Theories with NIP. List 7.

We work in a monster model \mathfrak{C} of a complete theory T. Let A be a small subset of \mathfrak{C} .

- **Problem 1.** Let L be the language which consists of binary relational symbols E_i , $i < \omega$. Let T be the theory in L saying that each E_i is an equivalence relation with infinitely many infinite classes.
- (i) Let T_1 be the union of T and axioms saying that $E_0 \supseteq E_1 \supseteq \ldots$ and each E_i -class splits into infinitely many E_{i+1} -classes. Prove that T_1 is complete, has q.e., is stable but not superstable, and is strongly dependent.
- (ii) Let T_2 be the union of T and axioms saying that the relations E_0, E_1, \ldots are independent, i.e. the intersection of any classes of the relations E_0, \ldots, E_{n-1} is nonempty (for every n). Prove that T_2 is complete, has q.e., is stable but not strongly dependent.
- **Problem 2.** (i) Prove that the theory of any linear order is dp-minimal.
- (ii) Prove that each o-minimal theory is dp-minimal.

Problem 3.

- (i) Prove that $\operatorname{Autf}_L(\mathfrak{C}/A) = \{ \sigma \in \operatorname{Aut}(\mathfrak{C}) : \sigma(\bar{m}) \equiv^{L_s}_A \bar{m} \}$, where \bar{m} is an enumeration of some $M \prec \mathfrak{C}$ containing A.
- (ii) Prove that $\operatorname{Autf}_L(\mathfrak{C}/A)$ is the collection of all $\sigma \in \operatorname{Aut}(\mathfrak{C})$ which fix as sets all \equiv_A^{Ls} -classes on all (possibly infinite) products of sorts of \mathfrak{C} .
- (iii) Prove that $\operatorname{Autf}_L(\mathfrak{C}/A)$ is the pointwise stabilizer in $\operatorname{Aut}(\mathfrak{C}/A)$ of the collection of all \equiv_A^{Ls} -classes on all (possibly infinite) products of sorts of \mathfrak{C} .
- **Problem 4.** Prove that a global type p is $Lstp_A$ -invariant if and only if for every A-indiscernible sequence $(a_i)_{i\in\omega}$ and $d \models p$, the sequence $(a_i)_{i\in\omega}$ is also Ad-indiscernible.
- **Problem 5.** Check that $\operatorname{Autf}_L(\mathfrak{C}/A) \leq \operatorname{Autf}_{KP}(\mathfrak{C}/A) \leq \operatorname{Aut}(\mathfrak{C}/A)$ and that $\operatorname{Autf}_L(\mathfrak{C}/A)$ and $\operatorname{Autf}_{KP}(\mathfrak{C}/A)$ are normal subgroups of $\operatorname{Aut}(\mathfrak{C}/A)$.
- **Problem 6.** Let E(x, y) be an A-type-definable equivalence relation on some (small) product of sorts of \mathfrak{C} . Prove that $E(x, y) = \bigwedge_i E_i(x_i, y_i)$ for some A-type-definable equivalence relations E_i , where x_i and y_i are some corresponding countable subtuples of x and y, respectively.
- **Problem 7.** Let $(a_i)_{i\in I}$ be representatives of all \equiv_A^{KP} -classes on countable products of sorts. They form a small subset of \mathfrak{C} . Let E be the equivalence relation (on a given product of sorts) defined by: E(a,b) if and only if there exist $(a'_i)_{i\in I}$ such that $(a'_i)_{i\in I}a\equiv_A(a_i)_{i\in I}b$ and $a'_i\equiv_A^{KP}a_i$ for all $i\in I$. Let a,b be tuples of arbitrary (small) length. Prove that:
- (i) E is the orbit equivalence relation of $\operatorname{Autf}_{KP}(\mathfrak{C}/A)$,
- $(ii) \equiv_A^{KP} = E,$
- (iii) $a \equiv_A^{KP} b$ if and only if $a_0 \equiv_A^{KP} b_0$ for every corresponding finite subtuples a_0 and b_0 of a and b, respectively.

Problem 8.

- (i) Prove that $\operatorname{Autf}_{KP}(\mathfrak{C}/A) = \{ \sigma \in \operatorname{Aut}(\mathfrak{C}) : \sigma(\bar{m}) \equiv_A^{KP} \bar{m} \}$, where \bar{m} is an enumeration of some $M \prec \mathfrak{C}$ containing A.
- (ii) Prove that $\operatorname{Autf}_{KP}(\mathfrak{C}/A)$ is the collection of all $\sigma \in \operatorname{Aut}(\mathfrak{C})$ which fix as sets all \equiv_A^{KP} -classes on all (possibly uncountable) products of sorts of \mathfrak{C} .

Problem 9. Let p be a type over A and R(x, y) a bounded, A-invariant equivalence relation on $p(\mathfrak{C})$. Prove that:

- (i) $\equiv_A^{Ls} \upharpoonright_{p(\mathfrak{C})} \subseteq R$,
- (ii) if R is type-definable, then $\equiv_A^{KP} \upharpoonright_{p(\mathfrak{C})} \subseteq R$.

Comment. Try to follow the hint on page 40 of the notes.