STABLE GROUPS, PROBLEM 4.1

Done by Krzysztof Krupiniski, Junguk Lee and Slavko Moconja

In this note we show quantifier elimination of the following theory. Let G be an infinite abelian group
of exponent 2 (infinite vector space over Z/27), Ay C G an infinite linearly independent subset, A,
the set of all sums of distinct n elements from A, and Ay = {0}. We consider structure (G, +, A )n<w
with theory T" and we work in an Rgp-saturated model M of T'. (Actually, everything in this note holds
for any model M, we only need Rg-saturation to conclude quantifier elimination at the end.) M is an
infinite vector space over Z/2Z too, A} is infinite linearly independent subset, AM is the set of all
sums of n distinct elements from A}/. Further on, A,, denotes AM.

0.1. Fact. span(4;) =1, A

nlw N

0.2. Definition. If a € span(A4,), S(a) = {a1,...,an} where a = a1 + --- + a,, for a1,...,a, € A;.
(So, |S(a)| =niff a € A,.)

In the following claims we will manipulate with sets S(a) and their complements, so let us emphasize
that S(a)¢ denotes the complement of S(a) in A;: S(a)® = A1 \ S(a).

0.3. Claim. For a,b € span(A;1), S(a+b) = (S(a) N S(b)) U (S(a)* N S(b)).

Proof. Let S(a)NS(b) = {ec1,...,cx}, S(a) ={c1,...,ck,a1,...,am}and S(b) = {c1,..., ¢k, b1,...,bn},
where ¢;’s, a;’s and b;’s are in A;. Then S(a + b) = {a1,...,am,b1,...,by}, so the conclusion fol-
lows. O

0.4. Definition. A tuple € € 2" is odd if odd many coordinates are 1, and even otherwise.

0.5. Claim. For all aq,...,a, € span(A4;):

S(i%) = U ﬁS(ai)ei and S(i@) = U ﬁS(ai)ei.
i=1 eezn i=1 i=1 eezt i=1

Proof. Induction on n. For n = 1 the claim is obvious. Assume that the claim holds for n and take

A1y, 0y, Gntr1. By Claim 0.3 we have:

n+1 n n c
S <Z ai> = <S (Z ai> ﬂS(anH)C) U (S (Z a,;) ﬁS(an+1))

= | U N S@)nSan) | u| U () S(@)nS(ans)

ee2n i=1 ee2n i=1
odd even
n+1
e,
= U (S,
ec2ntl i=1
odd

n+1 ¢ n+1
so S <Z ai> = U ﬂ S(a;)“ as well. O
i=1

econtl =1
even
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0.6. Claim. If @ = (a1,...,a,) and b= (b1, ...,b,) in span(A4;) are such that @ =, b then for every
eec2m

M S(ar)

i=1

Proof. Induction on n. For n = 1, a; =y by implies [S(a1)| = [S(b1)] as a1 € A|g(q,)) and b1 € Ajg@,))-
Therefore, [S(a1)¢| = |S(b1)¢] holds as well. Assume that n > 1. Let k be such that:

n

() S(ai)

=1

(This is the intersection corresponding to € = (1,...,1).) Denote by 6(€) the number of 1’s in e. By
induction on n — §(€) we prove that:

n

M S(ar)

i=1

|+ (1)@,

The assertion is true for 6(€) = n by the definition of k. Consider € with J(€) < n. Take one j such
that e; = 0, and denote by & the tuple e with j-th coordinate swapped by 1, so §(¢’) = d(e) + 1. We
have:

() S(ai)| + | S(ai)| = |[] S(a:)* ®) (S| = | S|+ () S|,
=1 =1 =1 =1 =1 =1
i#j i#j

where (%) holds by the first induction hypothesis. By the second induction hypothesis we have:

n

) S(a)“

n

REOE

+ (1)@,

1=1 i=1
hence we get:
ﬂ S(a;)%| = ﬂ S(b;) | + (_1)n—1—5(é/)k — ﬂ S(b;) | + (_1)71_5(5)]{:.
=1 =1 i=1

This finishes the second induction.
By a =, bwehave Y1 | a; =45 > iy bi, in particular [S(300, a;)| =[SO bi)| (by the induction
basis). On the other hand by Claim 0.5:

5 (50) - 5 [yster| - 3 st e car-son
i=1 ec2” li=1 ee2n li=1
odd odd
=S (Z bi> + ) (-1,
i=1 ee2”
odd
so we conclude k = 0 as for odd &, (—1)"°® has the constant value. This finishes the proof. 0

0.7. Claim. T has quantifier elimination.

Proof. Tt is enough for @ =, b to find an automorphism f € Aut(M) such that f(a) = b; fix such a
and b. Let @; be a basis of span(A;) Nspan(a) and choose @y such that ajas is a basis for span(a).
Then Ajas is linearly independent as otherwise some linear combination of as belongs to span(A;)
but also to span(a), so to span(a;) which is not possible.
Since span(a) = span(ajas) we see that ajas = p(a) and a = ¢(aiaz), where ¢ and @) are coordi-
(

natewise linear combinations. Denote biby = ¢(b); since ,,z = 1(¢(Z))” belongs to tpy(a), we have
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b = (b1be). Similarly, for 6(Z,Z1,Z2) € tpgs(aaiaz) we have ,,0(Z,(Z))” belongs to tpys(a), so we
obtain 6(z,Z1,%2) € tqu(E, bi,bs), and aaas =t bb1by follows. In particular biby are linearly inde-
pendent and by € span(A;). Furthermore, span(b) = span(b1bs) as span(a) = span(ajaz) is expressible
as a quantifier-free sentence over aa;az. Moreover, span(A;) N span(b) = span(by): (D) is clear; for
(C) if some linear combination ¢(b) belongs to span(A4;), say to A,, then ,,t(Z) € A,” is in tpys(b) so
t(a) € span(Ay) hence t(a) = s(ai) for some linear combination s(a;). Formula ,,t(Z) = s(Z1)” is in
tpqyr(a@ay) so t(b) = s(by) € span(by). Therefore, A1by is linearly independent by the same reason as
above.

Let a; = (ai1,...,a1,) and by = (b11,...,b1,). By Claim 0.6 we can find f € Sym(A;) such that f
maps ( )iy S(a1;) to (i, S(b1;)¢ for every & € 2". Then f can be extended to an automorphism of
vector space span(A;). Since ay; is the sum of elements in sets (), S(a1;)¢ for € € 2" with e¢; = 1,
f(ai;) is equal to the sum of elements in sets (;_; S(b1;)® for € € 2" with e; = 1, i.e. f(a1j) = bij;
hence f(a;) = b;. Moreover, f preserves each A,. Since @y and by are independent over span(Ay),
f can be further extended to an automorphism of vector space M such that f(a@z) = by. Clearly,

f € Aut(M). Since, @ = 9(aiaz) and b = 1)(byby) we get f(a) = b. O
0.8. Corollary. For any model M (or just vector subspace M) and p € S1(M):
{rea+An,c¢da+ A, | n<w,aeM}np(z)tF plr).

Proof. Since x = a is equivalent to x € a + Ag and M is a model, every atomic formula over M is
given by x € a + A, for n <w and a € M. Conclusion follows by quantifier elimination. ([l

We aim to describe complete 1-types over a model M. Fix M and a monster € > M.
0.9. Claim. There is a unique type p € S1(M) containing = ¢ a + A, for every n < w and a € M.

Proof. First note that for n < w and a € M either (a + AM) Nspan(A) = 0 or there is m < w such
that a + AN C U,.,, AM. If a ¢ span(A}M) then clearly (a + AY) Nspan(A}) = 0. If a € span(A}7),
then a € AM for some k < w, so a+ AM C AM + AM C Ui<k+nA£‘/l.

Let us notice that {x ¢ a+ A, | n <w,a € M} is consistent. For ny,...,ny <wand ay,...,ax € M
take m < w such that either a; + A} C Ujcm A;‘/[ or (a; + Aj") Nspan(A;) = 0 for every i < k. Then
any element from AM satisfies v ¢ a; + Ay, for i < k. Therefore, {z ¢ a + A, | n < w,a € M} is
finitely consistent, hence consistent.

The type p is uniquely determined by Corollary 0.8. [l

0.10. Claim. Let g € S;1(M), g # p. Denote by n, the minimal n < w such that z € a + A,, is in ¢
for some a € M.
(1) IfgFqin€and x € a+ Ay, isin g, then g = a+c1 +. .. + ¢y, for some distinct ci, ..., ¢, €
A% ~ A{W.
(2) The element a € M such that z € a + A, is in ¢ is uniquely determined; we denote it by a,.
(3) The pair (ng,aq) determines g.
(4) For any distinct c1,...,cp, € A AM ag+ci+---+en, Eq

Proof. (1) We can write g = a + c1 + --- + ¢y, for some c1,..., ¢y, € Af. If ¢; € M, then g =
a+catFep, €0d —i—qu_l where o/ =a+c¢; € M, sox € a’ + A,,_1 is in ¢ which contradicts the
minimality of n,. Thus ¢; ¢ M. Similarly, all c1,...,c,, € M.

(2)Let z € a+Ap,,x €b+A,, beingand g = ¢in € By (1) we can write g = a+c1+---+cp, =
b+dy+ - +dp, for some distinct cy,..., ¢y, € A% ~ A{VI and distinct dy, ..., dp, € A% ~ A{VI. Then
a+b = ci+---+cp,+di+- - -+dy, belongs to M, which is possible only if {c1,...,cn, } = {d1,...,dn,},
ie.a+b=0. Thus a =b.



(3) Let € S1(M) be such that r # p and (n,,a,) = (ng,aq) =: (n,a). Let g =¢q, h =r. By (1)
we can write g = a+c; +---+ ¢, and h = a4+ dy + -+ + d, for distinct c1,...,c, € A~ AM and
distinct dq,...,d, € A% ~ A{V[ . Note that ¢;’s and d;’s, as well as their linear combinations are not
in M. Thus tpye(¢/M) = tpgr(d/M). By quantifier elimination tp(¢/M) = tp(d/M). So idps can be
extended to f € Aut(€) such that f(c¢;) = d;. Then f(g) = h and hence r = q.

(4) By (1) and (the proof of) (3). O

0.11. Corollary. T is w-stable.
Proof. By Claim 0.9 and Claim 0.10 for a countable model M, S;(M) is countable. This is enough. O

0.12. Corollary. Let ¢ € S1(M) be such that g # p and (ng, aq) = (n,0). Then = € a + A,, belongs
to ¢ iff n <mand a € AM

Proof. By Claim 0.10(1), there are distinct c1,...,c, € Af ~ A} such that ¢; +--- + ¢, |= q¢. Assume
that x € a + A,, is in ¢. By the definition of n, n < m. Now ¢; + --- 4+ ¢, € a + A%, so we can write
a=c+-+c,+dy+ -+ dy where dy,...,d,, € A% are distinct. Since this sum is in M, the
only possibility is that {c1,...,c,} C {d1,...,dm} and {d1,...,dn} ~{c1,...,cn} € AM. Therefore

a € AM_ . On the other hand, if a € AM_ then a+c; + -+ ¢, € AL, s0 ¢1 + - + ¢, satisfies
T € a+ An. O

Further on we will write q(,, ) for a type ¢ € S1(M) such that ¢ # p and (ng, aq) = (n,a).

0.13. Claim. We work in €.

(1) RM(4,41) > RM(A4,) and RM(A4,,+1) 2 n+ 1 for n < w;
(2) in fact, RM(A,) = n for n <w and RM(q(,4)) = n for n <w,a € &
(3) RM(AS) = w for n < w and RM(p) = w;
(4) RM(z =2) =w.
Proof. (1) We proceed by induction on n. For n = 0, the assertion is trivial as Ao is finite and
Ay is infinite. Let m > 1. Note that by w-stability all RM’s are ordinal. For a € A; denote by
Ay (a) the subset of A, consisting of all sums of n-distinct elements from A; which include a, and
by Bp(a) the complement A, \ Ap(a). Note that a + A,, = (a + An(a)) U (a + By(a)), a + An(a) C
Ap—1 and a + Bp(a) € Ap41; by induction hypothesis RM(a + A, (a)) < RM(A4,,-1) < RM(A4,), so
RM(a+ Bp(a)) = RM(A,,). Also for distinct a,b € Ay, (a+ Bp(a))N(b+ By (b)) C a+b+ A,_1, so by
induction hypothesis again RM((a + By (a)) N (b + By (b))) < RM(A,,). Take distinct a; € Ay, i < w
and consider:
Si = (ai + Ba(ai)) ~ | J(a;j + Bu(ay)).
7<i
S;’s are clearly mutually disjoint subsets of A, 1. Moreover, RM(S;) = RM(A,,) since it is obtained
by excluding a finite union of sets of RM < RM(A4,,) from a set of RM = RM(A,,). Therefore,
RM(Ap+1) =2 RM(A,) +1 > RM(A4,).

The second assertion now obviously holds by the induction hypothesis.

(2) We show by induction that RM(A,) = n and RM(q(y,q)) = n. For n = 0 this is clear. Let n > 0.
Note that each type in [A,] C 51(€) is of the form gq(,, ) for some m < n and a € €. By induction
hypothesis, for m < n we have RM(q(m,4)) = m < n. On the other hand, for m = n the element a
must be equal to 0 by Claim 0.10(2) (as € A, and z € a + A, are both in q(;, 4)), so in [A,] there
is at most only one type whose RM is not less than n. Hence, RM(A4,) < n.

Thus, by (1), RM(A,) = n. Since [Ay] contains a type with RM = RM(A,), by the previous
paragraph we conclude RM(q(n,O)) = n. By Claim 0.10 we may conclude g, q) = @ + q(n ), SO
RM(q(n,0)) = RM(q(n,0)) = 1.
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(3) Since AS contains A,, for m > n, we have RM(AS) > RM(A4,,) = m for m > n, hence
RM(AS) > w. As almost all types in [A5] C S1(€), except for maybe p, are of finite RM by (2), we
have RM(AY) < w. Thus RM(A{) = w. Consequently, RM(p) = w as p is the only candidate for
RM = RM(A¢) in [AS].

(4) Clear. O

0.14. Corollary. If (n;)i<. is an increasing sequence of positive integers, then lim q(,,, o) = p in S1(M).

Proof. Let v € S1(M) be an accumulation point of the sequence (g, 0))i<w- If ¢(x) € L(M) is a
formula of a finite RM, then [¢(x)] contains only finitely many members of the sequence as their ranks

n;’s increase. Thus ¢(x) ¢ r. Therefore r = p. O
0.15. Claim. Let M < €. Then p(€) generates €, where we consider p € S;(M).

Proof. Let g = p. First we claim that M C span(p(€)). Let m € M and consider tp(m + g/M). If it
is p, then m = g+ (m +g) € span(p(€)). Otherwise tp(m +g/M) = q(;, ) for some n <w and a € M,
so by Claim 0.10(1) we can write m + g = a + ¢1 + - - - + ¢, for distinct c1,..., ¢, € Af . AN hence
g=m-+a+ci+---+c, satisfies # € m+a+ Ayp; a contradiction. Further we claim A$ C span(p(€)).
Let ¢ € A% and consider tp(c + g/M). If it is p, then ¢ = g + (c + g) € span(p(€)). Otherwise
tp(c+g/M) = q(n,a) for some n < w and a € M, so as before we write c+g = a+c1 + -+ ¢y, hence
g=a+c+c+ -+ ¢, satisfies either x € a + A,,_1 (if ¢ equals one of ¢;’s) or x € a + A4 (if ¢
differs from all ¢;’s); in both cases we have a contradiction.

Finally, we prove that p(€) generates €. Let h € € and consider tp(h + g/M). If it is p, then h =
g+ (h+g) € span(p(€)). Otherwise, tp(h-+g/M) = qn,q), 50 as above we write h+g = a+c1+- - -+cn.
Then h=a+c1 + -+ ¢, + g € span(p(€)) by the previous paragraph. O

0.16. Claim. If H < G is a proper definable subgroup, then H is finite.

Proof. Suppose that H is infinite and consider [H] in S1(G); we claim that p € [H]. Since H is infinite,
there is a non-algebraic type r € [H]. If r = p we are done. Otherwise r = ¢, 4) for some n > 1 and
a € G. Then g, 4)(€) C HE. For distinct ¢, d, ca, ..., cp, € AF N A1G, by Claim 0.10 a+c+co+-- -+ ¢y
and a +d+ca+ -+ ¢y satisfy q(,,q), so they are in H?, hence their sum ¢ + d € H® too. Now, for
distinct c¢1,¢o,...,d1,do, ... € A%\A? we have ¢1 +---+cp+di +---+di € HE for all k < w. Since
tp(cr + -+ +cp +di + - + di/G) = qanp) by Claim 0.10, we conclude g1,y € [H] for all k < w.
Since [H] is closed by Corollary 0.14, p € [H].

Since p € [H], p(€¢) C HY, so H® = € by Claim 0.15. Therefore H = G; a contradiction. O

0.17. Comment. The assumption RM(G) < w in Zilber’s theorem is necessary. The set Ay U Ay,
which contains 0, is indecomposable since it is infinite, but every definable subgroup of G is either G

or finite by Claim 0.16. On the other hand, span(A4g U A;) can’t be generated in finitely many steps.



