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Abstract. We give a proof of the existence of generalized definable locally compact models
for arbitrary approximate subgroups via an application of topological dynamics in model
theory. Our construction is simpler and shorter than the original one by Hrushovski [Hru20]
and it uses only basic model theory (mostly spaces of types and realizations of types). The
main tools are Ellis groups from topological dynamics considered for suitable spaces of types.
However, we need to redevelop some basic theory of topological dynamics for suitable “locally
compact flows” in place of (compact) flows. We also prove that the generalized definable
locally compact model which we constructed is universal in an appropriate category. We note
that the main result yields structural information on definable generic subsets of definable
groups, with a more precise structural result for generics in the universal cover of SL2pRq.

1. Introduction

A subset X of a group is called an approximate subgroup if it is symmetric (i.e. e P X and
X�1 � X) and XX � FX for some finite F � xXy. Approximate subgroups were intro-
duced by Tao in [Tao08] and since then have played a central role in additive combinatorics.
However, the study of approximate subgroups in some contexts goes back much earlier to the
seminal monograph of Meyer [Mey72] from 1972. There is a long list of authors and impor-
tant papers in the subject, including many applications within and outside mathematics, e.g.
to quasicrystals. A good historical background is outlined in the introduction to the very
recent paper [Mac23]; see also the introduction in [BGT12]. Here, we will only mention a few
milestone contributions after [Tao08] which are relevant for this paper.

A symmetric compact neighborhood of the neutral element in a locally compact group is
always an approximate subgroup. Let X be an approximate subgroup and G :� xXy. By a
locally compact [resp. Lie] model of X we mean a group homomorphism f : xXy Ñ H for some
locally compact [resp. Lie] group H such that f rXs is relatively compact in H and there is a
neighborhood U of the neutral element in H with f�1rU s � Xm for some m   ω. It is easy
to show that if f : xXy Ñ H is a locally compact model of X, then X can be recovered up to
commensurability as the preimage of any compact neighborhood of the identity in H.

A breakthrough in the study of the structure of approximate subgroups was obtained by
Hrushovski in [Hru12], where a locally compact model for any pseudofinite approximate sub-
group (more generally, near-subgroup) X was obtained by using model-theoretic tools, and in
consequence also a Lie model was found for some approximate subgroup commensurable with
X and contained in X4. This paved the way for Breuillard, Green, and Tao to give a full
classification of all finite approximate subgroups in [BGT12].

By a definable (in some structure M) approximate subgroup we mean an approximate
subgroup X of some group such that X,X2, X3, . . . are all definable in M and �|Xn�Xn :
Xn �Xn Ñ X2n is definable in M for every positive n P N. If the approximate subgroup X
is definable in M , then in the definition of a locally compact model one usually additionally
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requires definability of f in the sense that for any open U � H and compact C � H such that
C � U , there exists a definable (in M) subset Y of G such that f�1rCs � Y � f�1rU s. Note
that in the abstract situation of an arbitrary approximate subgroup X, we can always equip
the ambient group with the full structure (i.e. add all subsets of all finite Cartesian powers
as predicates), and then X becomes definable and the additional requirement of definability
of locally compact models is automatically satisfied. In other words, definable approximate
subgroups generalize abstract approximate subgroups.

Massicot and Wagner [MW15] proved the existence of definable locally compact models
for all definably amenable definable approximate subgroups, and Wagner conjectured that a
locally compact model exists for an arbitrary approximate subgroup. Literally, this conjecture
is false; a counter-example can be found for example in [HKP22, Section 4]. However, in
another breakthrough paper [Hru20], Hrushovski weakened the notion of locally compact
[and Lie] model of an approximate subgroup X by replacing a homomorphism by a quasi-
homomorphism f : xXy Ñ H with a compact, normal, symmetric error set S (meaning that
fpyq�1fpxq�1fpxyq P S for all x, y P xXy) whose preimage under f is contained in an absolute
(i.e. independent of X) power of X, and he proved the existence of such generalized definable
locally compact models for arbitrary approximate subgroups (where the notion of definability is
also weakened appropriately). This is a structural result on arbitrary approximate subgroups,
as each approximate subgroup can be recovered up to commensurability as the preimage of
any compact neighborhood of the (compact, symmetric) error set via a generalized locally
compact model. This allowed Hrushovski to deduce the existence of suitable generalized Lie
models and obtain full classifications of approximate lattices in some contexts, e.g., in SLnpRq
and SLnpQpq. Very recently, Machado wrote an impressive paper [Mac23] with a complete
structure theorem for approximate lattices in linear algebraic groups over local fields and a
uniqueness result for generalized locally compact models with certain extra properties.

The proof in [Hru20] of the existence of generalized definable locally compact (and Lie)
models is based on a new theory developed by Hrushovski including definability patterns
structures and local logics, which is difficult and may be inaccessible to non model theorists.

We prove the existence of generalized definable locally compact models via topological dy-
namics methods in a model-theoretic context. The main idea is to extend the fundamental
theory of Ellis groups to the context of suitable locally compact flows, and then the desired gen-
eralized definable locally compact model is a certain (explicitly defined) quasi-homomorphism
to the canonical Hausdorff quotient of the Ellis group. Our proof is much shorter and uses
only standard model theory (e.g. externally definable sets, [external] types, realizations of
types). In fact, if one is not interested in obtaining any definability property of generalized
locally compact models, then one can just equip the group G :� xXy (generated by the given
abstract approximate subgroup X) with the full structure and then our proof uses a suitable
locally compact subflow of the Stone-Čech compactification βG of G, and so there is no need
to use externally definable sets and external types. Our construction of the generalized de-
finable locally compact model is supposed to be fully self-contained. In particular, we will
provide almost all the proofs while developing the theory of Ellis groups for suitable locally
compact flows in Section 3; only a few easy proofs that are identical to the proofs in the
classical context of compact flows are omitted with precise references to where they can be
found.

We also prove universality of our generalized definable locally compact model in a suitable
category. As a consequence, we obtain a characterization for a quasi-homomorphism to be
a generalized definable locally compact model. While the usual notion of definability of a
map from a definable set to a compact space has a characterization coming from continuous
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logic (namely, a factorization through a suitable space of types), the modified notion of de-
finablity used in generalized definable locally compact models is not so transparent and our
characterization explains its nature.

It is also interesting to consider the special case when the approximate subgroup X in
question generates a group G in finitely many steps. Then the target space of our generalized
[definable] locally compact model is compact, and it is in fact the classical [resp. externally
definable] generalized Bohr compactification of G defined by Glasner (see [Gla76] and [KP17]).
This special case can be seen as a structural result on arbitrary definable generic subsets of
definable groups. We will discuss it in Section 5.

In Section 2, we give the necessary preliminaries, including all basic definitions in model
theory. Section 3 is devoted to our construction of a generalized definable locally compact
model of an arbitrary definable approximate subgroup. In Section 4, we prove universality
of our model and discuss related things. In Section 5, we focus on the situation when the
approximate subgroup in question generates a group in finitely many steps, so in fact the
situation of a definable, symmetric, generic subset of a definable group. We explain why the
main result can be thought of as a structural result on such generic subsets and we use it
to obtain more precise structural information on generics in the universal cover of SL2pRq.
Moreover, our analysis of �SL2pRq leads to an answer to some natural question stated at the
end of Section 4, and also shows that the weakening of Newelski’s conjecture proposed in
Section 5 holds for �SL2pRq.

We finish this introduction with a brief history connecting Hrushovski’s approach from
[Hru20] and our approach via topological dynamics. Topological dynamics methods were in-
troduced to model theory by Newelski in [New09]. Since then many papers have appeared
in this subject, in particular some deep connections and applications to model-theoretic com-
ponents of groups and to strong types were obtained in [KP17; KPR18; KR20; KNS19].
Motivated by this work, Hrushovski developed in [Hru19] a parallel theory of definability pat-
terns structures. Then, in [Hru20], he redeveloped it in the context of local logics introduced
by himself in [Hru20], and used it to prove the existence of generalized definable locally com-
pact models. In this paper, we return to the topological dynamics approach, but for locally
compact flows instead of usual compact flows, and we provide a shorter and simpler proof of
Hrushovski’s theorem with further information on universality.

2. Preliminaries

In this section, we recall some basic notions from model theory and topological dynamics
to make the main construction self-contained.

2.1. Model theory. Let us fix a language (or signature) L, i.e. a collection of relation,
function, and constant symbols. Using those symbols together with quantifiers, variables,
and logical symbols, one constructs recursively the set of all L-formulas; L-sentences are L-
formulas without free variables. An L-structure is a set M together with interpretations of
all the symbols of L. For example, if L consists of just one binary function symbol, then any
group is an L-structure. Let us fix an arbitrary L-structure M .

For any L-sentence ϕ, M |ù ϕ means that ϕ is true in M . For any subset A of M we can
expand the language L to LA be adding constant symbols for the members of A, which are
then interpreted in M as the corresponding elements of A. For an LA-formula ϕpxq, ϕpMq
denotes the set of realizations of ϕpxq in M , i.e. ϕpMq :� ta P M |x| : M |ù ϕpaqu. By
an A-definable subset of M [more generally, of a Cartesian power Mn] we mean the set of
realizations in M of an LA-formula ϕpxq with one [resp. n] free variables x. By a definable
subset we mean an M -definable subset. For example, the centralizer of an element of a group
is a definable subset of this group.



4 KRZYSZTOF KRUPIŃSKI AND ANAND PILLAY

An L-structure N is an elementary superstructure of M (symbolically, M   N) if
M � N and for every L-formula ϕpx1, . . . , xnq and tuple pa1, . . . , anq P Mn we have
M |ù ϕpa1, . . . , anq ðñ N |ù ϕpa1, . . . , anq.

By a type over A �M in variables x we mean a consistent collection πpxq of LA-formulas,
where πpxq being consistent means that for any finitely many formulas ϕ1pxq, . . . , ϕnpxq P πpxq
we have M |ù pDxqpϕ1pxq ^ � � � ^ ϕnpxqq. The compactness theorem tells us that this is
equivalent to the property that πpxq has a realization a in some N ¡ M , i.e. N |ù ϕpaq for
all ϕpxq P πpxq, which will be denoted by a |ù π. A complete type over A in variables x is a
type ppxq over A such that for every LA-formula ϕpxq we have ϕpxq P p or  ϕpxq P p. This
is equivalent to saying that p � tppa{Aq :� tϕpxq an LA-formula : N |ù ϕpaqu for some tuple
a in some N ¡ M . The set of all complete types over A in variables x is denoted by SxpAq.
This is a compact, zero-dimensional topological spaces with a basis of open sets given by the
LA-formulas, i.e. any LA-formula ϕpxq yields a basic open set rϕpxqs :� tp P SpAq : ϕpxq P pu.
Identifying formulas (modulo equivalence) with the definable sets that they define, complete
types over A can be treated as ultrafilters in the Boolean algebra of A-definable subsets of
M |x|, and then the topology on SxpAq is just the Stone space topology. We will often omit x
in SxpAq. The above discussion applies also to any elementary extension of M in place of M .

For a given cardinal κ, we say that N ¡M is κ-saturated if for every B � N of cardinality
  κ, every p P SpBq has a realization in N . Using the compactness theorem, for every κ
there exists N ¡ M which is κ-saturated. In this paper, we will work with N ¡ M which is
|M |�-saturated, and since it is very convenient to work with realizations of types from SpNq,
we will be taking them in an |N |�-saturated C ¡ N .

An externally definable subset D of M is the intersection of M with a definable subset of
N (where N ¡ M is |M |�-saturated), that is D � M X ϕpNq for some formula ϕpxq with
parameters from N . This definition does not depend on the choice of N . By a complete
external type over M we mean an ultrafilter on the Boolean algebra of externally definable
subsets of M ; all these types form a Stone space SextpMq. It is very convenient to identify
SextpMq with a space of complete types in the usual sense. In order to do that, take an |M |�-
saturated N ¡ M . Then SextpMq is homeomorphic with the space SM pNq of all complete
types p P SpNq which are finitely satisfiable inM , i.e. for any ϕpxq P p, ϕpxq is realized by some
element or tuple of elements ofM ; more precisely, SM pNq Q p ÞÑ tϕpMq : ϕpxq P pu P SextpMq
is a homeomorphism.

One can also restrict the context to a given formula ϕpxq or to the set of realizations
X :� ϕpMq. By SϕpxqpNq or SXpNq we denote the space of complete types p P SpNq which
contain the formula ϕpxq1; SX,M pNq will stand for the space of complete types over N which
contain ϕpxq and are finitely satisfiable inM . Then SX,M pNq is homeomorphic with the space
SX,extpMq of ultrafilters on the Boolean algebra of externally definable subsets of X. All of
it applies also to any superset C of N (contained in C) in place of N . In particular, we have
the spaces SM pCq and SX,M pCq homeomorphic with SextpMq and SX,extpMq, respectively.

In this paper, we will need to extend this context to so-called
�
-definable sets, i.e. unions

of possibly infinitely many definable sets. More precisely, let tXiuiPI be an upward directed
family of A-definable sets for some A �M , and let G :�

�
iPI Xi. Then by SG,M pNq we mean�

iPI SXi,M pNq with the topology inherited from SM pNq. Since each SXi,M pNq is clearly an
open subset of SM pNq, we get that U � SG,M pNq is open if and only if U XSXi,M pNq is open
in SXi,M pNq for all i P I; so F � SG,M pNq is closed if and only if F X SXi,M pNq is closed in

1There is a clash of notation here, as SM pNq and SXpNq have two different meanings when X � M . This
should not cause any confusion, as the symbol SM pNq will always denote the space of complete types over N
finitely satisfiable in M , whereas the symbol SXpNq (for X :� ϕpMq) will always denote the space of complete
types over N which contain the formula ϕpxq defining X.
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SXi,M pNq for all i P I. As each SXi,M pNq is clearly a clopen subset of SG,M pNq which is a
compact (Hausdorff) space, we get

Fact 2.1. SG,M pNq is a locally compact (Hausdorff) space.

In this paper, compact and locally compact spaces are Hausdorff by definition.
Note that the space SG,M pNq is homeomorphic with the space SG,extpMq of those ultra-

filters on the Boolean algebra generated by the externally definable subsets of G which are
concentrated on some Xi.

As before, the above discussion applies also to any superset C of N in place of N . In
particular, we have the locally compact space SG,M pCq homeomorphic with SG,extpMq.

By SGpMq we mean
�
iPI SXipMq with the topology inherited from SpMq, where SXipMq

is the space of complete types over M containing a formula defining Xi. As above, this is a
locally compact space which is witnessed by the clopen compact sets SXipMq.

If it is not specified, all the parameters and elements are taken from C. Sets of parameters
are usually denoted by capital letters, while elements or tuples of elements by lower case
letters. For any a, b, A, we will write a �A b to express that tppa{Aq � tppb{Aq.

For any A � B and a we say that tppa{Bq is a coheir over A if it is finitely satisfiable in A
(i.e. any finite collection of formulas in tppa{Bq has a realization in A). The following remark
will be used many times.

Remark 2.2. If a �A b and tppc{A, a, bq is a coheir over A, then a �A,c b.

Proof. If not, then there is an LA-formula ϕpx, yq such that C |ù ϕpa, cq ^  ϕpb, cq. Since
tppc{A, a, bq is a coheir over A, there is c1 P A such that C |ù ϕpa, c1q ^  ϕpb, c1q, so a �A b, a
contradiction. �

Note that if a type πpxq (over any set of parameters) is finitely satisfiable in A, then it
extends to a global type p P SpCq finitely satisfiable in A. For that it is enough to take any
ultrafilter U on the Boolean algebra of all subsets of A such that tϕpCq X A : ϕpxq P πu � U
and to define p as tϕpxq P LC : ϕpCq XA P Uu.

Fact 2.3. For any type p P SM pNq and superset B of N there is a unique extension p̃ P SpBq
of p which is finitely satisfiable in M .

Proof. This follows from the fact that tϕpMq : ϕpxq P pu is an ultrafilter on the Boolean
algebra of externally definable subsets of M (which in turn follows from |M |�-saturation of
N). �

The model theory context in this paper will be the following: X will be an approximate
subgroup definable in a structure M (as defined in the introduction), N ¡ M an |M |�-
saturated elementary extension of M , C ¡ N a big (at least |N |�-saturated) elementary
extension of N (the so-called monster model), G :� xXy — the group generated by X, X̄ �
XpCq — the interpretation of X in C, Ḡ :� xX̄y — the group generated by X̄. Thus, we can
use the above notation SG,M pNq for the family tXiuiPI :� tXn : n P ωu.

Regarding the monster model C, besides saturation one usually also assumes strong homo-
geneity with respect to a sufficiently big cardinal. Using the compactness theorem, it is easy
to construct C ¡ N which is |N |�-saturated and strongly |N |�-homogeneous which means
that for any subset A � C of cardinality at most |N |, any elementary map f : AÑ C (that is
C |ù ϕpaq ðñ C |ù ϕpfpaqq for every formula ϕpxq P L and finite tuple a from A) extends
to an automorphism of C. Although the arguments in this paper do not require strong |N |�-
homogeneity of C, it is convenient to assume it and use (without even mentioning) the fact
that then for every A of cardinality at most |N | and finite tuples a, b we have that a �A b if
and only if b � fpaq for some f P AutpC{Aq (the pointwise stabilizer of A).
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2.2. Topological dynamics. Topological dynamics studies flows, that is pairs pG, Y q where
Y is a compact space and G is a topological group acting continuously on Y . We focus on
the case when G is discrete; then continuity of the action just means that the action is by
homeomorphisms.

In this paper, we will have to extend the context to the case when Y is a certain special
locally compact space on which G acts by homeomorphisms, namely Y :� SG,M pNq from the
end of the last subsection. We will develop all the necessary theory in this context providing all
the details (including proofs) in Section 3. So here we only briefly recall some notions and facts
in the classical context of (compact) flows. They will not be used in the main construction
(except Fact 2.5), and we give them only to show what is well-known in topological dynamics.
This classical context of (compact) flows is however sufficient when the approximate subgroup
X generates G in finitely many steps, and this is the context of Section 5.

In the rest of this subsection, pG,Xq will be an arbitrary flow (so X and G have nothing
to do with the approximate subgroup X considered above). Classical references for Ellis
semigroups and groups are [Aus88; Gla76]. A very good concise exposition with proofs can
be found in Appendix A of [Rze18].

Definition 2.4. The Ellis semigroup of the flow pG,Xq, denoted by EpXq, is the closure of
the collection of functions tπg : g P Gu (where πg : X Ñ X is given by πgpxq :� gx) in the
space XX equipped with the product topology, with composition as the semigroup operation.

EpXq is a compact left topological semigroup (i.e. the semigroup operation is continuous
in the left coordinate). The following fundamental fact was proved by Ellis (e.g. see Corollary
2.10 and Propositions 3.5 and 3.6 of [Ell69], or Fact A.8 of [Rze18]).

Fact 2.5. Let S be a semigroup equipped with a quasi-compact T1 topology such that for any
s0 P S the map s ÞÑ ss0 is a continuous and closed mapping (the latter follows immediately
from continuity and compactness if S is Hausdorff). Then there is a minimal left ideal M in
S (i.e. a minimal set such that SM � M), and every such M satisfies the following.

i) For any p P M, Sp � Mp � M is closed.
ii) M is the disjoint union of the sets uM with u ranging over JpMq :� tu P M : u2 � uu.
iii) For each u P JpMq, uM is a group with identity element u, where the group operation

is the restriction of the semigroup operation on S.
iv) All the groups uM (for u P JpMq) are isomorphic, even when we vary the minimal

left ideal M.

Applying this to S :� EpXq, the isomorphism type of the groups uM (or just any of these
groups) from the above fact is called the Ellis group of the flow X.2

Definition 2.6. For B � EpXq and a P EpXq, a�B is defined as the set of all points c P EpXq
for which there exist nets pbiqi in B and pgiqi in G such that lim gi � a and lim gibi � c.

Basic properties of � are contained in Facts A.25-A.29 of [Rze18]. In particular, a � B is
closed.

Now, choose any minimal left ideal M of EpXq and an idempotent u P M.

Definition 2.7. For A � uM, define clτ pAq :� pu �Aq X uM.

For the proofs of the facts listed below see Facts A.30-A.40 in [Rze18].

Fact 2.8. clτ is a closure operator on uM. The topology given by clτ is called the τ -topology.

2This terminology is used by model theorists. In topological dynamics, the Ellis group of a pointed minimal
G-flow pX,x0q is the subgroup of those elements η in the Ellis group (in our sense) of the universal G-ambit
βG for which ηx0 � x0, but we will not use this definition in the paper.
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Fact 2.9. uM with the τ -topology is a compact T1 semitopological group (i.e. multiplication
is separately continuous) which does not depend (up to topological isomorphism) on the choice
of M and u P JpMq.

Fact 2.10. HpuMq :�
�
V clτ pV q, where V ranges over the τ -neighborhoods of u in uM, is

a τ -closed normal subgroup of uM, and uM{HpuMq is a compact Hausdorff group. In fact,
uM{HpuMq is the universal (or greatest) Hausdorff quotient of uM.

An ambit is a flow pG,X, x0q with a distinguished point x0 P X with dense orbit. An
important classical G-flow is the universal G-ambit βG, i.e. the space of ultrafilters on the
Boolean algebra of all subsets ofG with the action ofG by left translation and the distinguished
ultrafilter being the principal ultrafilter of the neutral element. Then the Ellis semigroup
EpβGq is naturally isomorphic to pβG, �q, where � is given by U P p � q ðñ tg P G : g�1U P
qu P p. Model theory provides a transparent and very useful formula for �. Namely, treat G
as a group definable in M :� G equipped with the full structure (i.e. with predicates for all
subsets of G). Then βG � SG,extpMq is naturally identified with the space of types SGpMq
and it turns out that p � q � tppab{Mq, where b |ù q, a |ù p, and tppa{M, bq is the unique
extension of p which is a coheir over M . More generally, if we have a group G definable
in a structure M , then SG,extpMq is a G-ambit with the action of G by left translation and
the distinguished element being the ultrafilter of the neutral element. Identifying SG,extpMq
with SG,M pNq (where N ¡ M is |M |�-saturated), it turns out that the Ellis semigroup
EpSG,M pNqq is isomorphic to pSG,M pNq, �q with � given by p � q :� tppab{Nq, where b |ù q,
a |ù p, and tppa{N, bq is the unique extension of p which is a coheir over M (an isomorphism
pSG,M pNq, �q Ñ EpSG,M pNqq is given by p ÞÑ lp, where lppqq :� p � q).

3. Generalized definable locally compact model

This section is devoted to a new self-contained construction of a generalized definable locally
compact model of an arbitrary definable approximate subgroup. Let us start from the context
and precise definition of generalized definable locally compact models.

For a map f : G Ñ H from a group (or even semigroup) G to a group H, errorrpfq :�
tfpyq�1fpxq�1fpxyq : x, y P Gu and errorlpfq :� tfpxyqfpyq�1fpxq�1 : x, y P Gu. For C � H,
we write f : GÑ H : C if errorrpfqYerrorlpfq � C and we say that f is a quasi-homomorphism
with an error set C. Note that if C is normal in H (which will be the case in our context),
then errorrpfq � C if and only if errorlpfq � C. Also, if f : G Ñ H : C, then fpeGq P C�1

and fpx�1q P fpxq�1C�2. Sometimes one assumes that fpeGq � eH , and this will be satisfied
in our construction.

From now on, take the situation and notation described at the end of Subsection 2.1.

Definition 3.1. A generalized definable locally compact model of X is a quasi-homomorphism
f : GÑ H : C for some symmetric, normal, compact subset C of a locally compact group H
such that:

(1) for every compact V � H there is i P N with f�1rV s � Xi;
(2) for every i P N, f rXis is relatively compact in H;
(3) there is l P N such that for any compact Z, Y � H with C lY XC lZ � H the preimages

f�1rY s and f�1rZs can be separated by a definable set.
If we drop item (3), we get the notion of generalized locally compact model.

Remark 3.2. In item (2) of the above definition, it is equivalent to require that f rXs is
relatively compact.

Proof. We have f rX2s � f rXs2C, so, by compactness of clpf rXsq and C, we get clpf rX2sq �
clpf rXsq2C. More generally, by induction, clpf rXisq � clpf rXsqiCi�1 for all i ¥ 1, and since
the last set is compact, so is clpf rXisq. �
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Remark 3.3. If f : G Ñ H : C is a generalized definable locally compact model of X, then
there is l P N such that for any compact Z, Y � H with C lY X C lZ � H there are didjoint
definable subsets D1 and D2 of some Xn with f�1rY s � D1 and f�1rZs � D2.

Proof. It follows from items (1) and (3) of the definition. �

Fact 3.4. Let f : GÑ H : C be a generalized locally compact model of X.
(1) For every neighborhood U of eH , f�1rUCs is generic in the sense that finitely many

left translates of f�1rUCs cover X.
(2) For every relatively compact neighborhood U of eH , Y :� f�1rUCs is commensurable

with X and Y Y �1 is an approximate subgroup commensurable with X.

Proof. (1) Take an open neighborhood W of eH such at W�1W � U . By compactness of
clpf rXsq, we have that clpf rXsq is covered by finitely many translates a1W , . . . , anW .

For every i ¤ n with f�1raiW s � H choose gi P f�1raiW s. We will show that X is covered
by the finitely many translates gif�1rUCs for i ¤ n such that f�1raiW s � H.

Consider any g P X; then g P f�1raiW s for some i ¤ n, i.e. fpgq P aiW . Write g as
gih. Then fpgq � fpgiqfphqfphq

�1fpgiq
�1fpgihq P aiWfphqC. Hence, the last set has a

nonempty intersection with aiW . So fphq PW�1WC � UC. Therefore, h P f�1rUCs, and so
g P gif

�1rUCs.
(2) The fact that finitely many left translates of f�1rUCs cover X follows from (1). The

fact that finitely many left translates of X cover f�1rUCs follows from item (1) of Definition
3.1 and the assumption that X is an approximate subgroup (which clearly implies that Xi is
covered by finitely many left translates of X for every every i P N). The very final part about
Y Y �1 easily follows, as Y � Y Y �1 � Xi for some i. �

Thus, as mentioned in the introduction, a generalized locally compact model of X allows
us to recover X up to commensurability as the preimage of any compact neighborhood of C.

3.1. Topological dynamics of SG,M pNqSG,M pNqSG,M pNq. Recall that for N � C � C by SM pCq we denote
the space of complete types over C which are finitely satisfiable in M , and by SG,M pCq the
subspace of SM pCq consisting of all types concentrated on some Xn. For a formula ϕpxq in
LC (with N � C � C) such that ϕpCq � X̄n for some n P N, we have that rϕpxqs :� tp P
SM pCq : ϕpxq P pu � SXn,M pCq is a basic open set in SG,M pCq. For any g P Ḡ, by ϕpg�1xq
[resp. ϕpxg�1q] we mean an LC,g-formula defining the set gϕpCq [resp. ϕpCqg]. (Note that by
the definability of the approximate subgroup X, it is clear that the sets gϕpCq and ϕpCqg are
indeed definable over C, g.)

The goal of this subsection is to extend the classical theory briefly mentioned in Subsection
2.2 to the action of G on the locally compact space SG,M pNq by left translation, that is
g tppa{Nq :� tppga{Nq. First of all, this action is by homeomorphisms, because a basis of
open sets in SG,M pNq consists of the sets of the form rϕpxqs for formulas ϕpxq in LN with
ϕpCq � X̄n for some n, and grϕpxqs � rϕpg�1xqs is still a basic open set for any g P G.

Define a binary operation � on SG,M pNq by
p � q :� tppab{Nq, where b |ù q, a |ù p, and tppa{N, bq is a coheir over M.

Lemma 3.5. pSG,M pNq, �q is a left topological semigroup, that is, � is well-defined, associa-
tive, and left continuous.

Proof. Take pairs pa, bq and pa1, b1q both as in the definition of �. Thus, b1 �N b, so, by
|N |�-saturation of C, we can find a2 such that pa2, bq �N pa1, b1q. Then tppa2{N, bq is an
extension of p which is a coheir over M . Therefore, tppa2{N, bq � tppa{N, bq by Fact 2.3.
Hence, tppab{Nq � tppa2b{Nq � tppa1b1{Nq. We have proved that � is well-defined.

To check that � is associative, consider any p, q, r P SG,M pNq and pick a |ù p, b |ù q, and
c |ù r such that both tppb{N, cq and tppa{N, b, cq are coheirs over M . Then tppa{N, bcq is a



GENERALIZED LOCALLY COMPACT MODELS FOR APPROXIMATE GROUPS 9

coheir over M , so abc |ù p � pq � rq. On the other hand, tppa{N, bq and tppab{N, cq are both
coheirs over M , so abc |ù pp � qq � r. Thus, p � pq � rq � pp � qq � r.

It remains to show left continuity of �. Fix q P SG,M pNq and pick b |ù q. Then b P X̄m

for some m. Consider any basic open set U � rϕpxqs � SXn,M pNq for some n. The goal is
to show that V :� tp P SG,M pNq : p � q P Uu is open. It is clear that V � SXn�m,M pNq. By
Fact 2.3, the restriction map r : SXn�m,M pN, bq Ñ SXn�m,M pNq is a homeomorphism. So it is
enough to show that r�1rV s is open.

For any a such that tppa{N, bq is a coheir over M we have

tppa{N, bq P r�1rV s ðñ tppab{Nq P U ðñ C |ù ϕpabq.

Therefore, r�1rV s � rϕpxbqs is a basic open set in SXn�m,M pN, bq. �

Note that G naturally embeds into SG,M pNq via g ÞÑ tppg{Nq, which we will be using
without mentioning.

Remark 3.6. For every n the set Xn is dense in SXn,M pNq, and G is dense in SG,M pNq.

Proof. The second part follows from the first. The first part is clear, as for any nonempty
basic open set rϕpxqs in SXn,M pNq there is a P ϕpMq � Xn. �

For p P SG,M pNq let lp : SG,M pNq Ñ SG,M pNq be defined by lppqq :� p � q. Since the next
fact will not be used in the rest of the construction, we leave a proof as an exercise.

Proposition 3.7. The assignment p ÞÑ lp yields an isomorphism between SG,M pNq and the
Ellis semigroup EpSG,M pNqq defined in the same way as for (compact) flows in Subsection
2.2.

The following property of the semigroup operation �, which follows immediately from the
definition of � and the assumption that X is symmetric, will play an essential role in the rest
of the construction.

Remark 3.8. Whenever q P SXn,M pNq, r P SXm,M pNq, and p � q � r, then p P SXn�m,M pNq.

Lemma 3.9. There exists a left ideal M of SG,M pNq for which the set M X SX,M pNq is
minimal (nonempty).

Proof. By compactness of SX,M pNq and Zorn’s lemma, it is enough to show that for every
s P SX,M pNq the set pSG,M pNq � sq X SX,M pNq is closed. By Remark 3.8, pSG,M pNq � sq X
SX,M pNq � pSX2,M pNq � sq X SX,M pNq.

Since rs : SX2,M pNq Ñ SX3,M pNq given by p ÞÑ p � s is a continuous map between compact
Hausdorff spaces, we get that SX2,M pNq � s � rsrSX2,M pNqs is closed, and so is pSX2,M pNq �
sq X SX,M pNq. �

Proposition 3.10. There exists a minimal left ideal in SG,M pNq.

Proof. We can clearly find a left ideal M as in the conclusion of Lemma 3.9 which is of
the form SG,M pNq � s0 for some s0 P SX,M pNq. We will show that it is minimal. For
that take any s P M. It is enough to show that pSG,M pNq � sq X SX,M pNq � H (as then
s0 P pSG,M pNq � sq X SX,M pNq by the choice of M).

We have that s P SXn,M pNq for some n; then s � tppb{Nq for some b P X̄n.

Claim 1. X̄ � b�1 XG � H.

Proof. Since X is an approximate subgroup, Xn � Xg1 Y � � � YXgn for some g1, . . . , gk P G.
Hence, X̄n � X̄g1 Y � � � Y X̄gn, i.e. X̄n � X̄G. Since X is symmetric, we get that pX̄nq�1 �
X̄�1G, so b�1 P X̄�1G, that is X̄b�1 XG � H. �(claim)
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By this claim, X̄ � b�1 X G extends to an ultrafilter on the Boolean algebra generated by
externally definable subsets of G which is concentrated on Xn�1. This ultrafilter corresponds
to a unique tppa{N, bq finitely satisfiable in M . Then tppa{Nq � tppb{Nq � tppab{Nq P
SX,M pNq, so pSG,M pNq � sq X SX,M pNq � H. �

Lemma 3.11. Any minimal left ideal of SG,M pNq is closed and intersects SX,M pNq.

Proof. Let M be a minimal left ideal of SG,M pNq. The proof of Proposition 3.10 shows that
any left ideal (in particular M) of SG,M pNq intersects SX,M pNq. To show closedness of M,
first note that M � SG,M pNq � s for some s P SG,M pNq. Of course, s P SXn,M pNq for some n.
By Remark 3.8, for everym P N, pSG,M pNq�sqXSXm,M pNq � pSXn�m,M pNq�sqXSXm,M pNq,
and the last set is closed by compactness of SXn�m,M pNq and left continuity of �. �

From now on, we will often skip writing �.

Lemma 3.12. Let M be an arbitrary minimal left ideal of SG,M pNq. Then JpMq :� tu P
M : u2 � uu is nonempty and M is the union of all uM with u ranging over JpMq.

Proof. Consider any p P M. Then p P SXn,M pNq for some n. By minimality of M, the set
P :� tq P M : qp � pu is nonempty. Thus, by left continuity of � and Remark 3.8, P is a
nonempty closed subsemigroup of M contained in SX2n,M pMq, so it is compact. By Zorn’s
lemma, there exists a minimal closed subsemigroup K of P .

Consider any u P K. We will show that u2 � u. Then, since u P P , we get p � up �
upupq P uM, so we will be done.

Let Q :� tq P K : qu � uu. By compactness of K and left continuity of �, Ku is a nonempty
closed subsemigroup of K, so Ku � K as K is minimal. Hence, Q � H. Since Q is a closed
subsemigroup of K, we get that Q � K, in particular u P Q. �

The proofs of the next two lemmas are identical to the proofs in the classical context, and
the proof of the third lemma below is an easy elaboration on the proof in the classical context.
We will only prove the first one, as the other two are not needed in our construction. For the
proofs in the classical context see [Rze18, Fact A.8].

Lemma 3.13. For any minimal left ideal M of SG,M pNq and u P JpMq, the set uM is a
group (with � as group operation).

Proof. uM is clearly closed under �, u P uM is a neutral element in uM, and � is associative.
Now, consider any p P uM. By minimality of M, there is q P M with qp � u. Then
puqqp � u2 � u. Thus, uM is a semigroup with left identity and left inverses, and so it is a
group. �

Lemma 3.14. For every minimal left ideal M of SG,M pNq and any distinct u, v P JpMq,
uMX vM � H.

Lemma 3.15. For any minimal left ideals M,N of SG,M pNq and u P JpMq, v P JpN q the
groups uM and vN are isomorphic.

Therefore, the isomorphism type of all these groups uM (or just any of these groups sepa-
rately) can be called the Ellis group of SG,M pNq.

Now, the goal is to equip the Ellis group with a topology, which will be called the τ -topology.
We will do it in the same way as in the classical context. Below, for P � SG,M pNq the closure
of Q will be denoted by Q, while for a subset Q of the Ellis group the closure with respect to
the τ -topology will be denoted by clτ pQq.

Definition 3.16. For any p P SG,M pNq and Q � SG,M pNq we define p � Q as the set of all
r P SG,M pNq for which there are nets pgiqiPI in G and pqiqiPI in Q such that limi gi � u and
limi giqi � r.
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All the easy observations A.25 – A.35 from [Rze18] work with exactly the same proofs for
SG,M pNq in place of the Ellis semigroup of a compact flow. In particular, we have

Lemma 3.17. Given a minimal left ideal MESG,M pNq and idempotent u P M, the operator
clτ on subsets of uM given by clτ pQq :� puMq X pu �Qq � upu �Qq is a closure operator on
uM.

Now, fix a minimal left ideal M of SG,M pNq and u P JpMq.

Definition 3.18. By the τ -topology we mean the topology on the Ellis group uM given by
the closure operator clτ from Lemma 3.17.

Fact A.33 of [Rze18] tells us that the τ -topology on uM is coarser than the subspace
topology inherited from SG,M pNq. The next lemma (see Fact A.35 of [Rze18]) yields an
important connection between limits in both these topologies.

Lemma 3.19. If paiqi is a net in uM converging to a P uM, then paiqi converges to ua in
the τ -topology.

Definition 3.20. Let us say that a topological space P is quasi locally compact if every point
p P P has a neighborhood U whose closure is quasi-compact.

Proposition 3.21. The Ellis group uM is a quasi locally compact T1 space.

Proof. The fact that it is T1 is easy: clτ ptpuq � upu � tpuq � tupupqu � tpu. Quasi locally
compactness requires more work.

Consider any q P uM. Then q P SXn,M pNq for some n. Also, u P SXm,M pNq for some m.
Let

P :� SXn�m,M pNq
c X uM,

where SXn�m,M pNq
c denotes the complement of SXn�m,M pNq in SG,M pNq.

Claim 1. SXn,M pNq X clτ pP q � H.

Proof. Take any p P clτ pP q. Then p � limi gipi for some nets pgiqi in G and ppiqi in P with
limi gi � u. So for sufficiently large i we have that gi P Xm and pi R SXn�m,M pNq. Hence, p �
tppab{Nq for some a P X̄m and b R X̄n�m. Therefore, p R SXn,M pNq, as required. �(claim)

Let
V :� uMz clτ pP q.

By Claim 1 and the above choices, q P SXn,M pNq X uM � V � SXn�m,M pNq. In particular,
V is a τ -open neighborhood of q.

Claim 2. clτ pV q � SX2m�n,M pNq

Proof. Consider any p P clτ pV q. Then p � limi gipi for some nets pgiqi in G and ppiqi in V with
limi gi � u. So p � tppab{Nq for some a P X̄m and b P X̄n�m. So p P SX2m�n,M pNq. �(claim)

It remains to show that clτ pV q is quasi-compact in the τ -topology. For that we need to show
that any net ppiqiPI in clτ pV q has a convergent subnet. By compactness of SX2m�n,M pNq, the
net ppiqiPI has a subnet pqjqjPJ convergent to some r P SX2m�n,M pNq in the usual topology on
SX2m�n,M pNq. By Lemma 3.19, τ - limj qj � ur, so, by τ -closedness of clτ pV q, ur P clτ pV q. �

Proposition 3.22. uM equipped with the τ -topology is a semitopological group, i.e. group
operation is separately continuous.

Proof. The argument from Fact A.36 of [Rze18] works without any changes. �
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The proof of Fact A.37 of [Rze18] applies to our context, so we get that all Ellis groups
of SG,M pNq (for varying minimal left ideals M and idempotents u P JpMq) are in fact
topologically isomorphic. So the Ellis group of SG,M pNq is a well-defined semitopological
group associated with SG,M pNq.

Definition 3.23. Define HpuMq as
�

clτ pV q with V ranging over all τ -neighborhoods of u.

Proposition 3.24. HpuMq is a τ -closed normal subgroup of uM, and uM{HpuMq is a
locally compact (so Hausdorff) topological group.

Proof. This is an elaboration on the proof of Fact A.40 (so, in fact, Fact A.12) of [Rze18].
Exactly as in the proof of [Rze18, Fact A.12], we get that HpuMq is a τ -closed normal

subsemigroup containing u. Hence, for every h P HpuMq both hHpuMq and HpuMqh are
subsemigroups of HpuMq.

Claim 1. For every h P HpuMq, both hHpuMq and HpuMqh contain an idempotent.

Proof. Fix h P HpuMq and consider hHpuMq (the case of HpuMqh is analogous). By
the proof of Proposition 3.21, there is a τ -neighborhood V of u in uM such that clτ pV q �
SXk,M pNq for some k. By the last paragraph of the proof of Proposition 3.21, clτ pV q is quasi-
compact. Hence, HpuMq is τ -closed, quasi-compact, and T1. Therefore, by Proposition 3.22
(which implies that multiplication on the left or on the right by a fixed element is a home-
omorphism), hHpuMq is a τ -closed, quasi-compact, T1, and the map hHpuMq Ñ hHpuMq
given by s ÞÑ ss0 is continuous and closed for every s0 P hHpuMq. Hence, hHpuMq contains
an idempotent by Fact 2.5. �(claim)

Since the only idempotent in the group uM is u, we conclude from the above claim that
HpuMq is a subgroup of uM. By Proposition 3.21, uM is quasi locally compact, and so it
weakly quasi locally compact in the sense that every p P uM has a quasi-compact neighborhood.
This property is easily seen to be preserved under taking group quotients of semitopological
groups, so uM{HpuMq is weakly quasi locally compact.

The last paragraph of the proof of [Rze18, Fact A.12] applies to our context, so uM{HpuMq
is Hausdorff.

By the last two paragraphs, uM{HpuMq is locally compact. On the other hand, since uM
is a semitopological group, so is uM{HpuMq. Therefore, by Ellis joint continuity theorem
[Ell57, Theorem 2], we get that uM{HpuMq is jointly continuous and inversion is continuous.
Thus, uM{HpuMq is a locally compact topological group. �

3.2. The main theorem. Recall that we are in the situation and notation described at the
end of Subsection 2.1. Let M be a minimal left ideal of SG,M pNq and u an idempotent in
M. Let F : G Ñ uM be given by F pgq :� ugu and F̂ : SG,M pNq Ñ uM be the extension
of F given by F̂ ppq :� upu. Let f : G Ñ uM{HpuMq be given by fpgq :� ugu{HpuMq

and f̂ : SG,M pNq Ñ uM{HpuMq be the extension of f given by f̂ppq :� upu{HpuMq. In
particular, f � πF where π : uM Ñ uM{HpuMq is the quotient map.

The following sets will play a key role.

Fn :� tx1y
�1
1 . . . xny

�1
n : xi, yi P Ḡ and xi �M yi for all i ¤ nu

F̃n :� ttppa{Nq P SG,M pNq : a P Fnu

F̃ :� ppF̃7 X uMq{HpuMqquM{HpuMq

C :� clτ pF̃ q Y clτ pF̃ q�1

Here is the main result, i.e. our version of Hrushovski’s [Hru20, Theorem 4.2].



GENERALIZED LOCALLY COMPACT MODELS FOR APPROXIMATE GROUPS 13

Theorem 3.25. The above function f is a generalized definable locally compact model of X
with the compact, normal, symmetric error set C defined above, which is witnessed by l � 2
(see Definition 3.1). Moreover, f�1rCs � X30 and there is a compact neighborhood U of the
neutral element in uM{HpuMq such that f�1rU s � X14 and f�1rUCs � X34.

The proof of Theorem 3.25 starts after the proof of Lemma 3.33 below.

Lemma 3.26. F1 � txy�1 : x, y P X̄ with x �M yu. In particular, Fn � X̄2n is M -type-
definable (that is, the set of realizations of a type over M), and so F̃n � SX2n,M pNq is closed.

Proof. Only (�) requires a proof. Take any a, b P Ḡ with a �M b. Then a P X̄n for some n.
Since Xn � XS for some finite S � G, we have that X̄n � X̄S. So ac P X̄ for some c P S�1.
As a �M b and c P M , also bc P X̄ and ac �M bc. So ab�1 � pacqpbcq�1 P txy�1 : x, y P
X̄ with x �M yu. The rest easily follows. �

Lemma 3.27. (1) u P F̃1 � SX2,M pNq.
(2) If p P F̃n X uM, then p�1 P F̃n�1 X uM.
(3) F̂�1rSXn,M pNq X uMs � SXn�4,M pNq.
(4) F�1rSXn,M pNq X uMs � Xn�4.

Proof. (1) u2 � u implies that there are a and b realizing u such that ab |ù u. So ab �M b,
hence a � pabqb�1 P F1. Therefore, u P F̃1 which is contained in SX2,M pNq by Lemma 3.26.

(2) Since pp�1 � u, there are a |ù p and b |ù q such that ab |ù u. By assumption, b P Fn,
and, by (1), ab P F1. Therefore, a P Fn�1.

(3) Take any p P F̂�1rSXn,M pNqs, i.e. upu P SXn,M pNq. Then abc � d P X̄n for some a |ù u,
b |ù p, and c |ù u. So b � a�1dc�1 P X̄2X̄nX̄2 � X̄n�4 by (1). Hence, p P SXn�4,M pNq.

(4) Take any g P F�1rSXn,M pNqs. By (3), tppg{Nq P SXn�4,M pNq, so g P X̄n�4. As g P G,
we get g P Xn�4. �

Lemma 3.28. There exists a τ -open neighborhood V of u in uM such that V � SX4,M pNq.

Proof. By Lemma 3.27(1), u P F̃1 � SX2,M pNq. So the proof of Proposition 3.21 (in which
we can take q :� u and n � m � 2) yields a τ -open neighborhood V of u which is contained
in SX4,M pNq. �

Lemma 3.29. (1) pF̃7 X uMquM � F̃8 X uM � SX16,M pNq X uM.
(2) clτ ppF̃7 X uMquMq � F̃9 X uM � SX18,M pNq X uM is quasi-compact.
(3) clτ pF̃ q � πrclτ ppF7 X uMquMqs � pF̃9 X uMq{HpuMq is compact.
(4) C is compact, normal, symmetric, and contained in pF̃10 X uMq{HpuMq.

Proof. (1) Take p P F̃7 X uM and q P uM. The goal is to show that qpq�1 P F̃8 (the last
inclusion follows from Lemma 3.26).

By the definition of �, we can find α |ù q, β |ù q�1, and a1, b1, . . . , a7, b7 with ai �M bi for
all i ¤ 7 and tppα{N, a¤7, b¤7, βq a coheir over M such that αp

±
i¤7 aib

�1
i qβ |ù qpq�1. We

have αp
±
i¤7 aib

�1
i qβ � p

±
i¤7 a

α
i pb

α
i q

�1qαβ. Now, by Lemma 3.27(1), αβ |ù qq�1 � u P F̃1,
so αβ P F1. On the other hand, since tppα{M,ai, biq is a coheir over M and ai �M bi, by
Remark 2.2, we get that aαi �M bαi . Therefore, p

±
i¤7 a

α
i pb

α
i q

�1qαβ P F8, so qpq�1 P F̃8.
(2) By Lemma 3.26, the sets F1 and F8 are M -type-definable. By Lemma 3.27(1), u P F̃1,

and, by (1), pF̃7 X uMquM � F̃8. Thus, using the definition of clτ as in the proof of Claim 2
in the proof of Proposition 3.21, we get that clτ ppF̃7 X uMquMq � F̃9 which is contained in
SX18,M pNq by Lemma 3.26. Then quasi-compactness follows from the argument in the last
paragraph of the proof of Proposition 3.21.

(3) follows from (2) and Hausdorffness of uM{HpuMq.
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(4) Compactness follows from (3) and the fact that uM{HpuMq is a topological group.
Normality is immediate, also using that uM{HpuMq is a topological group. The inclusion
C � pF̃10 X uMq{HpuMq follows from (3) and Lemma 3.27(2). �

Lemma 3.30. HpuMq � F̃3 X uM � SX6,M pNq X uM.

Proof. The second inclusion is by Lemma 3.26. The first one is essentially contained in the
proof of Theorem 0.1(2) of [KP17], but we repeat it here for the reader’s convenience.

By Lemma 3.27(1), u P F̃1. By Lemma 3.26, F2 is M -type-definable. So let ρ be the partial
type over M defining F2 and closed under conjunction. Consider any ϕpxq P ρ. Let

V :� r ϕpxqs X uM,

where r ϕpxqs is the clopen subset of SG,M pNq consisting of all types containing  ϕpxq.

Claim 1. (1) u R clτ pV q.
(2) clτ puMz clτ pV qq � clτ puMzV q � rFϕ3 , where rFϕ3 :� ttppab{Nq P SG,M pNq : a P

F1 and b |ù ϕpxqu.

Proof. (1) Suppose for a contradiction that u P clτ pV q. Using the definition of clτ , we get that
there are a |ù u and b |ù  ϕpxq such that ab |ù u. Then a P F1 and ab P F1, so b P F2, and
hence b |ù ϕpxq, a contradiction.

(2) We need to check that clτ puMzV q � rFϕ3 . Consider any p P clτ puMzV q. As before,
there are a |ù u and b |ù ϕpxq such that ab |ù p. Then a P F1, so tppab{Nq P rFϕ3 . �(claim)

Notice that
�
ϕpxqPρ

rFϕ3 � rF3. So, by the claim,

HpuMq �
�
tclτ pUq : U τ -neighborhood of uu �

�
ϕpxqPρ

rFϕ3 X uM � rF3 X uM,

which completes the proof. �

Lemma 3.31. (1) Every compact K � uM{HpuMq is contained in pSXn,M pNq X
uMq{HpuMq for some n P N and π�1rKs is quasi-compact.

(2) Every quasi-compact K � uM is contained in SXn,M pNq for some n P N.

Proof. (1) Take V from Lemma 3.28. Then U :� πrV s � pSX4,M pNq X uMq{HpuMq is open
in uM{HpuMq, so K is covered by finitely many translates of U . Since all the translating ele-
ments are in some pSXm,M pNqXuMq{HpuMq, we get thatK � pSXm�4,M pNqXuMq{HpuMq.
So the τ -closed subset π�1rKs of uM is contained in SXm�4,M pNqHpuMq which in turn is
contained in SXm�10,M pNq by Lemma 3.30. So the final paragraph of the proof of Proposition
3.21 shows that π�1rKs is quasi-compact.

(2) follows from (1) and Lemma 3.30, as πrKs is compact. �

The next two lemmas will be needed only in the proof of definability of f .

Lemma 3.32. If p � tppa{Nq and q � tppb{Nq belong to uM and a P Fnb, then p P
pF̃n�2 X uMqq.

Proof. As qq�1 � u, we can find b1 |ù q�1 such that bb1 |ù u. So b1 � b�1α for some α |ù u.
Then pq�1 � tppa2b�1α{Nq for some a2 �N a. As a P Fnb, we have a2 P Fnb2 for some
b2 �N b, i.e. a2 � cb2 for some c P Fn. Thus, pq�1 � tppcb2b�1α{Nq. Since by Lemma 3.27(1)
we know that α P F1, we conclude that cb2b�1α P Fn�2, so p P pF̃n�2 X uMqq. �

Lemma 3.33. F̂ rF̂�1rKss � pF̃7XuMqK for every τ -closed, quasi-compact subset K of uM,
where F̂�1rKs denotes the closure of F̂�1rKs in SG,M pNq.
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Proof. Consider any p P F̂�1rKs and q � F̂ ppq � upu. Then q � tppαaβ{Nq for some α |ù u,
a |ù p, β |ù u. Also, p � lim p1j for some net pp1jqj from F̂�1rKs. Take a net pg1kqk in G such
that lim g1k � u.

By Lemma 3.31(2), K � SXn,M pNq for some n, so Lemma 3.27(3) implies that F̂�1rKs �
SXn�4,M pNq. Moreover, since u P SX2,M pNq, taking an end segment of pg1kqk, we can assume
that g1k P X2 for all k. Then all g1kup1j belong to SXn�8,M pNq. By compactness of SXn�8,M pNq,
we can find subnets pgiqiPI of pg1kqk and ppiqiPI of pp1jqj such that limi giupi exists.

Clearly, lim gi � u, lim pi � p, upiu P uF̂�1rKsu � F̂ rF̂�1rKss � K, and r :� lim giupiu �
plim giupiqu exists. Hence, by Definition 3.16, we get r P u�K, so ur P upu�Kq � clτ pKq � K,
as K is τ -closed.

Since ur � uplim giupiqu, by compactness (or rather |N |�-saturation of C), we get ur �
tppγδεbβ{Nq for some γ, δ, ε realizing u and b |ù p (note that β can be chosen the same as at
the beginning of the proof.)

Put x :� αaβ and y :� γδεbβ. Then x � αab�1ε�1δ�1γ�1y P F5y, because a �M b and
α, ε, δ, γ P F1 by Lemma 3.27(1). Therefore, using Lemma 3.32, we get

q � tppx{Nq P pF̃7 X uMq tppy{Nq � pF̃7 X uMqur.

As we observed above that ur P K, we get q P pF̃7 X uMqK. �

Proof of Theorem 3.25. By Lemma 3.29(4), we already know that C is compact, normal, and
symmetric. Let us divide the proof into numbered parts.

(1) C is an error set of f .
By normality of C, it is enough to show that errorrpfq � C. We will show more, namely

that errorrpfq � pF̃3 X uMq{HpuMq. For that take any g, h P G and we need to show
that F phq�1F pgq�1F pghq P F̃3 X uM. The left hand side equals puhuq�1puguq�1ughu �
puhuq�1puguq�1ghu.

Claim 1. puguq�1 � tppxy�1g�1{Nq for some x �N y.

Proof. Let α |ù u. Then gα |ù gu. Let a |ù puguq�1 be such that tppa{N,αq is a coheir over
M . Then u � puguq�1ugu � puguq�1gu � tppagα{Nq. Put x :� agα and y :� α. Then
x �M y (as each of these elements realizes u) and a � xy�1g�1. �(claim)

By this claim, we conclude that F phq�1F pgq�1F pghq � tppzt�1h�1xy�1g�1ghα{Nq for
some z �N t, x �N y, and α |ù u. But zt�1h�1xy�1g�1ghα � zt�1xh

�1
pyh

�1
q�1α P F3,

because z �M t, xh�1
�M yh

�1 (as x �M y and h P M), and α P F1 (by Lemma 3.27(1)).
Therefore, F phq�1F pgq�1F pghq P F̃3 X uM.

(2) There is a τ -open neighborhood V of u in uM such that V � SX4,M pNq. For any
such V , U :� πrV s is an open neighborhood of the neutral element in uM{HpuMq and
f�1rU s � X14. Thus, f�1rU s � X14 also holds for U replaced by any (in particular by a
compact) neighborhood of the neutral element in uM{HpuMq contained in U .

The existence of V is by Lemma 3.28. Then U :� πrV s is an open neighborhood of
u{HpuMq in uM{HpuMq. By Lemma 3.30, HpuMq � SX6,M pNq. So π�1rU s � V HpuMq �

SX4,M pNqSX6,M pNq � SX10,M pNq. Hence, f�1rU s � F�1rπ�1rU ss � F�1rSX10,M pNqs, and
the last preimage is contained in X14 by Lemma 3.27(4).

(3) For every compact K � uM{HpuMq there is k P N with f�1rKs � Xk.
Consider any compact K � uM{HpuMq. By Lemma 3.31(1), K � pSXn,M pNq X

uMq{HpuMq for some n. So
f�1rKs � F�1rπ�1rKss � F�1rSXn,M pNqHpuMqs � F�1rSXn�6,M pNqs � Xn�10,

where the second inclusion follows from Lemma 3.30 and the last one by Lemma 3.27(4).
(4) f rXis is relatively compact for every i P N.
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By Remark 3.2, it is enough to show it for i � 1. We have
f rXs � πrF rXss � πrupSX,M pNqXuMqus � πrSX5,M pNqXuMs � πrclτ pSX5,M pNqXuMqs,

where the second inclusion follows from Lemma 3.27(1). By this lemma and the proof of Claim
2 in the proof of Proposition 3.21, we have clτ pSX5,M pNqXuMq � SX7,M pNq. So the argument
in the last paragraph of the proof of Proposition 3.21 shows that clτ pSX5,M pNqXuMq is quasi-
compact. Thus, πrclτ pSX5,M pNq X uMqs is compact, and so is the closure of f rXs.

(5) f�1rCs � X30.
By Lemma 3.29(4), C � pF̃10 X uMq{HpuMq. Hence,

f�1rCs � F�1rπ�1rCss � F�1rpF̃10 X uMqHpuMqs � F�1rF̃13 X uMs �

F�1rSX26,M pNq X uMs � X30,

where the second inclusion follows from Lemma 3.30, the third one from Lemma 3.26, and the
last one from Lemma 3.27(4).

(6) For U from (2) we have f�1rUCs � X34. Thus, the same holds for U replaced by any
(in particular by a compact) neighborhood of the neutral element in uM{HpuMq contained in
U .

We have
f�1rUCs � F�1rπ�1rUCss � F�1rSX4,M pNqSX20,M pNqSX6,M pNqs � F�1rSX30,M pNqs � X34,

where the first inclusion follows from the choice of U and Lemmas 3.29(4) and 3.30, and the
last one from Lemma 3.27(4).

(7) For any compact Z, Y � uM{HpuMq with C2Y XC2Z � H the preimages f�1rY s and
f�1rZs can be separated by a definable set.

By Lemma 3.31(1), π�1rY s and π�1rZs are quasi-compact. On the other hand, since
pF̃7 X uMq{HpuMq � C, we have that

pF̃7 X uMqpF̃7 X uMqπ�1rY s X pF̃7 X uMqpF̃7 X uMqπ�1rZs � H.

So the following claim will complete the proof of (7) and of the whole theorem.

Claim 2. For any quasi-compact Z, Y � uM such that the sets pF̃7 X uMqY and pF̃5 X
uMqpF̃7XuMqZ are disjoint the preimages F�1rY s and F�1rZs can be separated by a definable
set.

Proof. Let ρ : SG,M pNq Ñ SGpMq be the restriction map. By the definition of the topologies
on type spaces, ρ is a continuous map. We claim that it is enough to show

p�q ρrF̂�1rY ss X ρrF̂�1rZss � H,

To see that (�) is enough, note that by Lemma 3.31(2) and 3.27(3) both F̂�1rY s and F̂�1rZs

are contained in some SXn,M pNq. Hence, by (�) and compactness of SXn,M pNq, ρrF̂�1rY ss

and ρrF̂�1rZss are disjoint closed subsets of SXnpMq, and so they can be separated by a basic
open set rϕpxqs for some formula in LM . Then the definable set ϕpMq separates F�1rY s and
F�1rZs.

Let us prove (�). Suppose it fails, i.e. there are p P F̂�1rY s and q P F̂�1rZs such that
ρppq � ρpqq. So, taking α |ù p and β |ù q, we have α �M β. Next, F̂ ppq � upu � tppγ1αγ2{Nq

and F̂ pqq � uqu � tppγ1βγ2{Nq for some γ1, γ2 |ù u (note that we can choose the same γ1, γ2
in both formulas: first we chose γ2 |ù u such that tppα, β{N, γ2q is a coheir over M , and then
γ1 |ù u such that tppγ1{N,α, β, γ2q is a coheir overM). Put x :� γ1αγ2 and y :� γ1βγ2. Using
Lemma 3.27(1), we conclude that xy�1 � γ1αβ

�1γ�1
1 P F3, so x P F3y. By Lemma 3.32, this

implies that F̂ ppq � tppx{Nq P pF̃5XuMq tppy{Nq � pF̃5XuMqF̂ pqq. On the other hand, by
Lemma 3.33, we have F̂ ppq P pF̃7 X uMqY and F̂ pqq P pF̃7 X uMqZ. Thus, we conclude that
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F̂ ppq is in the intersection of pF̃7X uMqY and pF̃5X uMqpF̃7X uMqZ, which contradicts the
assumption of the claim. �(claim)

�

3.3. Around the main theorem. In this subsection, we discuss some improvements or
variants of Theorem 3.25.

Concrete numbers in the statement of Theorem 3.25.

In [Hru20, Theorem 4.2], Hrushovski produced a generalized definable locally compact
model f ofX with an error set C such that f�1rCs � X12, while in our theorem f�1rCs � X30.

The proof of part (1) inside the proof of Theorem 3.25 shows that errorrpfq � pF̃3 X
uMq{HpuMq. Analogously, one can show that errorlpfq � pF̃3 X uMq{HpuMq. Therefore,
if we dropped the definability requirement from the definition of generalized definable locally
compact model (i.e. item (3) of Definition 3.1), then we could decrease our error set C by
taking F̃ :� ppF̃3XuMq{HpuMqquM{HpuMq in place of F̃ :� ppF̃7XuMq{HpuMqquM{HpuMq,
and setting C :� clτ pF̃ q Y clτ pF̃ q�1 as before. After this modification, our proofs yield
f�1rCs � X22 and f�1rUCs � X26. A question is whether after this modification item (3) of
Definition 3.1 still holds for some l (maybe greater than 2). By the proof of part (7) in the
proof of Theorem 3.25, it would hold with l � 4 if the answer to the second question below
was positive.

Question 3.34. (1) Does rFn � rFm � rFn�m?
(2) Does p rFn X uMq � p rFm X uMq � rFn�m X uM?

And a final question is whether we could use yet smaller C obtained by replacing
F̃ :� ppF̃7 X uMq{HpuMqquM{HpuMq by F̃ :� ppF̃1 X uMq{HpuMqquM{HpuMq. For this C
our proof would give us f�1rCs � X18.

Definability over XXX

In [Hru20, Theorem 4.2], Hrushovski obtains separation by two sets definable over X,
while we got separation by a set definable over M . However, assuming that our approximate
subgroup X is H-definable (in particular, the group operation is piecewise H-definable), it is
not difficult to modify our error set C to get separation by a set definable over X, and then
we get separation by subsets of some Xn which are definable over X (see Remark 3.3). We
explain the necessary modification of C below.

Notice that, by H-definability of the approximate subgroup X, definability over X is
equivalent to definability over G :� xXy. Let us modify the definition of C by replacing
Fn :� tx1y

�1
1 . . . xny

�1
n : xi, yi P Ḡ and xi �M yi for all i ¤ nu by F 1

n :� tx1y
�1
1 . . . xny

�1
n :

xi, yi P Ḡ and xi �G yi for all i ¤ nu. Then F̃ 1
n, F̃ 1, and C 1 are defined using F 1

n in the same
way as the corresponding objects without primes are defined at the beginning of Subsection
3.2.

We claim that Theorem 3.25 holds with C replaced by C 1 with the stronger conclusion
that for any compact Z, Y � uM{HpuMq with C2Y X C2Z � H the preimages f�1rY s and
f�1rZs can be separated by an X-definable set.

Since the sets with primes are supersets of the corresponding sets without primes, it is easy
to see that the only things to check (in order to apply the whole argument from Subsection
3.2) are the following:

(1) F 1
1 � txy

�1 : x, y P X̄ with x �G yu � X̄2;
(2) pF̃ 1

7 X uMquM � F̃ 1
8 X uM;
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(3) (�) from the proof of part (7) in the proof of Theorem 3.25 but for ρ : SG,M pNq Ñ
SGpMq replaced by ρ1 : SG,M pNq Ñ SGpGq being the restriction map.

Proof. (1) The proof of Lemma 3.26 adapts, because the set S from that proof is contained
in G, and so c P G.

(2) Since all types in SG,M pNq are finitely satisfiable in G, the proof of Lemma 3.29 adapts
choosing α |ù q so that tppα{N, a¤7, b¤7, βq is a coheir over G.

(3) Replacing ρ by ρ1, the proof of (�) works as before (with α �G β in place of α �M β). �

An error set for f̂̂f̂f

Elaborating on the proof of part (1) in the proof of Theorem 3.25, we obtain the following,
where SG,M pNq is equipped with its semigroup structure.

Proposition 3.35. The function f̂ : SG,M pNq Ñ uM{HpuMq (given by f̂ppq :� upu{HpuMq)
is a quasi-homomorphism with errorrpf̂q Y errorlpf̂q � p rF5 X uMq{HpuMq, and so

Ĉ :� clτ
�
pp rF5 X uMq{HpuMqquM{HpuMq

	
Y clτ

�
pp rF5 X uMq{HpuMqquM{HpuMq

	�1

is a compact, normal, symmetric error set of f̂ .

Proof. We will only explain how to prove that errorrpf̂q � p rF5 X uMq{HpuMq. The proof
that errorlpf̂q � p rF5 X uMq{HpuMq is similar. The rest follows as at the beginning of the
proof of Theorem 3.25, using an obvious variant of Lemma 3.29(4).

We need to show that puquq�1pupuq�1pqu � F̃5 for all p, q P SG,M pNq. We have pqu �
tppg1h1α{Nq for some g1 |ù p, h1 |ù q, and α |ù u. An obvious extension of Claim 1 in the
proof of Theorem 3.25 yields

pupuq�1 � tppxy�1g�1{Nq for some x �N y and g |ù p,

puquq�1 � tppzt�1h�1{Nq for some z �N t and h |ù q.

Looking at the proof of the aforementioned Claim 1, we can choose all the above data
so that tppt{N, x, y, g, g1, h1, αq, tpph{N, t, x, y, g, g1, h1, αq, tppzt�1h�1{N, x, y, g, g1, h1, αq, and
tppxy�1g�1{N, g1, h1, αq are all coheirs over M . Then,

puquq�1pupuq�1pqu � tppzt�1h�1xy�1g�1g1h1α{Nq �

tppzt�1xh
�1
pyh

�1
q�1pgh

�1
q�1g1h

�1
h�1h1α{Nq P F̃5,

because z �M t, xh�1
�M yh

�1 (as x �M y and tpph{M,x, yq is a coheir over M), gh�1
�M

g1h
�1 (as g �M g1 and tpph{M, g, g1q is a coheir over M), h �M h1, and α P F1. �

Expressing the proof in terms of Boolean algebras

Suppose X is an abstract (rather than definable) approximate subgroup X and one is
interested in finding a generalized locally compact model of X. Taking M :� G � xXy
equipped with the full structure, SG,M pNq becomes the subspace of βG (the space of ultrafilters
on the Boolean algebra of all subsets of G) which consists of the ultrafilters concentrated on
someXn (for varying n). So no model theory is involved in those objects. In this situation, one
should be able to completely eliminate model theory from our construction of the generalized
locally compact model by not using realizations of types, but we find it unnatural and more
technical, so we will not do that.

After the first author’s conference talk on Theorem 3.25, Sergei Starchenko suggested that
it could be interesting to modify our construction of the generalized definable locally compact
model of a definable approximate subgroup X by replacing the Boolean algebra generated
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by externally definable subsets of G by a smaller (or even smallest possible) Boolean algebra
which does not refer to model theory; then ultrafilters on this algebra would be used in place
of complete external types. One should be able to realize this suggestion by using Newelski’s
work on d-closed G-algebras [New14]. Namely, Newelski showed that whenever A is a d-
closed G-algebra of subsets of G, then there is an explicitly given semigroup operation � on
the Stone space SpAq which extends the action of G and is left continuous. Now, in our
situation of an approximate subgroup X and G :� xXy, take A to be the d-closure (in the
sense of [New14]) of the G-algebra generated by all left translates of the sets X,X2, X3, . . . .
Let SGpAq be the subflow of SpAq which consists of the ultrafilters containing one of the Xn’s
(for varying n). Then the above semigroup operation � on SpAq restricts to a left continuous
semigroup operation on SGpAq, and SGpAq is locally compact. One should be able to adapt
the theory developed in this paper for SG,M pNq � SG,extpMq to SGpAq; in particular, to state
and prove a suitable variant of Theorem 3.25 yielding a generalized locally compact model of
X which satisfies a version of definability (i.e. item (3) of Definition 3.1) in which separation
by a definable set is replaced by separation by a set from the G-algebra A (or even from the
Boolean algebra of subsets of G generated by left and right translates of X,X2, . . . ).

4. Universality

We will prove that the generalized definable locally compact model from Theorem 3.25 is
an initial object in a certain category. In particular, this will explain what it means to be
a generalized definable locally compact model in terms of factorization through uM{HpuMq
(with the notation from Section 3).

As in Section 3, take the situation and notation as at the end of Subsection 2.1. We
introduce the notion of good quasi-homomorphism which will be used to define morphisms in
our category.

Definition 4.1. Let H be a locally compact group and S a compact, normal, symmetric
subset of H. A good quasi-homomorphism for pH,Sq is a quasi-homomorphism h : H Ñ L : T
for some compact, normal, symmetric subset T of a locally compact group L such that:

(1) for every compact Y � L, h�1rY s is relatively compact in H;
(2) for every compact V � H, hrV s is relatively compact in L;
(3) hrSs � Tn for some n P N;
(4) there is m P N such that for any compact Y,Z � L with TmY X TmZ � H,

S clph�1rY sq X S clph�1rZsq � H.

Remark 4.2. Let pH,Sq be as in Definition 4.1 and let h : H Ñ L : T be a good quasi-
homomorphism for pH,Sq. Then:

(1) for every m P N there is nm P N with hrSms � Tnm ;
(2) for every n P N there exists mn P N such that for any compact Y, Z � L with

TmnY X TmnZ � H we have Sn clph�1rY sq X Sn clph�1rZsq � H.

Proof. (1) follows by an easy induction from item (3) of Definition 4.1 and the assumption
that T is an error set of h.

(2) By (1) and the assumption that T is an error set of h, we get that hrSn�1h�1rY ss � T knY
and hrSn�1h�1rZss � T knZ for some kn. We will show that mn :� kn � m works for any
m satisfying the conclusion of item (4) of Definition 4.1. For that assume that TmnY X
TmnZ � H. Then TmpT knY q X TmpT knZq � H and T knY and T knZ are compact. Hence,
S clph�1rT knY sq X S clph�1rT knZsq � H by the choice of m. As the last intersection contains
Sn clph�1rY sq X Sn clph�1rZsq, we get that Sn clph�1rY sq X Sn clph�1rZsq � H. �

Definition 4.3. Let f : G Ñ H : S and h : G Ñ L : T be definable generalized locally
compact models of X. A morphism from f to h is a function ρ : H Ñ L which is a good
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quasi-homomorphism ρ : H Ñ L : T k for pH,Sq, where k P N is such that ρpfpgqq P hpgqT k
for all g P G. The set of morphisms from f to h will be denoted by Morpf, hq.

Remark 4.4. Morphisms are closed under composition, and so the class of definable locally
compact models of X in the generalized sense with morphisms forms a category.

Proof. Let f1 : G Ñ H1 : S1, f2 : G Ñ H2 : S2, and f3 : G Ñ H3 : S3 be generalized definable
locally compact models, and ρ P Morpf1, f2q, δ P Morpf2, f3q. The goal is to show that there
is k such that errorrpδρq � tδpρpyqq�1δpρpxqq�1δpρpxyqq : x, y P Gu � Sk3 and δpρpf1pgqqq P
f3pgqS

k
3 for all g P G. Indeed, once we prove it, the fact that δρ : H1 Ñ H3 : Sk3 is a

good quasi-homomorphism for pH1, S1q easily follows using Remark 4.2 which we leave as an
exercise.

Let k1 and k2 be numbers witnessing that ρ and δ are morphisms, respectively, and let nk1 be
the number from Remark 4.2(1) applied to the good quasi-homomorphism δ : H2 Ñ H3 : Sk2

3
for pH2, S2q.

Regarding the first part of our goal, we have
δpρpyqq�1δpρpxqq�1δpρpxyqq P Sk2

3 δpρpxqρpyqq�1δpρpxyqq � Sk2�2k2
3 δppρpxqρpyqq�1qδpρpxyqq �

Sk2�2k2�k2
3 δpρpyq�1ρpxq�1ρpxyqq � S4k2

3 δrSk1
2 s � S

4k2�k2nk1
3 .

Regarding the second part of our goal, we have

δpρpf1pgqqq P δrf2pgqS
k1
2 s � δpf2pgqqδrS

k1
2 sS

k2
3 � f3pgqS

k2�k2nk1�k2
3 � f3pgqS

2k2�k2nk1
3 .

We conclude that k :� 4k2 � k2nk1 works. �

The obtained category will be later modified to get that the generalized definable locally
compact model from Theorem 3.25 is an initial object, as for the above category we will only
obtain existence of a morphism and “approximate uniqueness”. Before going to these main
issues, let us make one more basic observation.

Proposition 4.5. Let f : G Ñ H : S be a generalized definable locally compact model of X
and let h : H Ñ L : T be a good quasi-homomorphism for pH,Sq. Then there is n P N such that
h � f : GÑ L : Tn is a generalized definable locally compact model of X and h P Morpf, h � fq.

Proof. The fact h � f : GÑ L : Tn is a quasi-homomorphism for some n follows from:
hpfpyqq�1hpfpxqq�1hpfpxyqq P Thpfpxqfpyqq�1hpfpxyqq � T 3hppfpxqfpyqq�1qhpfpxyqq �

T 4hpfpyq�1fpxq�1fpxyqq � T 4hrSs � T 4�n,

where n is a number witnessing item (3) of Definition 4.1 applied to the good quasi-
homomorphism h.

To check item (1) of Definition 3.1 for h � f , consider any compact V � L. Then h�1rV s is
relatively compact, so ph � fq�1rV s � f�1rh�1rV ss � Xi for some i.

To see item (2) of Definition 3.1, note that clpf rXsq being compact implies that hrclpf rXsqs
is relatively compact, and so clphrf rXssq is compact.

To see that item (3) of Definition 3.1 holds for h � f , choose l witnessing item (3) of
Definition 3.1 for f . Next, choose n so big that Tn is an error set of h � f (the existence of
such an n was justified at the beginning of the proof) and for any compact Y, Z � L with
TnY XTnZ � H, Sl clph�1rY sqXSl clph�1rZsq � H (the existence of such an n is guaranteed
by Remark 4.2(2)). Then for any compact Y, Z � L with TnY X TnZ � H we have that
ph � fq�1rY s and ph � fq�1rZs can be separated by a definable set.

The fact that h P Morpf, h � fq is trivial. �

Theorem 4.6. (Universality of f : GÑ uM{HpuMq: existence) Let f : GÑ uM{HpuMq :
C be the generalized definable locally compact model of X from Theorem 3.25. Let h : G Ñ
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H : S be an arbitrary generalized definable locally compact model of X. Then there exists a
morphism rh P Morpf, hq.

More precisely, define hM : SGpMq Ñ H by picking hM ppq arbitrarily from the set�
ϕpxqPp clphrϕpGqsq. Next, define h� : Ḡ Ñ H by h�paq :� hM ptppa{Mqq, h̄ : SG,M pNq Ñ H

by h̄ppq :� hM pp|M q, and finally rh : uM{HpuMq Ñ H by picking rhpp{HpuMqq arbitrarily
from the set h̄rpHpuMqs. Then h�, h̄,rh are quasi-homomorphisms with the distinguished
error set being Sn for some n P N independent of the choice of h, and rh P Morpf, hq.

Proof. The proof is dived into parts. Items (1), (2), (6) below show that h�, h̄,rh are quasi-
homomorphisms with suitable error sets. Items (6)-(11) show that rh P Morpf, hq.

Take l P N witnessing item (3) of Definition 3.1 for h.
(1) h� : ḠÑ H : S4l�1.
We have

h�pabq P
£

ϕpxqPtppa{Mq,ψpxqPtppb{Mq

hrϕpGq � ψpGqs �
£

ϕpxq,ψpxq

hrϕpGqshrψpGqsS �

£
ϕpxq,ψpxq

�
hrϕpGqs � hrψpGqs � S

	
�
£
ϕpxq

hrϕpGqs �
£
ψpxq

hrψpGqs � S,

where ϕpxq ranges over tppa{Mq and ψpxq over tppb{Mq. (The last two equalities follow from
compactness of hrϕpGqs, hrψpGqs, and C for sufficiently small ϕpGq and ψpGq.) Therefore,

p�q h�pabq � αβγ

for some α P
�
ϕpxqPtppa{Mq hrϕpGqs, β P

�
ψpxqPtppb{Mq hrψpGqs, and γ P S.

We claim that
p��q SlαX Slh�paq � H.

Suppose not. By compactness of S and local compactness of H, there are compact neighbor-
hoods F1 of α and F2 of h�paq such that SlF1 X S

lF2 � H. Then, by the choice of l, there is
a formula θpxq P LM such that h�1rF1s � θpMq and h�1rF2s � GzθpMq. If θpxq P tppa{Mq,
then h�paq P hrθpMqs � F c2 which contradicts the fact that F2 is a neighborhood of h�paq. If
 θpxq P tppa{Mq, then α P hrp θpMqs � F c1 which contradicts the fact that F1 is a neigh-
borhood of α. So (��) has been proved. Analogously, Slβ X Slh�pbq � H. From these two
observations and (�), we get h�pabq P S2lh�paqS2lh�pbqS � S4l�1h�paqh�pbq. Thus, (1) has
been proved.

By (1) and the definition of the semigroup operation � on SG,M pNq, we immediately get
(2) h̄ : SG,M pNq Ñ H : S4l�1.
(3) h̄puguq P hpgqS4p4l�1q.
Item (3) follows by the following computation

hpgq�1h̄puguq � hpgq�1h̄puqhpgqh̄puqS2p4l�1q � hpgq�1S4l�1hpgqS4l�1S2p4l�1q � S4p4l�1q,

which uses (2) and the fact that h̄æG� h (which follows from the formulas for h̄ and hM ).
(4) For every compact V � H, h̄�1rV s � SXi,M pNq for some i, and so h̄�1rV s X uM is

relatively quasi-compact in the τ -topology.
Chose a compact neighborhood U of V . We have h�1rU s � Xi for some i, and we check that

i is good. If not, there is p P SG,M pNqzSXi,M pNq with h̄ppq P V . Then h̄ppq P hrGzXis � U c

which is disjoint from V as U is a neighborhood of V , a contradiction. This implies that
h̄�1rV sXuM is relatively quasi-compact in the τ -topology by the argument in Claim 2 of the
proof of Proposition 3.21 and the final paragraph of the proof of that proposition.

(5) h̄rSXi,M pNqs is relatively compact for every i P N.
This is immediate from the fact that h̄rSXi,M pNqs � hrXis and hrXis is compact.
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In order to show that rh P Morpf, hq, we will use the above observations and the following
claims.

Claim 1. (i) h�pa�1q P h�paq�1S2p4l�1q.
(ii) h�pab�1q P S3p4l�1q for every a �M b.
(iii) h�rFns � Sp4n�1qp4l�1q.

Proof. (i) follows from (1). The computation in (ii) is as follows: h�pab�1q P h�paqh�pb�1qS4l�1 �
h�paqh�pbq�1S3p4l�1q � h�paqh�paq�1S3p4l�1q � S3p4l�1q, where we used (1), (i), and the defi-
nition of h�. Finally, (iii) follows from (ii) and (1). �(claim)

Claim 2. h̃pp{HpuMqq P h̄ppqS12p4l�1q.

Proof. By the definition of h̃, h̃pp{HpuMqq � h̄pqq for some q P uM and r P HpuMq such
that q � pr. By Lemma 3.30, HpuMq � F̃3XuM, so by Claim 1(iii), h̄rHpuMqs � S11p4l�1q.
Therefore, by (2), h̃pp{HpuMqq � h̄pqq P h̄ppqh̄prqS4l�1 � h̄ppqS12p4l�1q. �(claim)

(6) h̃ : uM{HpuMq Ñ H : S37p4l�1q

This follows from (2) and Claim 2. Namely, we have: h̃pp{HpuMq � q{HpuMqq �

h̃ppq{HpuMqq P h̄ppqqS12p4l�1q � h̄ppqh̄pqqS13p4l�1q � h̃pp{HpuMqqh̃pq{HpuMqqS37p4l�1q.
(7) h̃pfpgqq P hpgqS16p4l�1q.
This follows from (3) and Claim 2. Namely: h̃pfpgqq � h̃pugu{HpuMqq P h̄puguqS12p4l�1q P

hpgqS4p4l�1qS12p4l�1q � hpgqS16p4l�1q.
(8) For every compact V � H, h̃�1rV s is relatively compact.
This follows from (4). Namely, by the definition of h̃, h̃�1rV s � πrh̄�1rV s X uMs (where

π : uM Ñ uM{HpuMq is the quotient map). By (4), clτ ph̄�1rV s X uMq is quasi-compact,
and so clpπrh̄�1rV s X uMsq � πrclτ ph̄�1rV s X uMqs is compact. Therefore, clph̃�1rV sq being
a closed subset of clpπrh̄�1rV s X uMsq is also compact.

(9) For every compact V � uM{HpuMq, h̃rV s is relatively compact in H.
By the definition of h̃, h̃rV s � h̄rπ�1rV ss. By Lemmas 3.31 and 3.30, the set π�1rV s is

contained in some SXi,M pNq. Thus, by (5), h̄rπ�1rV ss is relatively compact, and so h̃rV s is
relatively compact, too.

(10) h̃rCs � S51p4l�1q.
By Lemma 3.29(4), C � pF̃10 X uMq{HpuMq. Hence, using Claim 2, h̃rCs �

h̄rF̃10sS
12p4l�1q. By Claim 1(iii), h̄rF̃10s � S39p4l�1q. Therefore, h̃rCs � S51p4l�1q.

(11) There is m P N such that for any compact Y,Z � H with SmY X SmZ � H,
C clph̃�1rY sq X C clph̃�1rZsq � H.

By Lemma 3.29(4), C � pF̃10 X uMq{HpuMq, so it is enough to find m such that
p!q SmY X SmZ � H

implies
p:q pF̃10 X uMq{HpuMq clph̃�1rY sq X pF̃10 X uMq{HpuMq clph̃�1rZsq � H.

Since h̃�1rY s � πrh̄�1rY s X uMs, h̃�1rZs � πrh̄�1rZs X uMs, and h̄�1rY s X uM as
well as h̄�1rZs X uM are relatively quasi-compact by (4), we deduce that clph̃�1rY sq �
clpπrh̄�1rY s X uMsq � πrclτ ph̄�1rY s X uMqs and clph̃�1rZsq � clpπrh̄�1rZs X uMsq �
πrclτ ph̄�1rZs X uMqs. We conclude that in order to show (:), it is enough to show that
pF̃10 X uMqHpuMq clτ ph̄�1rY s X uMq X pF̃10 X uMqHpuMq clτ ph̄�1rZs X uMq � H. By
virtue of Lemma 3.30, this boils down to

p::q pF̃13 X uMq clτ ph̄�1rY s X uMq X pF̃13 X uMq clτ ph̄�1rZs X uMq � H.

We will show that m :� 56p4l � 1q � 2l works. Suppose for a contradiction that (!) holds
for this m, whereas (::) fails.
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By (4), h̄�1rY s and h̄�1rZs are contained in some SXn,M pNq which is closed in SG,M pNq.
Thus, by the defintion of clτ and an easy compactness argument, we get that any element p
in the intersection from (::) is of the form

tppa1b
�1
1 . . . a13b

�1
13 αβ{Nq � tppa11b1�1

1 . . . a113b
1�1
13 α

1β1{Nq

for some ai, bi, a1i, b1i, α, α1, β, β1 P Ḡ satisfying ai �M bi, a1i �M b1i, α |ù u, α1 |ù u, tppβ{Nq P
h̄�1rY s, tppβ1{Nq P h̄�1rZs, where h̄�1rY s and h̄�1rZs are closures computed in SG,M pNq.
Pick such an element p. By Lemma 3.27(1), it equals

tppa1b
�1
1 . . . a14b

�1
14 β{Nq � tppa11b1�1

1 . . . a114b
1�1
14 β

1{Nq

for some a14, b14, a
1
14, b

1
14 P Ḡ with a14 �M b14 and a114 �M b114.

Claim 3. h�pβq P S2lY and h�pβ1q P S2lZ.

Proof. Suppose for a contradiction that h�pβq R S2lY . So Slh�pβq X SlY � H. Then SlU X
SlV � H for some compact neighborhoods U of h�pβq and V of Y . By the choice of l, there
is a formula θpxq P LM such that h�1rU s � θpGq and h�1rV s � GzθpGq.

Case 1. θpxq P tppβ{Mq. Since tppβ{Nq P h̄�1rY s, there is q P rθpxqs X h̄�1rY s. Then
h̄pqq P hrθpGqs X Y . On the other hand, hrθpGqs � V c, which implies that hrθpGqs X Y � H,
because V is a neighborhood of Y . This is a contradiction.

Case2.  θpxq P tppβ{Mq. Then h�pβq P hrGzθpGqs. On the other hand, hrGzθpGqs � U c,
which implies that h�pβq R hrGzθpGqs, because U is a neighborhood of h�pβq. This is a
contradiction. �(claim)

Using (1), Claim 1(iii), and Claim 3, we get:

h̄ppq � h�

�
14¹
i�1

aib
�1
i β

�
P h�

�
14¹
i�1

aib
�1
i

�
h�pβqS4l�1 � S55p4l�1qS2lY S4l�1 � S56p4l�1q�2lY.

Similarly, h̄ppq P S56p4l�1q�2lZ. Hence, S56p4l�1q�2lY X S56p4l�1q�2lZ � H, which contradicts
(!) for m :� 56p4l � 1q � 2l. �

The usual notion of definable map from a definable subset D of M to a compact space
is explained in terms of a factorization of this map through the type space SDpMq via a
continuous map. The notion of definability in item (3) of Definition 3.1 is less obvious. The
next corollary explains it using a factorization through uM{HpuMq.

Corollary 4.7. A quasi-homomorphism h : G Ñ H : S with a compact, normal, symmetric
subset S of a locally compact group H is a generalized definable locally compact model of
X if and only if there exists a good quasi-homomorphism h̃ : uM{HpuMq Ñ H : Sm for
puM{HpuMq, Cq, for some m P N such that h̃pfpgqq P hpgqSm for all g P G (where f : G Ñ
uM{HpuMq : C is the generalized definable locally compact model of X from Theorem 3.25).

Proof. The implication pñq follows directly from Theorem 4.6.
pðq We check items (1), (2), (3) of Definition 3.1 applied to h.
(1) For any compact V � H the set SmV is also compact, and so h̃�1rSmV s is relatively

compact. Thus, h�1rV s � f�1rh̃�1rSmV ss is contained in some Xi.
(2) We know that f rXs is relatively compact, and so h̃rf rXss is relatively compact. Hence,

Smh̃rf rXss is relatively compact. Since hrXs � Smh̃rf rXss, we conclude that hrXs is rela-
tively compact, too.

(3) We will show that l :� m �m2 works, where m2 is a number witnessing that Remark
4.2(2) holds for the good quasi-homomorphism h̃. For that take any compact Y,Z � H with
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SlY X SlZ � H. Then Sm2pSmY q X Sm2pSmZq � H and SmY , SmZ are compact. So, by
the choice of m2,

C2 clph̃�1rSmY sq X C2 clph̃�1rSmZsq � H.

Therefore, f�1rh̃�1rSmY ss and f�1rh̃�1rSmZss can be separated by a definable set. Since
h�1rY s � f�1rh̃�1rSmY ss and h�1rZs � f�1rh̃�1rSmZss, we conclude that h�1rY s and
h�1rZs can be separated by a definable set. �

Theorem 4.8. (Universality of f : GÑ uM{HpuMq: approximate uniqueness) Take f : GÑ
uM{HpuMq : C from Theorem 3.25. Let h : GÑ H : S be an arbitrary generalized definable
locally compact model of X, and ρ P Morpf, hq any morphism. Let rh P Morpf, hq be a (non
uniquely determined) morphism constructed in Theorem 4.6. Then there is n P N (depending
only on l in item (3) of Definition 3.1 applied to h, and on k in Definition 4.3 and m2 in
Remark 4.2(2) both applied to ρ) such that ρpp{HpuMqq P h̃pp{HpuMqqSn for all p P uM.

Proof. We will show that n :� 4 maxpm2, k � 12p4l � 1qq works. Suppose not, i.e.
ρpp{HpuMqq R h̃pp{HpuMqqSn for some p P uM. Then S

n
2 ρpp{HpuMqqXS

n
2 h̃pp{HpuMqq �

H. So we can find a compact neighborhood V of the neutral element in H such that

S
n
2 ρpp{HpuMqqV X S

n
2 h̃pp{HpuMqqV � H.

Put V 1 :� V S
n
4 . Then

S
n
4 ρpp{HpuMqqV 1 X S

n
4 h̃pp{HpuMqqV 1 � H,

and ρpp{HpuMqqV 1 and h̃pp{HpuMqqV 1 are compact sets. Since n{4 ¥ m2, we get

p�q C2 clpρ�1rρpp{HpuMqqV 1sq X C2 clpρ�1rh̃pp{HpuMqqV 1sq � H.

Put P :� clpρ�1rρpp{HpuMqqV 1sq and Q :� clpρ�1rh̃pp{HpuMqqV 1sq. By the proof of part
(7) of the proof of Theorem 3.25, we conclude from (�) that there exists θpxq P LM such that

p��q f̂�1rP s � rθpxqs and f̂�1rQs � r θpxqs.

Since p{HpuMq P P and f̂ppq � upu{HpuMq � p{HpuMq, we see that p P f̂�1rP s, hence
θpxq P p, and so h̄ppq P hrθpGqs (where h̄ is chosen as in Theorem 4.6). By Claim 2 from the
proof of Theorem 4.6, we conclude that h̃pp{HpuMqq P hrθpGqsS12p4l�1q. So

h̃pp{HpuMqq P ρrf rθpGqssSkS12p4l�1q � ρrf rθpGqssSk�12p4l�1q � ρrf̂ rrθpxqsssSk�12p4l�1q �

ρrQcsSk�12p4l�1q � ph̃pp{HpuMqqV 1qcSk�12p4l�1q � ph̃pp{HpuMqqV S
n
4 qcSk�12p4l�1q �

ph̃pp{HpuMqqV S
n
4 qcS

n
4 ,

where the first belonging is by the choice of k, the first equality by compacntess of S, the
first inclusion is obvious, the second follows by (��), the next one by the definition of Q,
the next equality by the definition of V 1, and the last inclusion since n{4 ¥ k � 12p4l � 1q.
Thus, h̃pp{HpuMqq P ph̃pp{HpuMqqV S

n
4 qcS

n
4 , which is impossible, because it implies that

h̃pp{HpuMqqV S
n
4 X ph̃pp{HpuMqqV S

n
4 qc � H. �

To get full uniqueness (i.e. that f is the initial object) we have to modify the notion of
morphism.

Definition 4.9. Let f : GÑ H : S and h : GÑ L : T be generalized definable locally compact
models of X. Let ρ1, ρ

1
1 P Morpf, hq. We say that ρ1 and ρ11 are equivalent (symbolically,

ρ1 � ρ11) if for some l P N, for every p P H we have ρ11ppq P ρ1ppqT
l.

Remark 4.10. � is an equivalence relation on Morpf, hq.
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Proposition 4.11. If fi : GÑ Hi : Si for i P t1, 2, 3u are generalized definable locally compact
models of X and ρ1 � ρ11 belong to Morpf1, f2q and ρ2 � ρ12 belong to Morpf2, f3q, then
ρ2ρ1 � ρ12ρ

1
1. Thus, all generalized definable locally compact models of X with morphisms

modulo � form a category.

Proof. Let l1 and l2 be witnesses for ρ1 � ρ11 and ρ2 � ρ12, that is ρ11ppq P ρ1ppqS
l1
2 and

ρ12pqq P ρ2pqqS
l2
3 for all p P H1 and q P H2. Let k12 be a witness that ρ12 P Morpf2, f3q, that is

ρ12 : H2 Ñ H3 : Sk
1

2
3 and ρ12pf2pgqq P f3pgqS

k12
3 , and let nl1 be the number from Remark 4.2(1)

obtained for ρ12. Then, for every p P H1 we have

ρ12pρ
1
1ppqq P ρ

1
2rρ1ppqS

l1
2 s � ρ12pρ1ppqqρ

1
2rS

l1
2 sS

k12
3 � ρ2pρ1ppqqS

l2
3 S

k12nl1
3 S

k12
3 � ρ2pρ1ppqqS

k12nl1�l2�k
1

2
3 .

Thus, for ρ1 P Morpf1, f2q and ρ2 P Morpf2, f3q we have a well-defined

ρ1{� �ρ2{�:� pρ1 � ρ2q{� .

So it is clear that the all generalized definable locally compact models of X with morphisms
modulo � form a category. �

By Theorems 3.25, 4.6, and 4.8, we get the main result of this section.

Corollary 4.12. The generalized definable locally compact model f : G Ñ uM{HpuMq : C
from Theorem 3.25 is the initial object in the category from the last proposition.

We finish with some natural questions which arise in the special case of Theorem 4.6 when
h :� f , where f : G Ñ uM{HpuMq : C is from Theorem 3.25. In this special case, the
construction described in the second paragraph of Theorem 4.6 yields non uniquely determined
functions f̄ : SG,M pNq Ñ uM{HpuMq and f̃ : uM{HpuMq Ñ uM{HpuMq such that f̃ P
Morpf, fq. On the other hand, clearly id P Morpf, fq. This leads to

Question 4.13. (1) Can we choose f̃ by the construction in Theorem 4.6 so that f̃ � id?
(2) Can we choose f̄ by the construction in Theorem 4.6 so that f̄ |uM : uM Ñ

uM{HpuMq is the quotient map?
(3) Can we choose f̄ by the construction in Theorem 4.6 so that f̄ppq � f̂ppq :�

upu{HpuMq for all p P SG,M pNq?

By how f̃ is obtained from f̄ , we see that a positive answer to (2) implies a positive answer
to (1). Since f̂ppq � p{HpuMq for all p P uM, we get that a positive answer to (3) implies a
positive answer to (2).

In the next section, the example with X being a definable, generic, symmetric subset of the
universal cover �SL2pRq of SL2pRq will yield a negative answer to (3), but not to (2).

5. Compact case

In this section, we focus on the special case when the definable approximate subgroup X
generates a group in finitely many steps. This is equivalent to G :� xXy being a definable
group in which X is a definable, generic, symmetric set (X being generic in G means that
finitely many left translates of X cover G). Thus, we will consider just this case or, slightly
more generally, the case of a definable generic subset X of a definable group G (notice that
then xXy has finite index in G), which is fundamental in model theory.

In the case when G � xXy, the group uM{HpuMq in the generalized definable locally
compact model f : GÑ uM{HpuMq from Theorem 3.25 is compact, which follows from the
last paragraph of the proof of Proposition 3.21, since uM � SXn,M pMq for some n P N; in
fact, in this case, all the topological dynamics developed in Subsection 3.1 boils down to the
classical topological dynamics of the compact flow SG,M pNq, so uM{HpuMq is compact.
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In the more general context of X being a definable, generic, symmetric subset of a definable
group G, one can also use the compact group uM{HpuMq computed for the compact G-flow
SG,M pNq and adapting (and even simplifying some parts of) the arguments from Subsection
3.2, we conclude with

Theorem 5.1. The function f : G Ñ uM{HpuMq given by fpgq :� ugu{HpuMq has the
following properties.

(1) f is a quasi-homomorphism with compact, normal, symmetric error set C :� clτ pF̃ qY
clτ pF̃ q�1, where:

Fn :� tx1y
�1
1 . . . xny

�1
n : xi, yi P Ḡ and xi �M yi for all i ¤ nu,

F̃n :� ttppa{Nq P SG,M pNq : a P Fnu,

F̃ :� ppF̃7 X uMq{HpuMqquM{HpuMq.

Moreover, pF̃3 X uMq{HpuMq is an error set of f .
(2) f�1rCs � X30.
(3) There is a compact neighborhood U of the neutral element in uM{HpuMq such that

f�1rU s � X14 and f�1rUCs � X34.
(4) For any closed Z, Y � uM{HpuMq with C2Y XC2Z � H the preimages f�1rY s and

f�1rZs can be separated by a definable set.

Note that if X is definable, generic, but not symmetric, then replacing it by XX�1, we get
a definable, generic, and symmetric set, and it is clear how to modify items (2) and (3) in this
context. So the assumption that X is symmetric is rather minor.

The proof of Fact 3.4(1) adapts to

Remark 5.2. For every neighborhood U of u{HpuMq the preimage f�1rUCs is generic in G,
that is the preimage under f of any neighborhood of C is generic in G.

Theorem 5.1(3) and Remark 5.2 can be thought of as a structural result on definable generic
subsets of an arbitrary definable group G. In concrete examples, this can lead to more precise
information on generics.

In Subsection 5.1, we will illustrate it by the universal cover �SL2pRq of SL2pRq. Our analysis
of �SL2pRq also yields a negative answer to item (3) of Question 4.13, and a positive answer to
item (2) in the special case of definable generics in �SL2pRq. Moreover, our analysis confirms
a certain weakening of Newelski’s conjecture (that we have had in mind for a while) in the
special case of �SL2pRq. So we take the opportunity and state this weakened conjecture below.

Let G a group definable in a structure M . Let N ¡ M be |N |�-saturated, and C ¡ N a
monster model. By Ḡ we denote the interpretation of G in C. Let uM be the Ellis group of the
flow pG,SG,M pNqq, and let Ḡ00

M be the smallest type-definable over M subgroup of Ḡ which
has bounded index. Newelski’s conjecture says that the group epimorphism θ : uM Ñ Ḡ{Ḡ00

M

given by θptppa{Nqq :� a{Ḡ00
M is an isomorphism under suitable assumptions on tameness of

the ambient theory [New09]. In [GPP15], the conjecture was refuted for G :� SL2pRq treated
as a group definable in M :� pR,�, �q, where the Ellis group turned out to be Z2 while Ḡ{Ḡ00

M
is trivial. On the other hand, the conjecture was confirmed in [CS18] for definably amenable
groups definable in NIP theories. In [KP17], we refined Newelski’s epimorphism θ obtaining
a sequence of epimorphisms

uM Ñ uM{HpuMq Ñ Ḡ{Ḡ000
M Ñ Ḡ{Ḡ00

M ,

where Ḡ000
M is the smallest bounded index subgroup of Ḡ which is invariant under AutpC{Mq.

This leads to many counter-examples to Newelski’s conjecture. Namely, whenever Ḡ000
M � Ḡ00

M ,
then Newelski’s conjecture fails; in fact, we proved that then even uM{HpuMq Ñ Ḡ{Ḡ000

M is
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not an isomorphism. The first example where Ḡ000
M � Ḡ00

M was found in [CP12]: G :� �SL2pRq
treated as a group definable in the two-sorted structure M :� ppR,�, �q, pZ,�qq has this
property. Many other examples were then found in [GK15], e.g. the non-abelian free groups
equipped with the full structure. Another situation in which Newelski’s conjecture fails is
when HpuMq is nontrivial, equivalently when uM is not Hausdorff in the τ -topology. While
in general we are able to find examples in which uM is not Hausdorff, we have not found any
such example with NIP. This leads to the following weakening of Newelski’s conjecture.

Conjecture 5.3. If M has NIP, then uM is Hausdorff.

From the above discussion, this is true for definably amenable groups definable in NIP
theories. It is also true whenever uM is finite, as the τ -topology is T1 and so Hausdorff when
uM is finite. In Subsection 5.1, we will confirm it for G :� �SL2pRq treated as a group definable
in the two-sorted structure M :� ppR,�, �q, pZ,�qq which clearly has NIP; more precisely, the
Ellis group in this case will turn out to be topologically isomorphic to the profinite completion
Ẑ of Z.

5.1. Case study of �SL2pRq. From now on,M is the 2-sorted structure with the sorts pR,�, �q
and pZ,�q, G :� SL2pRq, and G̃ :� �SL2pRq. So now G̃ will play the role of G from the above
discussion.

Recall that G̃ can be written as SL2pRq � Z with the group operation given by
pa1, b1qpa2, b2q :� pa1a2, b1 � b2 � hpb1, b2qq, where h : G � G Ñ Z is the 2-cocycle de-
fined as follows. For c, d P R put

cpdq :�
"
c, if c � 0
d, if c � 0.

Then for any
�
a1 b1
c1 d1



,

�
a2 b2
c2 d2



P SL2pRq, writing

�
a1 b1
c1 d1



�

�
a2 b2
c2 d2



��

a3 b3
c3 d3



, we have

h

��
a1 b1
c1 d1



,

�
a2 b2
c2 d2




:�

$&% 1, if c1pd1q ¡ 0, c2pd2q ¡ 0, c3pd3q   0,
�1, if c1pd1q   0, c2pd2q   0, c3pd3q ¡ 0,
0, otherwise.

From this formula, we see that h is definable in M , and so G̃ is definable in M . It is clear
that each set of the form G � kZ is a definable generic subset of G̃. Using Theorem 5.1, we
will deduce a weak converse.

Proposition 5.4. For every definable, generic, symmetric subset X of G̃ there exists a
nonzero k P N such that G� kZ � X696.

Besides Theorem 5.1, we will need a few other ingredients, some of which will be also used
in the proof of Proposition 5.13 below. The proof of Proposition 5.4 is given after the proof
of Lemma 5.12.

By [CP12, Theorem 3.2], we know that G̃ does not have any definable subgroups of finite
index, so for every definable generic subset X of G̃ we have that xXy � G̃. Hence, in this
situation, Theorem 5.1 is a particular case of Theorem 3.25.

One of the ingredients will be 12-connectedness of SL2pRq which follows from [Gis10, Theo-
rem 6.5], which we will briefly discuss. By a thick subset of a group H definable in a structure
N we mean a definable symmetric subset Y of H for which there exists a positive m P N such
that for every g1, . . . , gm P H there are i   j with g�1

i gj P Y . Note that when Y is a definable
generic, then Y �1Y is thick. We will say that H is n-connected if for every (definable) thick
subset Y of H we have Y n � H. This is equivalent to saying that for P being the intersection
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of all N -definable thick subsets of H̄ :� HpCq (where C ¡ N is a monster model) we have
Pn � H̄. The next fact is a particular case of [Gis10, Theorem 6.5].

Fact 5.5. SL2pRq is 12-connected in any structure in which SL2pRq is definable, in particular
in M .

Everywhere below C ¡M is a monster model, and bars are used to denote the interpreta-
tions of various objects in C.

Corollary 5.6. Let X be a definable, generic, symmetric subset of G̃. Then for every g P Ḡ
there exists n P t�12, . . . , 0, . . . , 12u such that pg, nq P X̄24.

Proof. By Fact 5.5, Ḡ � P 12, where P is the intersection of all M -definable thick subsets of
Ḡ. Hence, by [Gis10, Lemma 1.3(1)], g �

±12
i�1 a

�1
i bi for some ai, bi P Ḡ such that aiΘMbi,

meaning that pai, biq starts an infinite M -indiscernible sequence. Then clearly ppai, 0q, pbi, 0qq
starts an infinite M -indiscernible sequence of pairs, i.e.

p�q pai, 0qΘM pbi, 0q.
The corresponding entries of matrices ai and bi have the same sign (because they have the

same type), so, using the explicit definition of h recalled above and the formula
�
a b
c d


�1
��

d �b
�c a



for matrices in SL2pRq, one easily checks that hpa�1

i , biq � hpai, a
�1
i q. Hence,

pai, 0q�1pbi, 0q � pa�1
i ,�hpai, a

�1
i qqpbi, 0q � pa

�1
i bi, hpa

�1
i , biq � hpai, a

�1
i qq � pa

�1
i bi, 0q.

As Imphq � t�1, 0, 1u, the last thing implies that
12¹
i�1
pai, 0q�1pbi, 0q P

#
12¹
i�1

a�1
i bi

+
� t�12, . . . , 0, . . . , 12u.

On the other hand, by thickness of X̄2, (�), and [Gis10, Lemma 1.3(1)], we get that±12
i�1pai, 0q�1pbi, 0q P X̄24. So there exists n P t�12, . . . , 0, . . . , 12u such that pg, nq P X̄24. �

The topological dynamics of the G-flow SGpRq was worked out in [GPP15], including the
computation of the Ellis group which turns out to be Z2. We will also need the topological
dynamics of the G̃-flow SG̃pMq studied in [Jag15, Section 5]. The results below which are
stated without references can be found in [Jag15, Section 5].

First of all, it is well-known that all types in SpMq are definable, because this is true for
all types in SpRq and in SpZq and there is no interaction between the two sorts of M . So
SGpMq and SG̃pMq coincide with SG,extpMq and SG̃,extpMq, respectively, and hence the Ellis
semigroup operation on these sets is given by p � q � tppab{Mq for some/any b |ù q and a |ù p
such that tppa{M, bq is a coheir over M .

The Ellis group of the flow SGpMq consists of two types q0, q1, where q0 :� tppA{Mq and
q1 :� tpp�A{Mq for

A :�
�
p1� xqb p1� xqc� yb�1

yb yc� p1� xqb�1



where b ¡ R, c ¡ dclpR, bq, x positive infinitesimal, y positive with p1 � xq2 � y2 � 1, and
tppx, y{M, b, cq coheir over M (which implies that x, y are greater than all infinitesimals in
dclpR, b, cq). Then q0 is the neutral element of the Ellis group tq0, q1u, so an idempotent in a
minimal left ideal of SGpMq, and hence we will denote q0 by uG.

The space SG̃pMq is naturally homeomorphic with SGpRq � SZpZq, and the induced semi-
group operation is given by

pp, qq � pp1, q1q � pp � p1, q � q1 � hpp, p1qq,
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where hpp, p1q :� hpa, a1q for some/any a |ù p and a1 |ù p1 such that tppa{M,a1q is a coheir over
M , and � denotes the semigroup operation on SZpZq (which is indeed commutative). From
now on, pSG̃pMq, �q will be identified with pSGpRq � SZpZq, �q. Since � uses h, we will denote
this semigroup as SGpRq �h SZpZq. As to the semigroup SZpZq, we will interchangeably use
additive and multiplicative notation.

As pZ,�q is stable, there is a unique minimal left ideal MZ and it consists of the generic
types. There is also a unique idempotent uZ in MZ which the generic type concentrated
on the component Z̄0 (the intersection of all definable subgroups of Z̄ of finite index), and
uZMZ � MZ.

By the explicit formula for h and the idempotency of uG, we get hpuG, uGq � 0. So [Jag15,
Proposition 5.6] yields

Fact 5.7. Let MG Q uG be a minimal left ideal of SGpRq. Then:
(1) MG̃ :� MG �MZ is a minimal left ideal of SG̃pMq;
(2) uG̃ :� puG, uZq is an idempotent in MG̃;
(3) The Ellis group uG̃MG̃ equals uGMG �h MZ � uGMG �h uZMZ.

f1 : uGMG Ñ Z2 given by qi ÞÑ i is clearly an isomorphism. Since pZ,�q is stable, it is
well-known that the natural map f2 : uZMZ Ñ Z̄{Z̄0 � Ẑ given by tppa{Zq ÞÑ a{Z̄0 is an
isomorphism. Thus, the following corollary is deduced in [Jag15, Example 5.7].

Corollary 5.8. The map pf1, f2q : uG̃MG̃ Ñ Z2 � Ẑ is an isomorphism, with the group
operation on Z2 � Ẑ given by px, nqpx1, n1q :� px �2 x

1, n � n1 � xx1q. The target group is
moreover topologically isomorphic to Ẑ via the map px, nq ÞÑ x� 2n.

Our next goal is to show that the isomorphism in Corollary 5.8 is topological. This implies
that uG̃MG̃ is topologically isomorphic to Ẑ, so Hausdorff which confirms Conjecture 5.3 for�SL2pRq.

As the τ -topology on uGMG is T1, it is discrete, and so f1 is a topological isomorphism.
Since f2 is an isomorphism which is continuous by [KP17, Theorem 0.1], we get that it is a
topological isomorphism (with uZMZ equipped with the τ -topology).

The fact that the isomorphism pf1, f2q from Corollary 5.8 is topological follows immediately
from the above paragraph and the next proposition.

Proposition 5.9. The τ -topology on uGMG �h uZMZ is the product of the τ -topologies on
uGMG and uZMZ.

Before the proof, let us show a few properties of h which will be used also in the proof of
Proposition 5.13.

Lemma 5.10. (1) hpp, uGq � 0 for all p P SGpMq.
(2) hpuG, tppg{Mqq � 0 for all g P G.
(3) hpuG, guGq � 0 for all g P G.

Proof. (1) Present uG as tppA{Mq for A :�
�
p1� xqb p1� xqc� yb�1

yb yc� p1� xqb�1



, where x, y, b, c

are as above. Write p as tppB{Mq for B �

�
α β
γ δ



so that tppB{M,x, y, b, cq is a coheir

over M . Then puG � tppBA{Mq and BA �
�
c11 c12
c21 c22



with c21 :� γp1� xqb� δyb. Since

yb ¡ 0, by the explicit formula for h, the only possibility for hpp, uGq � 0 would be the case
when γpδq ¡ 0 and c21pc22q   0. We will show that it never happens, namely c21 ¡ 0 whenever
γpδq ¡ 0. So assume that γpδq ¡ 0.
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If γ � 0, then δ ¡ 0, and so c21 � δyb ¡ 0. So assume that γ ¡ 0. Suppose for a
contradiction that c21 ¤ 0. Then δ

γ ¤
x�1
y   R which contradicts the assumption that

tppγ, δ{R, x, yq is finitely satisfiable in R.
(2) The proof is similar and left to the reader.
(3) By the 2-cocycle formula, we have hpuG, gq � hpuGg, uGq � hpuG, guGq � hpg, uGq. So

the conclusion follows from (1) and (2). �

Proof of Proposition 5.9. Denote by T the product of the τ -topologies on uGMG and uZMZ.
Our goal is to prove that τ � T .

(�) It is enough to show that any subbasic closed set of the form F �uZMZ or uGMG�E
(where F � uGMG and E � uZMZ are τ -closed) is closed in τ .

First, consider F � uZMZ. Take any a P clτ pF � uZMZq. Then a � limpgi, niqpfi, aiq,
where ppgi, niqqi is a net from G̃ converging to uG̃ � puG, uZq and pfi, aiq P F � uZMZ. As
pgi, niqpfi, aiq � pgifi, ni � ai � hpgi, fiqq P tgifiu � MZ, we get that a P clτ pF q � MZ �
F � uZMZ, as required.

Now, consider uGMG � E. Take any a P clτ puGMG � Eq. Then a � limpgi, niqpfi, aiq,
where ppgi, niqqi is a net from G̃ converging to uG̃ � puG, uZq and pfi, aiq P uGMG � E.
Claim 1. hpgi, fiq � 0 for i large enough.
Proof. Since lim gi � uG is the type over M of a matrix with positive left bottom entry, there
is i0 such that the left bottom entry of gi is positive for all i ¡ i0. Consider any i ¡ i0. If
fi � uG, then hpgi, fiq � 0 by Lemma 5.10(1). If fi � q1, then the left bottom entry of any
matrix realizing fi is negative, so hpgi, fiq � 0 by the explicit formula for h. �(claim)

By this claim, pgi, niqpfi, aiq � pgifi, ni�ai�hpgi, fiqq � pgifi, ni�aiq. So a P clτ puGMGq�
clτ pEq � uGMG � E, as required.

(�) Consider a τ -closed A � uG̃MG̃. We need to show that it is closed in T . So take any
a � pa1, a2q P clT pAq. There are are nets pa1,iqi � uGMG and pa2,iqi � uZMZ τ -converging
to a1 and a2, respectively, with pa1,i, a2,iq P A for all i. Passing to subnets, we can assume
that the nets pa1,iqi and pa2,iqi converge in the usual topologies on SGpMq and SZpMq to
some b1 and b2, respectively. By Lemma 3.19 and Hausdorffness of uGMG and uZMZ, we get
uGb1 � a1 and uZ � b2 � a2. Approximating uG by elements of G and uZ by elements of Z,
using left continuity of the semigroup operations and the fact that the actions of G on SGpMq
and of Z on SZpMq are continuous, passing to subnets, we can assume that there are nets pgiqi
in G and pniqi in Z converging to uG and uZ, respectively, and such that lim gia1,i � a1 and
limni � a2,i � a2 (in the usual topology on type spaces). Then limpgi, niq � puG, uZq. On the
other hand, by Claim 1, hpgi, a1,iq � 0 for sufficiently large i’s, and so

pgi, niqpa1,i, a2,iq � pgia1,i, ni � a2,i � hpgi, a1,iqq � pgia1,i, ni � a2,iq

for sufficiently large i’s. Hence, limpgi, niqpa1,i, a2,iq � pa1, a2q. Therefore, a P clτ pAq � A. �

The next lemma follows by an elementary matrix computation.

Lemma 5.11. For every tppB{Mq P SGpMq with B �
�
α β
γ δ



, writing uG � tppA{Mq �

tppA1{Mq for A :�
�
p1� xqb p1� xqc� yb�1

yb yc� p1� xqb�1



, A1 :�

�
p1� x1qb1 p1� x1qc1 � y1b1�1

y1b1 y1c1 � p1� x1qb1�1



with the elements satisfying the requirements described before and such that tppB{M,Aq and
tppA1{M,B,Aq are coheirs over M , we have that uG tppB{MquG � tppC{Mq with the left
bottom entry of C equal to y1b1pαp1� xqb� βybq � py1c1 � p1� x1qb1�1qpγp1� xqb� δybq.

Lemma 5.12. (1) For B �

�
α β
γ δ



P G we have that uG tppB{MquG � uG � q0 if

γ ¡ 0, and uG tppB{MquG � q1 if γ   0.



GENERALIZED LOCALLY COMPACT MODELS FOR APPROXIMATE GROUPS 31

(2) uG
�

0 �1
1 0



uG � uG.

(3) uG tp
��

�1 0
γ �1



{M



uG � q1 for all positive infinitesimals γ.

Proof. First, let B �

�
α β
γ δ



P Ḡ with γ ¡ 0. Pick x, y, b, c, x1, y1, b1, c1 and ma-

trices A and A1 as in Lemma 5.11, satisfying additionally that tppB{M,x, y, b, cq and
tppx1, y1, b1, c1{M,x, y, b, c, α, β, γ, δq are coheirs over M . Observe that γp1 � xqb � δyb ¡ 0.
Indeed, it is clear if δ ¥ 0. If δ   0, then it is equivalent to �γ

δ ¡
y

1�x which is true
as y

1�x is a positive infinitesimal, �γ
δ ¡ 0, and tppγ, δ{M,x, yq is a coheir over M . Let

d be the left bottom entry of A1BA. Hence, by Lemma 5.11, we conclude that d ¡ 0 if
αp1� xqb� βyb ¥ 0. In the case when αp1� xqb� βyb   0, we have that d ¡ 0 if and only if
b1

c1   p1�
1�x1
y1b1c1 qp�

γp1�xq�δy
αp1�xq�βy q � p1�

1�x1
y1b1c1 qp�

γ�δ y
1�x

α�β y
1�x
q �: ζ.

(1) Since uG � tppA{Mq and q1 � tpp�A{Mq, replacing B by �B, we see that it is enough
to consider the case when γ ¡ 0 and to show that then d ¡ 0. By the above consideration,
this boils down to showing that b1

c1   ζ if αp1 � xqb � βyb   0. By the assumption of (1),
α, β, γ, δ P R. Thus, αp1�xqb�βyb   0 implies that α   β y

x�1 which is infinitesimal, so α ¤ 0.
Now, if α � 0, then ζ ¡ R, so ζ ¡ b1

c1 (as
b1

c1 is infinitesimal). If α   0, then ζ ¡ � γ
2α ¡

b1

c1 , as
� γ

2α is a positive real number.
(2) is a particular case of (1).
(3) It is enough to see that ζ ¤ b1

c1 . We have ζ � p1 � 1�x1
y1b1c1 qpγ �

y
1�xq   2pγ � y

1�xq which
is a positive infinitesimal (as 1�x1

y1b1c1 , γ and y
1�x are positive infinitesimals, and tppγ{M,x, yq is

a coheir over M). The conclusion follows from the fact that b1

c1 is a positive infinitesimal and
tppb1, c1{M,x, y, γq is a coheir over M . �

We have now all the tools to prove Proposition 5.4.

Proof of Proposition 5.4. Let B :�
�

0 �1
1 0



. Then B2 � �I and B4 � I. So, by the

explicit formula for the 2-cocycle h, we have hpB,Bq � 1 and hpB2, B2q � �1. Hence,
working in G̃, we get

p�q pB, 0q4 � pI, 2hpB,Bq � hpB2, B2qq � pI, 1q.
As observed after Corollary 5.8, uG̃MG̃ � Ẑ is Hausdorff, so HpuG̃MG̃q is trivial. We also

have that f2puZ � n � uZq � n for n P Z. Take f : G̃ Ñ uG̃MG̃ from Theorem 5.1. Using
Lemma 5.10,

fppg, nqq :� puG, uZqpg, nqpuG, uZq � puGguG, uZ � n� uZ � hpg, uGq � hpuG, guGqq �
puGguG, uZ � n� uZq.

Hence, by Theorem 5.1(3), there is a positive k P N such that tg P G : uGguG � uGu � kZ �
X14. Thus, by Lemma 5.12(2), tBu � kZ � X14. Therefore, using (�), we conclude that
tIu� p1� kZq � X14�4 � X56, and so I �pt�12, . . . , 0, . . . , 12u� kZq � X56�12 � X672. Using
Corollary 5.6, this implies that G� kZ � X672�24 � X696. �

One could also prove more directly (without using topological dynamics) a version of Propo-
sition 5.4 with a bigger number in place of 696, but we will not do that, as our point was
to illustrate by a non-trivial example how Theorem 5.1 leads to a better understanding of
generics in definable groups.

Finally, we give a negative answer to Question 4.13(3), and a positive answer to Question
4.13(2) in the particular case when X is a definable, generic, symmetric subset of G̃. First,
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let us describe the context. Let X be a definable, generic, symmetric subset of G̃. Then X
is a definable in M approximate subgroup and, as discussed after Proposition 5.4, G̃ � xXy.
By definability of types in SpMq, the flows SG̃,M pNq and SG̃pMq are identified (as discussed
above). We have already proved that HpuG̃MG̃q is trivial. Let f : G̃ Ñ uG̃MG̃ be the
generalized definable locally compact model from Theorem 3.25 and let f̄ � fM : SG̃pMq Ñ
uG̃MG̃ be as discussed before Question 4.13. Note that f̄ extends f . On the other hand, we
have the function f̂ : SG̃pMq Ñ uG̃MG̃ given by f̂ppq :� uG̃puG̃ which also extends f .

Proposition 5.13. The function f̄ is uniquely determined by the construction from Theo-
rem 4.6 and continuous, whereas f̂ is not continuous, and so f̄ � f̂ . However, f̄ |uG̃MG̃

�

f̂ |uG̃MG̃
� id.

Proof. Identifying uZMZ with Ẑ via f2, the second displayed computation in the proof of
Proposition 5.4 yields

fppg, nqq � puGguG, nq.

It follows from Lemma 5.11 and definability of types in SpMq that the sets tg P G : uGguG �
uGu and tg P G : uGguG � uGu are both definable. On the other hand, the function Z Ñ Ẑ
given by n ÞÑ n is definable in the sense that the preimages of any two disjoint closed subsets
of Ẑ can be separated by a definable set.

All of this together with Proposition 5.9 implies that f : G̃ Ñ uG̃MG̃ is a definable map.
Therefore, by Lemma 3.2 of [GPP14] and its proof, f̄ � fM is uniquely determined by the
construction from Theorem 4.6 and continuous.

Pick a positive infinitesimal γ. Let B :�
�
�1 0
γ �1



. Choose any net pgiqi of elements of

G converging to p :� tppB{Mq. Then the left bottom entries of the matrices gi are positive for
all i ¡ i0 for some i0. So, by Lemma 5.12(1), uGgiuG � uG for all i ¡ i0. On the other hand,
by Lemma 5.12(3), uGpuG � q1. Therefore, f̂ppp, 0qq P tuGpuGu�uZMZ � tq1u�uZMZ and
f̂ppgi, 0qq P tuGgiuGu � uZMZ � tuGu � uZMZ for all i ¡ i0. Since the net ppgi, 0qqi tends to
pp, 0q and q1 � uG, we conclude that f̂ is not continuous at pp, 0q. Hence, f̄ � f̂ by continuity
of f̄ . More precisely, since f̄ |G̃ � f̂ |G̃, we get that f̄ppq � f̂ppq.

It remains to show that f̄ |uG̃MG̃
� id, as directly from the definition of f̂ we have f̂ |uG̃MG̃

�

id. Consider any n P Ẑ. Our goal is to show that f̄ppuG, nqq � puG, nq and f̄pp�uG, nqq �
p�uG, nq. We will prove the first equality; the second one can be proved analogously.

Choose any net ppgi, niqqi from G̃ converging to puG, nq. Then the left bottom entry of gi is
positive for all i ¡ i0 for some i0. By Lemma 5.12(1), uGgiuG � uG for all i ¡ i0. Therefore,
using Lemma 5.10, we get

f̄ppgi, niqq � puGgiuG, ni � hpgi, uGq � hpuG, giuGqq � puG, niq

for all i ¡ i0, so it clearly tends to puG, nq. Since the net ppgi, niqqi tends to puG, nq, by
continuity of f̄ , we conclude that f̄ppuG, nqq � puG, nq. �
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