2}\right)\left(x_{2}^{2}+y_{2}^{2}\right)\left(x_{3}^{2}+y_{3}^{2}\right)
$$

is always a square and a bit more... If a prime p is dividing the product, then some 2 factors are divisible by the same power of p.

OBSERVATION 12: In some solutions $y_{1} \ll x_{1}$, i.e. $A \approx B$, and at the same time $x_{3}<y_{3}$ with $C=x_{2}+y_{2} \approx E=x_{3}+y_{3}$.

OBSERVATION 13: In the pair $\left(x_{3}, y_{3}\right)$ the greater term is y_{3} about twice more often than x_{3}.

OBSERVATION 14: Let $x_{1}, y_{1}, x_{2}, y_{2}$ be ANY numbers satisfying

$$
x_{1} y_{1}\left(x_{1}^{2}+y_{1}^{2}\right)=x_{2} y_{2}\left(x_{2}^{2}+y_{2}^{2}\right)=S .
$$

Then by substituting

$$
X_{1}=x_{1}^{2}, \quad Y_{1}=x_{1} y_{1}, \quad X_{2}=x_{2}^{2}, \quad Y_{2}=x_{2} y_{2}
$$

we get

$$
\frac{Y_{1}\left(X_{1}^{2}+Y_{1}^{2}\right)}{X_{1}}=S=\frac{Y_{2}\left(X_{2}^{2}+Y_{2}^{2}\right)}{X_{2}}
$$

Therefore the cubic equation

$$
y\left(x^{2}+y^{2}\right)=S x
$$

has 2 integer solutions, namely $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$, so it should have a 3 rd rational solution on the straight line passing through the first 2 solutions.

This is the key observation, since it leads to

$$
x_{1} y_{1}\left(x_{1}^{2}+y_{1}^{2}\right)=x_{2} y_{2}\left(x_{2}^{2}+y_{2}^{2}\right)=c^{2} x_{3} y_{3}\left(x_{3}^{2}+y_{3}^{2}\right)
$$

with rational x_{3}, y_{3} and a square free integer c. If $c=1$ we get a solution to

$$
x_{1} y_{1}\left(x_{1}^{2}+y_{1}^{2}\right)=x_{2} y_{2}\left(x_{2}^{2}+y_{2}^{2}\right)=x_{3} y_{3}\left(x_{3}^{2}+y_{3}^{2}\right) .
$$

