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ABSTRACT. We give a proof of the existence of generalized definable locally compact models
for arbitrary approximate subgroups via an application of topological dynamics in model
theory. Our construction is simpler and shorter than the original one by Hrushovski [Hru20]
and it uses only basic model theory (mostly spaces of types and realizations of types). The
main tools are Ellis groups from topological dynamics considered for suitable spaces of types.
However, we need to redevelop some basic theory of topological dynamics for suitable “locally
compact flows” in place of (compact) flows. We also prove that the generalized definable
locally compact model which we constructed is universal in an appropriate category. We note
that the main result yields structural information on definable generic subsets of definable
groups, with a more precise structural result for generics in the universal cover of SLa(R).

1. INTRODUCTION

A subset X of a group is called an approximate subgroup if it is symmetric (i.e. e € X and
Xt = X) and XX < FX for some finite F' = (X). Approximate subgroups were intro-
duced by Tao in [Tao08] and since then have played a central role in additive combinatorics.
However, the study of approximate subgroups in some contexts goes back much earlier to the
seminal monograph of Meyer [Mey72] from 1972. There is a long list of authors and impor-
tant papers in the subject, including many applications within and outside mathematics, e.g.
to quasicrystals. A good historical background is outlined in the introduction to the very
recent paper [Mac23]; see also the introduction in [BGT12]. Here, we will only mention a few
milestone contributions after [Tao08] which are relevant for this paper.

A symmetric compact neighborhood of the neutral element in a locally compact group is
always an approximate subgroup. Let X be an approximate subgroup and G := (X). By a
locally compact [resp. Lie] model of X we mean a group homomorphism f: (X) — H for some
locally compact [resp. Lie| group H such that f[X] is relatively compact in H and there is a
neighborhood U of the neutral element in H with f~1[U] € X™ for some m < w. It is easy
to show that if f: (X) — H is a locally compact model of X, then X can be recovered up to
commensurability as the preimage of any compact neighborhood of the identity in H.

A breakthrough in the study of the structure of approximate subgroups was obtained by
Hrushovski in [Hrul2], where a locally compact model for any pseudofinite approximate sub-
group (more generally, near-subgroup) X was obtained by using model-theoretic tools, and in
consequence also a Lie model was found for some approximate subgroup commensurable with
X and contained in X*. This paved the way for Breuillard, Green, and Tao to give a full
classification of all finite approximate subgroups in [BGT12].

By a definable (in some structure M) approzimate subgroup we mean an approximate
subgroup X of some group such that X, X2, X3 ... are all definable in M and -|xnxxn :
X" x X™ — X?" is definable in M for every positive n € N. If the approximate subgroup X
is definable in M, then in the definition of a locally compact model one usually additionally
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requires definability of f in the sense that for any open U € H and compact C S H such that
C < U, there exists a definable (in M) subset Y of G such that f~}[C] € Y < f~![U]. Note
that in the abstract situation of an arbitrary approximate subgroup X, we can always equip
the ambient group with the full structure (i.e. add all subsets of all finite Cartesian powers
as predicates), and then X becomes definable and the additional requirement of definability
of locally compact models is automatically satisfied. In other words, definable approximate
subgroups generalize abstract approximate subgroups.

Massicot and Wagner [MW15] proved the existence of definable locally compact models
for all definably amenable definable approximate subgroups, and Wagner conjectured that a
locally compact model exists for an arbitrary approximate subgroup. Literally, this conjecture
is false; a counter-example can be found for example in [HKP22, Section 4]. However, in
another breakthrough paper [Hru20], Hrushovski weakened the notion of locally compact
[and Lie|] model of an approximate subgroup X by replacing a homomorphism by a quasi-
homomorphism f: (X) — H with a compact, normal, symmetric error set S (meaning that
f@) 1f(@) L f(zy) € S for all z,y € (X)) whose preimage under f is contained in an absolute
(i.e. independent of X) power of X, and he proved the existence of such generalized definable
locally compact models for arbitrary approximate subgroups (where the notion of definability is
also weakened appropriately). This is a structural result on arbitrary approximate subgroups,
as each approximate subgroup can be recovered up to commensurability as the preimage of
any compact neighborhood of the (compact, symmetric) error set via a generalized locally
compact model. This allowed Hrushovski to deduce the existence of suitable generalized Lie
models and obtain full classifications of approximate lattices in some contexts, e.g., in SL, (R)
and SL,(Qp). Very recently, Machado wrote an impressive paper [Mac23] with a complete
structure theorem for approximate lattices in linear algebraic groups over local fields and a
uniqueness result for generalized locally compact models with certain extra properties.

The proof in [Hru20] of the existence of generalized definable locally compact (and Lie)
models is based on a new theory developed by Hrushovski including definability patterns
structures and local logics, which is difficult and may be inaccessible to non model theorists.

We prove the existence of generalized definable locally compact models via topological dy-
namics methods in a model-theoretic context. The main idea is to extend the fundamental
theory of Ellis groups to the context of suitable locally compact flows, and then the desired gen-
eralized definable locally compact model is a certain (explicitly defined) quasi-homomorphism
to the canonical Hausdorff quotient of the Ellis group. Our proof is much shorter and uses
only standard model theory (e.g. externally definable sets, [external] types, realizations of
types). In fact, if one is not interested in obtaining any definability property of generalized
locally compact models, then one can just equip the group G := (X) (generated by the given
abstract approximate subgroup X) with the full structure and then our proof uses a suitable
locally compact subflow of the Stone-Cech compactification SG of G, and so there is no need
to use externally definable sets and external types. Our construction of the generalized de-
finable locally compact model is supposed to be fully self-contained. In particular, we will
provide almost all the proofs while developing the theory of Ellis groups for suitable locally
compact flows in Section 3; only a few easy proofs that are identical to the proofs in the
classical context of compact flows are omitted with precise references to where they can be
found.

We also prove universality of our generalized definable locally compact model in a suitable
category. As a consequence, we obtain a characterization for a quasi-homomorphism to be
a generalized definable locally compact model. While the usual notion of definability of a
map from a definable set to a compact space has a characterization coming from continuous
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logic (namely, a factorization through a suitable space of types), the modified notion of de-
finablity used in generalized definable locally compact models is not so transparent and our
characterization explains its nature.

It is also interesting to consider the special case when the approximate subgroup X in
question generates a group G in finitely many steps. Then the target space of our generalized
[definable| locally compact model is compact, and it is in fact the classical [resp. externally
definable| generalized Bohr compactification of G defined by Glasner (see [Gla76] and [KP17]).
This special case can be seen as a structural result on arbitrary definable generic subsets of
definable groups. We will discuss it in Section 5.

In Section 2, we give the necessary preliminaries, including all basic definitions in model
theory. Section 3 is devoted to our construction of a generalized definable locally compact
model of an arbitrary definable approximate subgroup. In Section 4, we prove universality
of our model and discuss related things. In Section 5, we focus on the situation when the
approximate subgroup in question generates a group in finitely many steps, so in fact the
situation of a definable, symmetric, generic subset of a definable group. We explain why the
main result can be thought of as a structural result on such generic subsets and we use it
to obtain more precise structural information on generics in the universal cover of SLa(R).

Moreover, our analysis of Sm) leads to an answer to some natural question stated at the
end of Section 4, and also shows that the weakening of Newelski’s conjecture proposed in

———

Section 5 holds for SLy(R).

We finish this introduction with a brief history connecting Hrushovski’s approach from
[Hru20] and our approach via topological dynamics. Topological dynamics methods were in-
troduced to model theory by Newelski in [New09]. Since then many papers have appeared
in this subject, in particular some deep connections and applications to model-theoretic com-
ponents of groups and to strong types were obtained in [KP17; KPR18; KR20; KNS19].
Motivated by this work, Hrushovski developed in [Hrul9] a parallel theory of definability pat-
terns structures. Then, in [Hru20], he redeveloped it in the context of local logics introduced
by himself in [Hru20], and used it to prove the existence of generalized definable locally com-
pact models. In this paper, we return to the topological dynamics approach, but for locally
compact flows instead of usual compact flows, and we provide a shorter and simpler proof of
Hrushovski’s theorem with further information on universality.

2. PRELIMINARIES

In this section, we recall some basic notions from model theory and topological dynamics
to make the main construction self-contained.

2.1. Model theory. Let us fix a language (or signature) L, i.e. a collection of relation,
function, and constant symbols. Using those symbols together with quantifiers, variables,
and logical symbols, one constructs recursively the set of all L-formulas; L-sentences are L-
formulas without free variables. An L-structure is a set M together with interpretations of
all the symbols of L. For example, if L consists of just one binary function symbol, then any
group is an L-structure. Let us fix an arbitrary L-structure M.

For any L-sentence p, M = ¢ means that ¢ is true in M. For any subset A of M we can
expand the language L to L4 be adding constant symbols for the members of A, which are
then interpreted in M as the corresponding elements of A. For an L 4-formula o(z), (M)
denotes the set of realizations of p(z) in M, ie. (M) := {a € M*l . M = ¢(a)}. By
an A-definable subset of M [more generally, of a Cartesian power M"] we mean the set of
realizations in M of an L s-formula ¢(x) with one [resp. n] free variables z. By a definable
subset we mean an M-definable subset. For example, the centralizer of an element of a group
is a definable subset of this group.
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An L-structure N is an elementary superstructure of M (symbolically, M < N) if
M < N and for every L-formula ¢(zi,...,z,) and tuple (ai,...,a,) € M"™ we have
M E=v(al,...,an) <= N Eoelal,...,ap).

By a type over A € M in variables x we mean a consistent collection m(z) of L 4-formulas,
where 7(x) being consistent means that for any finitely many formulas i (z), ..., pn(z) € 7(z)
we have M | (Jz)(¢1(z) A <+ A op(z)). The compactness theorem tells us that this is
equivalent to the property that 7(z) has a realization a in some N > M, i.e. N = p(a) for
all p(z) € m(z), which will be denoted by a = m. A complete type over A in variables z is a
type p(z) over A such that for every L-formula p(x) we have p(x) € p or —p(z) € p. This
is equivalent to saying that p = tp(a/A) := {¢(x) an Ls-formula : N |= ¢(a)} for some tuple
a in some N > M. The set of all complete types over A in variables z is denoted by S, (A).
This is a compact, zero-dimensional topological spaces with a basis of open sets given by the
L 4-formulas, i.e. any L4-formula ¢(z) yields a basic open set [¢(x)] := {p € S(A) : p(z) € p}.
Identifying formulas (modulo equivalence) with the definable sets that they define, complete
types over A can be treated as ultrafilters in the Boolean algebra of A-definable subsets of
M1l and then the topology on S;(A) is just the Stone space topology. We will often omit z
in S;(A). The above discussion applies also to any elementary extension of M in place of M.

For a given cardinal k, we say that N > M is k-saturated if for every B € N of cardinality
< K, every p € S(B) has a realization in N. Using the compactness theorem, for every
there exists N > M which is k-saturated. In this paper, we will work with N > M which is
| M |*-saturated, and since it is very convenient to work with realizations of types from S(V),
we will be taking them in an |N|"-saturated € > N.

An externally definable subset D of M is the intersection of M with a definable subset of
N (where N > M is |M|"-saturated), that is D = M n ¢(N) for some formula ¢(x) with
parameters from N. This definition does not depend on the choice of N. By a complete
external type over M we mean an ultrafilter on the Boolean algebra of externally definable
subsets of M; all these types form a Stone space Sext(M). It is very convenient to identify
Sext (M) with a space of complete types in the usual sense. In order to do that, take an |M|*-
saturated N > M. Then Sext(M) is homeomorphic with the space Sy;(N) of all complete
types p € S(IN) which are finitely satisfiable in M, i.e. for any p(x) € p, ¢(z) is realized by some
element or tuple of elements of M; more precisely, Sy (V) 3 p— {o(M) : ¢(x) € p} € Sext(M)
is a homeomorphism.

One can also restrict the context to a given formula ¢(z) or to the set of realizations
X 1= @(M). By Sy (N) or Sx(N) we denote the space of complete types p € S(N) which
contain the formula ¢(x)'; Sx (V) will stand for the space of complete types over N which
contain ¢p(z) and are finitely satisfiable in M. Then Sx p/(N) is homeomorphic with the space
Sx ext(M) of ultrafilters on the Boolean algebra of externally definable subsets of X. All of
it applies also to any superset C of N (contained in €) in place of N. In particular, we have
the spaces Sy (C) and Sx p(C) homeomorphic with Sext (M) and Sx ext (M), respectively.

In this paper, we will need to extend this context to so-called \/-definable sets, i.e. unions
of possibly infinitely many definable sets. More precisely, let {X;};e; be an upward directed
family of A-definable sets for some A € M, and let G := | J,c; X;. Then by S ar(IV) we mean
Uier Sx;,m(N) with the topology inherited from Sj/(IV). Since each Sx; ar(IV) is clearly an
open subset of Sy (N), we get that U < Sg (V) is open if and only if U n Sx, a(IN) is open
in Sx, m(N) for all i € I; so I < Sg m(N) is closed if and only if F' n Sx, ar(IV) is closed in

IThere is a clash of notation here, as Sy (N) and Sx (N) have two different meanings when X = M. This
should not cause any confusion, as the symbol Sa (V) will always denote the space of complete types over N
finitely satisfiable in M, whereas the symbol Sx (N) (for X := p(M)) will always denote the space of complete
types over N which contain the formula ¢(z) defining X.
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Sx, m(IN) for all i € I. As each Sx, pm(N) is clearly a clopen subset of S a(IN) which is a
compact (Hausdorff) space, we get

Fact 2.1. Sg v (N) is a locally compact (Hausdorff) space.

In this paper, compact and locally compact spaces are Hausdorff by definition.

Note that the space Sg a(N) is homeomorphic with the space Sg ext(M) of those ultra-
filters on the Boolean algebra generated by the externally definable subsets of G which are
concentrated on some X;.

As before, the above discussion applies also to any superset C' of N in place of N. In
particular, we have the locally compact space Sg n(C) homeomorphic with Sg ext(M).

By Sq(M) we mean | J,.; Sx, (M) with the topology inherited from S(M), where Sx, (M)
is the space of complete types over M containing a formula defining X;. As above, this is a
locally compact space which is witnessed by the clopen compact sets Sx,(M).

If it is not specified, all the parameters and elements are taken from €. Sets of parameters
are usually denoted by capital letters, while elements or tuples of elements by lower case
letters. For any a,b, A, we will write a =4 b to express that tp(a/A) = tp(b/A).

For any A € B and a we say that tp(a/B) is a coheir over A if it is finitely satisfiable in A
(i.e. any finite collection of formulas in tp(a/B) has a realization in A). The following remark
will be used many times.

Remark 2.2. If a =4 b and tp(c/A, a,b) is a coheir over A, then a =4 b.

Proof. If not, then there is an L-formula ¢(z,y) such that € = ¢(a,c) A —¢(b,c). Since
tp(c/A, a,b) is a coheir over A, there is ¢ € A such that € = ¢(a, ) A =p(b,), so a #4 b, a
contradiction. g

Note that if a type m(x) (over any set of parameters) is finitely satisfiable in A, then it
extends to a global type p € S(€) finitely satisfiable in A. For that it is enough to take any
ultrafilter & on the Boolean algebra of all subsets of A such that {¢(€) N A : p(x) e} S U
and to define p as {¢(x) € L¢ : p(€) n A € U}.

Fact 2.3. For any type p € Sy (N) and superset B of N there is a unique extension p € S(B)
of p which is finitely satisfiable in M.

Proof. This follows from the fact that {¢©(M) : ¢(z) € p} is an ultrafilter on the Boolean
algebra of externally definable subsets of M (which in turn follows from |M|*-saturation of
N). O

The model theory context in this paper will be the following: X will be an approximate
subgroup definable in a structure M (as defined in the introduction), N > M an |[M|*-
saturated elementary extension of M, € > N a big (at least |N|"-saturated) elementary
extension of N (the so-called monster model), G := (X) — the group generated by X, X =
X (¢) — the interpretation of X in €, G := (X) — the group generated by X. Thus, we can
use the above notation Sg (V) for the family {X;}ier := {X™ : n e w}.

Regarding the monster model €, besides saturation one usually also assumes strong homo-
geneity with respect to a sufficiently big cardinal. Using the compactness theorem, it is easy
to construct € > N which is |N|*-saturated and strongly |N|*-homogeneous which means
that for any subset A € € of cardinality at most |N|, any elementary map f: A — € (that is
CEypla) < € E ¢(f(a)) for every formula ¢(z) € L and finite tuple a from A) extends
to an automorphism of €. Although the arguments in this paper do not require strong |N|*-
homogeneity of €, it is convenient to assume it and use (without even mentioning) the fact
that then for every A of cardinality at most |/N| and finite tuples a,b we have that a =4 b if
and only if b = f(a) for some f € Aut(€/A) (the pointwise stabilizer of A).
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2.2. Topological dynamics. Topological dynamics studies flows, that is pairs (G,Y’) where
Y is a compact space and G is a topological group acting continuously on Y. We focus on
the case when G is discrete; then continuity of the action just means that the action is by
homeomorphisms.

In this paper, we will have to extend the context to the case when Y is a certain special
locally compact space on which G acts by homeomorphisms, namely Y := Sg 3/ (N) from the
end of the last subsection. We will develop all the necessary theory in this context providing all
the details (including proofs) in Section 3. So here we only briefly recall some notions and facts
in the classical context of (compact) flows. They will not be used in the main construction
(except Fact 2.5), and we give them only to show what is well-known in topological dynamics.
This classical context of (compact) flows is however sufficient when the approximate subgroup
X generates G in finitely many steps, and this is the context of Section 5.

In the rest of this subsection, (G, X) will be an arbitrary flow (so X and G have nothing
to do with the approximate subgroup X considered above). Classical references for Ellis
semigroups and groups are [Aus88; Gla76]. A very good concise exposition with proofs can
be found in Appendix A of [Rzel8|.

Definition 2.4. The Ellis semigroup of the flow (G, X), denoted by E(X), is the closure of
the collection of functions {my : g € G} (where my: X — X is given by my(x) := gx) in the
space XX equipped with the product topology, with composition as the semigroup operation.

E(X) is a compact left topological semigroup (i.e. the semigroup operation is continuous
in the left coordinate). The following fundamental fact was proved by Ellis (e.g. see Corollary
2.10 and Propositions 3.5 and 3.6 of [E1l69], or Fact A.8 of [Rzel8]).

Fact 2.5. Let S be a semigroup equipped with a quasi-compact T1 topology such that for any
so € S the map s — ssqg is a continuous and closed mapping (the latter follows immediately
from continuity and compactness if S is Hausdorff). Then there is a minimal left ideal M in
S (i.e. a minimal set such that SM = M), and every such M satisfies the following.
i) For any pe M, Sp = Mp = M is closed.
ii) M is the disjoint union of the sets uM with u ranging over J(M) := {u € M : u® = u}.
iti) For each u € J(M), uM is a group with identity element u, where the group operation
is the restriction of the semigroup operation on S.

i) All the groups uM (for uw € J(M)) are isomorphic, even when we vary the minimal
left ideal M.

Applying this to S := F(X), the isomorphism type of the groups uM (or just any of these
groups) from the above fact is called the Ellis group of the flow X .

Definition 2.6. For B € E(X) and a € E(X), aoB is defined as the set of all points ¢ € F(X)
for which there exist nets (b;); in B and (g;); in G such that lim g; = a and lim g;b; = c.

Basic properties of o are contained in Facts A.25-A.29 of [Rzel8]. In particular, a o B is
closed.
Now, choose any minimal left ideal M of E(X) and an idempotent u € M.

Definition 2.7. For A € uM, define cl,(A) := (uo A) n uM.
For the proofs of the facts listed below see Facts A.30-A.40 in [Rzel8].

Fact 2.8. cl; is a closure operator on uM. The topology given by cl; is called the T-topology.

2This terminology is used by model theorists. In topological dynamics, the Ellis group of a pointed minimal
G-flow (X,z0) is the subgroup of those elements 7 in the Ellis group (in our sense) of the universal G-ambit
BG for which nzo = xo, but we will not use this definition in the paper.
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Fact 2.9. uM with the T-topology is a compact Ty semitopological group (i.e. multiplication
is separately continuous) which does not depend (up to topological isomorphism) on the choice

of M and u e J(M).

Fact 2.10. H(uM) := (), cl;(V), where V ranges over the T-neighborhoods of w in uM, is
a T-closed normal subgroup of uM, and uM/H(uM) is a compact Hausdorff group. In fact,
uM/H (uM) is the universal (or greatest) Hausdorff quotient of uM.

An ambit is a flow (G, X, z¢) with a distinguished point zy € X with dense orbit. An
important classical G-flow is the universal G-ambit SG, i.e. the space of ultrafilters on the
Boolean algebra of all subsets of G with the action of G by left translation and the distinguished
ultrafilter being the principal ultrafilter of the neutral element. Then the Ellis semigroup
E(BG) is naturally isomorphic to (3G, *), where  is given by U e pxq <= {ge G: g9 U e
q} € p. Model theory provides a transparent and very useful formula for . Namely, treat G
as a group definable in M := G equipped with the full structure (i.e. with predicates for all
subsets of G). Then G = Sg ext(M) is naturally identified with the space of types S (M)
and it turns out that p * ¢ = tp(ab/M), where b |= ¢, a = p, and tp(a/M,b) is the unique
extension of p which is a coheir over M. More generally, if we have a group G definable
in a structure M, then Sgcx(M) is a G-ambit with the action of G by left translation and
the distinguished element being the ultrafilter of the neutral element. Identifying Sg ext(M)
with Sg a(N) (where N > M is |[M|*-saturated), it turns out that the Ellis semigroup
E(Sc,m(N)) is isomorphic to (Sga(INV), *) with = given by p # ¢ := tp(ab/N), where b = g,
a = p, and tp(a/N,b) is the unique extension of p which is a coheir over M (an isomorphism
(Sa,m(N),*) = E(Sg,m(N)) is given by p — 1,, where [,(q) :=p * q).

3. GENERALIZED DEFINABLE LOCALLY COMPACT MODEL

This section is devoted to a new self-contained construction of a generalized definable locally
compact model of an arbitrary definable approximate subgroup. Let us start from the context
and precise definition of generalized definable locally compact models.

For a map f: G — H from a group (or even semigroup) G to a group H, error,(f) :=
{(f()" f (@) f(xy) : 2,y € G} and errory(f) := {f(zy)f(y) ' f(z)"': 2,y € G}. For C € H,
we write f: G — H : C if error,(f)uerror;(f) € C and we say that f is a quasi-homomorphism
with an error set C. Note that if C' is normal in H (which will be the case in our context),
then error,(f) € C if and only if error;(f) € C. Also, if f: G — H : C, then f(eg) € C1
and f(z7!) € f(z)7'C~2. Sometimes one assumes that f(eg) = ey, and this will be satisfied
in our construction.

From now on, take the situation and notation described at the end of Subsection 2.1.

Definition 3.1. A generalized definable locally compact model of X is a quasi-homomorphism
f: G — H : C for some symmetric, normal, compact subset C of a locally compact group H
such that:
(1) for every compact V € H there is i € N with f~[V] € X%
(2) for every i € N, f[X'] is relatively compact in H;
(3) there is [ € N such that for any compact Z,Y € H with C'Y nC'Z = (F the preimages
f7HY] and f~1[Z] can be separated by a definable set.

If we drop item (3), we get the notion of generalized locally compact model.

Remark 3.2. In item (2) of the above definition, it is equivalent to require that f[X] is
relatively compact.

Proof. We have f[X?] € f[X]?C, so, by compactness of cl(f[X]) and C, we get c(f[X?]) <
cl(f[X])2C. More generally, by induction, cl(f[X']) € cI(f[X])’C*! for all i > 1, and since
the last set is compact, so is cl(f[X"]). O
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Remark 3.3. If f: G - H : C is a generalized definable locally compact model of X, then
there is [ € N such that for any compact Z,Y € H with C'Y n C'Z = (& there are didjoint
definable subsets D; and Dj of some X" with f~'[Y] € Dy and f~1[Z] S Ds.

Proof. 1t follows from items (1) and (3) of the definition. O

Fact 3.4. Let f: G — H : C be a generalized locally compact model of X.

(1) For every neighborhood U of err, f~Y[UC] is generic in the sense that finitely many
left translates of f~1[UC] cover X.

(2) For every relatively compact neighborhood U of e, Y := f~H{UC] is commensurable
with X and YY1 is an approzimate subgroup commensurable with X .

Proof. (1) Take an open neighborhood W of ey such at W 'W < U. By compactness of
cl(f[X]), we have that cl(f[X]) is covered by finitely many translates a;W, ..., a,W.

For every i < n with f~[a;W] # & choose g; € f 1[a;W]. We will show that X is covered
by the finitely many translates g; f ! [UC] for i < n such that f~'[a;W] # &.

Consider any g € X; then g € f~![a;W] for some i < n, ie. f(g) € a;W. Write g as
gih. Then f(g9) = f(g:)f(h)f(h)~ f(g:)" f(g:h) € a;W f(R)C. Hence, the last set has a
nonempty intersection with a;W. So f(h) € WWC < UC. Therefore, h € f~[UC], and so
g€ gifMUC].

(2) The fact that finitely many left translates of f~![UC] cover X follows from (1). The
fact that finitely many left translates of X cover f~1[UC] follows from item (1) of Definition
3.1 and the assumption that X is an approximate subgroup (which clearly implies that X? is
covered by finitely many left translates of X for every every i € N). The very final part about
YY1 easily follows, as Y € YY ! € X' for some i. O

Thus, as mentioned in the introduction, a generalized locally compact model of X allows
us to recover X up to commensurability as the preimage of any compact neighborhood of C.

3.1. Topological dynamics of Sgar(N). Recall that for N < C' < € by S3/(C') we denote
the space of complete types over C' which are finitely satisfiable in M, and by Sg x(C) the
subspace of Sy;(C) consisting of all types concentrated on some X™. For a formula ¢(x) in
Lo (with N € C < €) such that p(€) € X" for some n € N, we have that [p(x)] := {p €
Su(C) : p(z) € p} S Sxn m(C) is a basic open set in Sg \(C). For any g € G, by (g~ 1)
[resp. ¢(zg~1)] we mean an L¢ ,-formula defining the set go(€) [resp. ¢(€)g]. (Note that by
the definability of the approximate subgroup X, it is clear that the sets gp(€) and ¢(€)g are
indeed definable over C, g.)

The goal of this subsection is to extend the classical theory briefly mentioned in Subsection
2.2 to the action of G' on the locally compact space Sga(IN) by left translation, that is
gtp(a/N) := tp(ga/N). First of all, this action is by homeomorphisms, because a basis of
open sets in S ar(IN) consists of the sets of the form [p(z)] for formulas ¢(z) in Ly with
@(€) € X™ for some n, and g[p(x)] = [p(g " z)] is still a basic open set for any g € G.

Define a binary operation * on Sg a(N) by

p#*q:=tp(ab/N), where b = ¢, a = p, and tp(a/N,b) is a coheir over M.

Lemma 3.5. (Sg m(IN),*) is a left topological semigroup, that is, = is well-defined, associa-
tive, and left continuous.

Proof. Take pairs (a,b) and (a’,b') both as in the definition of . Thus, ¥’ =y b, so, by
|N|"-saturation of €, we can find a” such that (a”,b) =5 (a’,b'). Then tp(a”/N,b) is an
extension of p which is a coheir over M. Therefore, tp(a”/N,b) = tp(a/N,b) by Fact 2.3.
Hence, tp(ab/N) = tp(a”b/N) = tp(a’b'/N). We have proved that * is well-defined.

To check that * is associative, consider any p,q,r € Sg p(IN) and pick a = p, b |= ¢, and
¢ = r such that both tp(b/N,c) and tp(a/N,b,c) are coheirs over M. Then tp(a/N,bc) is a
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coheir over M, so abc = p# (¢ #r). On the other hand, tp(a/N,b) and tp(ab/N,c) are both
coheirs over M, so abc = (p = q) = r. Thus, p=(q*71) = (p=*q) =r.

It remains to show left continuity of #. Fix ¢ € Sg a(N) and pick b = ¢. Then b € X™
for some m. Consider any basic open set U = [¢(z)] € Sxn a(N) for some n. The goal is
to show that V' := {p € Sgnm(N) :p*qe U} is open. It is clear that V' S Sxn+m ps(N). By
Fact 2.3, the restriction map 7: Sxn+m pr(N,b) — Sxn+m pr(IN) is a homeomorphism. So it is
enough to show that r—[V] is open.

For any a such that tp(a/N,b) is a coheir over M we have

tp(a/N,b) € r~ V] < tp(ab/N)e U < € k= p(ab).
Therefore, ! [V] = [p(zb)] is a basic open set in Syn+m 37 (N, b). O

Note that G' naturally embeds into Sg a(N) via g — tp(g/N), which we will be using
without mentioning.

Remark 3.6. For every n the set X" is dense in Sx» p(IN), and G is dense in Sg a(N).

Proof. The second part follows from the first. The first part is clear, as for any nonempty
basic open set [¢(z)] in Sxn ar(INV) there is a € p(M) < X" O

For p e Sgm(N) let I,: Sqam(N) — Sam(N) be defined by I,(¢q) := p * ¢. Since the next
fact will not be used in the rest of the construction, we leave a proof as an exercise.

Proposition 3.7. The assignment p — [, yields an isomorphism between S ar(N) and the
Ellis semigroup E(Sqa(N)) defined in the same way as for (compact) flows in Subsection

The following property of the semigroup operation x, which follows immediately from the
definition of * and the assumption that X is symmetric, will play an essential role in the rest
of the construction.

Remark 3.8. Whenever q € Sxn pr(N), 7€ Sxm p(N), and p* g = r, then p € Sxnim pr(N).

Lemma 3.9. There ezists a left ideal M of Sg y(N) for which the set M n Sx p(N) is
minimal (nonempty).

Proof. By compactness of Sx a/(N) and Zorn’s lemma, it is enough to show that for every
s € Sxm(N) the set (Sgam (V) *s) N Sx am(N) is closed. By Remark 3.8, (Sg v (N) * s) N
Sx,m(N) = (Sx2 p(N) # 8) 0 Sx (V).

Since r5: Sx2 37 (N) — Sys p(N) given by p — p+ s is a continuous map between compact
Hausdorff spaces, we get that Sx2 p/(IN) * s = rs[Sx2 3 (V)] is closed, and so is (Sx2 pr(N) *
8) M SX’M(N) O

Proposition 3.10. There exists a minimal left ideal in S p(N).

Proof. We can clearly find a left ideal M as in the conclusion of Lemma 3.9 which is of
the form Sg (V) * s for some sog € Sx p(IN). We will show that it is minimal. For
that take any s € M. It is enough to show that (Sg a(N) * s) N Sx m(IN) # & (as then
s0 € (Sg,m(N) *s) N Sx m(N) by the choice of M).

We have that s € Sxn pr(N) for some n; then s = tp(b/N) for some be X"

Claim 1. X - b ' nG # .

Proof. Since X is an approximate subgroup, X" € Xg; u--- U Xg, for some g1,...,9r € G.
Hence, X" € Xg1 U -+ u Xgy, i.e. X" € XG. Since X is symmetric, we get that (X1t c
X7 1G,s0b7 e X7IG, that is Xb ' n G # &. o(claim)



10 KRZYSZTOF KRUPINSKI AND ANAND PILLAY

By this claim, X - b~' n G extends to an ultrafilter on the Boolean algebra generated by
externally definable subsets of G which is concentrated on X™*!. This ultrafilter corresponds
to a unique tp(a/N,b) finitely satisfiable in M. Then tp(a/N) = tp(b/N) = tp(ab/N) €
SX,M(N),SO (SG’M(N)*S)GSX,M(N)?f@. O

Lemma 3.11. Any minimal left ideal of S (N) is closed and intersects Sx pr(IN).

Proof. Let M be a minimal left ideal of S¢ (V). The proof of Proposition 3.10 shows that
any left ideal (in particular M) of Sg a(IN) intersects Sx ar(IN). To show closedness of M,
first note that M = Sg ar(IN) * s for some s € Sg ar(N). Of course, s € Sxn ar(N) for some n.
By Remark 3.8, for every m € N, (Sg, 1 (N)#5) 0 Sxm pr(N) = (Sxn+m pr(N)#5) 0 Sxm pr(N),
and the last set is closed by compactness of Syn+m j(IN) and left continuity of . O

From now on, we will often skip writing =.

Lemma 3.12. Let M be an arbitrary minimal left ideal of Sgam(N). Then J(M) = {u €
M :u? = u} is nonempty and M is the union of all uM with u ranging over J(M).

Proof. Consider any p € M. Then p € Sxn p(N) for some n. By minimality of M, the set
P := {q e M : qp = p} is nonempty. Thus, by left continuity of * and Remark 3.8, P is a
nonempty closed subsemigroup of M contained in Sx2n (M), so it is compact. By Zorn’s
lemma, there exists a minimal closed subsemigroup K of P.

Consider any u € K. We will show that u?> = u. Then, since u € P, we get p = up =
u(up) € uM, so we will be done.

Let @Q := {q € K : qu = u}. By compactness of K and left continuity of %, Ku is a nonempty
closed subsemigroup of K, so Ku = K as K is minimal. Hence, Q) # {J. Since @ is a closed
subsemigroup of K, we get that = K, in particular u € Q). O

The proofs of the next two lemmas are identical to the proofs in the classical context, and
the proof of the third lemma below is an easy elaboration on the proof in the classical context.
We will only prove the first one, as the other two are not needed in our construction. For the
proofs in the classical context see [Rzel8, Fact A.8].

Lemma 3.13. For any minimal left ideal M of Sqgm(N) and uw € J(M), the set uM is a
group (with = as group operation).

Proof. uM is clearly closed under #, u € uM is a neutral element in uM, and = is associative.
Now, consider any p € uM. By minimality of M, there is ¢ € M with gp = u. Then
(uq)p = u? = u. Thus, uM is a semigroup with left identity and left inverses, and so it is a
group. [l

Lemma 3.14. For every minimal left ideal M of Sg ym(N) and any distinct u,v € J(M),
uM oM = &.

Lemma 3.15. For any minimal left ideals M, N of Sgm(N) and u e J(M),v € J(N) the
groups uM and vN are isomorphic.

Therefore, the isomorphism type of all these groups uM (or just any of these groups sepa-
rately) can be called the Ellis group of Sg ar(N).

Now, the goal is to equip the Ellis group with a topology, which will be called the T-topology.
We will do it in the same way as in the classical context. Below, for P < Sg (V) the closure
of @ will be denoted by @, while for a subset @ of the Ellis group the closure with respect to
the 7-topology will be denoted by cl,(Q).

Definition 3.16. For any p € Sg p (V) and Q < S v (N) we define p o Q as the set of all
r € Sg.m(N) for which there are nets (g;)ier in G and (g;)ier in @ such that lim; g; = v and
lim; g;q; = r.
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All the easy observations A.25 — A.35 from [Rzel8] work with exactly the same proofs for
Sa m(N) in place of the Ellis semigroup of a compact flow. In particular, we have

Lemma 3.17. Given a minimal left ideal M 1Sg p(N) and idempotent uw € M, the operator
cl; on subsets of uM given by cl (Q) := (uM) N (uo Q) = u(uo Q) is a closure operator on
uM.

Now, fix a minimal left ideal M of Sg p/(N) and u € J(M).

Definition 3.18. By the 7-topology we mean the topology on the Ellis group uM given by
the closure operator cl; from Lemma 3.17.

Fact A.33 of [Rzel8] tells us that the 7-topology on uM is coarser than the subspace
topology inherited from S ar(N). The next lemma (see Fact A.35 of [Rzel8]) yields an
important connection between limits in both these topologies.

Lemma 3.19. If (a;); is a net in uM converging to a € uM, then (a;); converges to ua in
the T-topology.

Definition 3.20. Let us say that a topological space P is quasi locally compact if every point
p € P has a neighborhood U whose closure is quasi-compact.

Proposition 3.21. The Ellis group uM is a quasi locally compact T} space.

Proof. The fact that it is T3 is easy: cl-({p}) = w(u o {p}) = {u(up)} = {p}. Quasi locally
compactness requires more work.

Consider any ¢ € uM. Then q € Sxn p(N) for some n. Also, u € Sxm p(N) for some m.
Let

P = Sxnim p(N)° 0 uM,
where Sxnim pr(N)¢ denotes the complement of Syn+m pr(N) in Sg ar(N).

Claim 1. Sx» p(N) ncl-(P) = &.

Proof. Take any p € cl;(P). Then p = lim; g;p; for some nets (g;); in G and (p;); in P with
lim; g; = u. So for sufficiently large 7 we have that g; € X™ and p; ¢ Sxn+m 5 (N). Hence, p =
tp(ab/N) for some a € X™ and b ¢ X"+™. Therefore, p ¢ Sxn yr(N), as required.  o(claim)

Let
V= uM\ cl (P).
By Claim 1 and the above choices, ¢ € Sxn p(N) nuM SV € Syntm (V). In particular,
V' is a T-open neighborhood of q.
Claim 2- CIT(V) g SX2m+n7M(N)

Proof. Consider any p € cl (V). Then p = lim; g;p; for some nets (g;); in G and (p;); in V' with
lim; g; = u. So p = tp(ab/N) for some a € X and b e X"*™. Sop € Sxzm+n p(N). o(claim)

It remains to show that cl (V) is quasi-compact in the 7-topology. For that we need to show
that any net (p;)ies in cl-(V') has a convergent subnet. By compactness of Sxam+n p(N), the
net (p;)ier has a subnet (gj)je; convergent to some r € Sxam+n 5,(IN) in the usual topology on
Sx2min p(N). By Lemma 3.19, 7-1im; ¢; = ur, so, by 7-closedness of cl(V), ur € cl.(V). O

Proposition 3.22. uM equipped with the T-topology is a semitopological group, i.e. group
operation s separately continuous.

Proof. The argument from Fact A.36 of [Rzel8] works without any changes. O
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The proof of Fact A.37 of [Rzel8| applies to our context, so we get that all Ellis groups
of Sgm(IN) (for varying minimal left ideals M and idempotents v € J(M)) are in fact
topologically isomorphic. So the Ellis group of Sg a(N) is a well-defined semitopological
group associated with Sg (V).

Definition 3.23. Define H(uM) as [)cl,(V) with V ranging over all 7-neighborhoods of w.

Proposition 3.24. H(uM) is a 7-closed normal subgroup of uM, and uM/H(uM) is a
locally compact (so Hausdorff) topological group.

Proof. This is an elaboration on the proof of Fact A.40 (so, in fact, Fact A.12) of [Rzel8].

Exactly as in the proof of [Rzel8, Fact A.12], we get that H(uM) is a 7-closed normal
subsemigroup containing u. Hence, for every h € H(uM) both hH(uM) and H(uM)h are
subsemigroups of H (uM).

Claim 1. For every h € H(uM), both hH(uM) and H(uM)h contain an idempotent.

Proof. Fix h € H(uM) and consider hH(uM) (the case of H(uM)h is analogous). By
the proof of Proposition 3.21, there is a 7-neighborhood V of u in uM such that cl.(V) €
Sxr pr(N) for some k. By the last paragraph of the proof of Proposition 3.21, cl, (V) is quasi-
compact. Hence, H(uM) is T-closed, quasi-compact, and Tj. Therefore, by Proposition 3.22
(which implies that multiplication on the left or on the right by a fixed element is a home-
omorphism), hH(uM) is a 7-closed, quasi-compact, 77, and the map hH(uM) — hH(uM)
given by s +— ss¢ is continuous and closed for every sy € hH(uM). Hence, hH (uM) contains
an idempotent by Fact 2.5. o(claim)

Since the only idempotent in the group uM is u, we conclude from the above claim that
H(uM) is a subgroup of uM. By Proposition 3.21, uM is quasi locally compact, and so it
weakly quasi locally compact in the sense that every p € uM has a quasi-compact neighborhood.
This property is easily seen to be preserved under taking group quotients of semitopological
groups, so uM/H (uM) is weakly quasi locally compact.

The last paragraph of the proof of [Rzel8, Fact A.12] applies to our context, so uM/H (uM)
is Hausdorff.

By the last two paragraphs, uM/H (uM) is locally compact. On the other hand, since uM
is a semitopological group, so is uM/H (uM). Therefore, by Ellis joint continuity theorem
[Ell57, Theorem 2], we get that uM/H (uM) is jointly continuous and inversion is continuous.
Thus, uM/H (uM) is a locally compact topological group. O

3.2. The main theorem. Recall that we are in the situation and notation described at the
end of Subsection 2.1. Let M be a minimal left ideal of Sg a/(N) and v an idempotent in
M. Let F: G — uM be given by F(g) := ugu and F': Sg/(N) — uM be the extension
of F given by F(p) := upu. Let f: G — uM/H(uM) be given by f(g) := ugu/H(uM)
and f: Sqa(N) — uM/H(uM) be the extension of f given by f(p) := upu/H(uM). In
particular, f = 7F where 7: uM — uM/H(uM) is the quotient map.

The following sets will play a key role.

= {xlyfl...xnygl:xi,yieéandmi =) y; for alli < n}
Fy = {tp(a/N) € Sgm(N) : a € Fp}

F = ((Fr o uM)/H (uM))M/H@M)
C :=cl (F) ucl (F)™!

S

Here is the main result, i.e. our version of Hrushovski’s [Hru20, Theorem 4.2].
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Theorem 3.25. The above function f is a generalized definable locally compact model of X
with the compact, normal, symmetric error set C' defined above, which is witnessed by | = 2
(see Definition 3.1). Moreover, f~[C] € X3° and there is a compact neighborhood U of the
neutral element in uM/H(uM) such that f~HU] € X and f~1[UC] = X34

The proof of Theorem 3.25 starts after the proof of Lemma 3.33 below.

Lemma 3.26. F| = {zy~' : 2,y € X withx =y y}. In particular, F, < X2 s M-type-
definable (that is, the set of realizations of a type over M), and so F, & Sxan p(N) is closed.

Proof. Only (S) requires a proof. Take any a,b € G with a =7 b. Then a € X™ for some n.
Since X™ < X S for some finite S € G, we have that X™ € XS. So ac € X for some ce S~ L.
As a =p band c € M, also bc € X and ac =y be. So ab™! = (ac)(be)™' € {xy~' : x,y €
X with 2 =) y}. The rest easily follows. O

Lemma 3.27. (1) ueﬁlgSXz,M(N).
(2) If pe F, nuM, then p— € F,iq nuM.
(3) F~Y[Sxn m(N) 0 uM] S Sxnia pr(N).
(4) F_l[anvM(N) NnuM] < xXn+d,

Proof. (1) u?> = u implies that there are a and b realizing u such that ab = u. So ab =y b,
hence a = (ab)b~! € F|. Therefore, u € | which is contained in Sx2 3 (N) by Lemma 3.26.

(2) Since pp ! = u, there are a = p and b |= ¢ such that ab = u. By assumption, b € F},,
and, by (1), ab € Fy. Therefore, a € Fy,41.

(3) Take any p € E~'[Sxn a7 (N)], i.c. upu € Sxn pr(N). Then abe = d € X" for some a = u,
blp andck=u. Sob=atde !t e X2X"X? = X" by (1). Hence, p € Sxn+a p(N).

(4) Take any g € F~'[Sxn a(N)]. By (3), tp(g/N) € Sxn+a pr(N), s0 g€ X" As g€ G,
we get g € X", O

Lemma 3.28. There exists a T-open neighborhood V' of u in uM such that V' < Sxa pr(N).

Proof. By Lemma 3.27(1), u € F} < Sx2(N). So the proof of Proposition 3.21 (in which
we can take ¢ := u and n = m = 2) yields a 7-open neighborhood V' of u which is contained
in SX4,M(N) O

Lemma 3.29. (1) (F7 nuM)*M S Fy nuM S Sxi6 3(N) 0 uM.
(2) el ((Fr 0 uM)*™M) € Fy nuM < Sx1s p(N) N uM is quasi-compact.
(3) cl(F) = w[cl-((Fr 0 uM)*M)] € (Fy A uM)/H(uM) is compact.
(4) C is compact, normal, symmetric, and contained in (Fio N uM)/H(uM).

Proof. (1) Take p € Fy n uM and ¢ € uM. The goal is to show that gpg—! € Fy (the last
inclusion follows from Lemma 3.26).

By the definition of *, we can find a = ¢, 8 = ¢!, and aq, b1, ..., a7, by with a; =p b; for
all i < 7 and tp(a/N, a7, b<7, ) a coheir over M such that a(] [;; aibi_l)ﬁ = qpgt. We
have o] [;<7 aib;h)p = (I Ti<7 a2 () HaB. Now, by Lemma 3.27(1), af Eqq ' =u e Fi,
so aff € Fi. On the other hand, since tp(a/M, a;,b;) is a coheir over M and a; =ps b;, by
Remark 2.2, we get that af =ps b, Therefore, ([ ],<; a®(b®)~NaB e Fy, so qpg~! € Fy.

(2) By Lemma 3.26, the sets F} and Fg are M-type-definable. By Lemma 3.27(1), u € F1,
and, by (1), (Fy n uM)*M C Fs. Thus, using the definition of cl, as in the proof of Claim 2
in the proof of Proposition 3.21, we get that cl.((Fy n uM)*M) c Fy which is contained in
Sx1s pr(N) by Lemma 3.26. Then quasi-compactness follows from the argument in the last
paragraph of the proof of Proposition 3.21.

(3) follows from (2) and Hausdorffness of uM/H (uM).
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(4) Compactness follows from (3) and the fact that uM/H(uM) is a topological group.
Normality is immediate, also using that uM /H(uM) is a topological group. The inclusion
C < (Fip n uM)/H(uM) follows from (3) and Lemma 3.27(2). O

Lemma 3.30. H(uM) < F3 nuM C Sxe v (N) N uM.

Proof. The second inclusion is by Lemma 3.26. The first one is essentially contained in the
proof of Theorem 0.1(2) of [KP17], but we repeat it here for the reader’s convenience.

By Lemma 3.27(1), u € Fy. By Lemma 3.26, F, is M-type-definable. So let p be the partial
type over M defining F, and closed under conjunction. Consider any ¢(z) € p. Let

V= [—e(@)] nuM,
where [—p(x)] is the clopen subset of S (V) consisting of all types containing —¢(x).

Claim 1. (1) u¢cl (V). N N
(2) cl-(uM\cl (V) € cl;(uM\V) € FY, where F5 := {tp(ab/N) € Sam(N) : a €
Fy and b |= p(x)}.

Proof. (1) Suppose for a contradiction that u € cl. (V). Using the definition of cl., we get that
there are a = v and b = —¢(x) such that ab = u. Then a € F} and ab € Fy, so b € Fy, and
hence b |= ¢(z), a contradiction.

(2) We need to check that cl.(uM\V) < ﬁ}f Consider any p € cl;(uM\V). As before,
there are a = u and b = ¢(x) such that ab = p. Then a € F, so tp(ab/N) € ﬁ’g’ o(claim)

Notice that () ﬁ?‘f = Fj. So, by the claim,

p(z)ep

H(uM) = (){cl-(U) : U T-neighborhood of u} < Ef A uM = Fy nuM,

e(z)ep
which completes the proof. O

Lemma 3.31. (1) Every compact K < uM/H(uM) is contained in (Sxn p(N) N
uM)/H(uM) for some n € N and n~1[K] is quasi-compact.
(2) Every quasi-compact K € uM is contained in Sxn pr(N) for some n € N.

Proof. (1) Take V from Lemma 3.28. Then U := w[V] € (Sx4 p(N) nuM)/H(uM) is open
in uM/H(uM), so K is covered by finitely many translates of U. Since all the translating ele-
ments are in some (Sxm a7 (V) uM)/H(uM), we get that K S (Sxm+a p(N)nuM)/H(uM).
So the 7-closed subset 7 '[K] of uM is contained in Sxm-+a 5 (N)H(uM) which in turn is
contained in Sym+10 5/ (N) by Lemma 3.30. So the final paragraph of the proof of Proposition
3.21 shows that 7 1[K] is quasi-compact.

(2) follows from (1) and Lemma 3.30, as w[K] is compact. O

The next two lemmas will be needed only in the proof of definability of f.
Lemma 3.32. If p = tp(a/N) and q = tp(b/N) belong to uM and a € F,b, then p €

(Fryo 0 uM)g.

Proof. As q¢~! = u, we can find ¥ = ¢~! such that bb' = u. So ¥ = b~'a for some a = u.
Then pg~!' = tp(a”"b~'a/N) for some a” =x a. As a € F,b, we have a” € F,b" for some
V' =N b, ie. a” = cb” for some c € F,,. Thus, pg~! = tp(cb”"b~*a/N). Since by Lemma 3.27(1)
we know that o € F, we conclude that ¢b”b'av € Fpa, 50 p € (Fjig muM)g. O

Lemma 3.33. F[F[K]] € (FrnuM)K for every T-closed, quasi-compact subset K of uM,
where F=1[K] denotes the closure of F~'[K] in Sgar(N).
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Proof. Consider any p € F_I[K] and ¢ = F'(p) = upu. Then ¢ = tp(aaS/N) for some « = u,
a = p, B = u. Also, p = limp} for some net (p}); from F~'[K]. Take a net (g); in G such
that lim g;, = .

By Lemma 3.31(2), K € Sxn 7 (N) for some n, so Lemma 3.27(3) implies that F~'[K] <
Sxn+a pr(N). Moreover, since u € Sx2 5,(N), taking an end segment of (g;,)x, we can assume
that g, € X2 for all k. Then all gfcup;» belong to Sxn+s 37 (V). By compactness of Syn+s p(IN),
we can find subnets (g;)ier of (g;,)x and (p;)ier of (p;) ; such that lim; g;up; exists.

Clearly, lim g; = u, limp; = p, up;u € uF’l[K]u = ﬁ'[}%’l[K]] = K, and r := lim g;up;u =
(lim g;up;)u exists. Hence, by Definition 3.16, we get r € uo K, so ur € u(uoK) = cl(K) = K,
as K is 7-closed.

Since ur = u(lim g;up;)u, by compactness (or rather |N|"-saturation of €), we get ur =
tp(ydebs/N) for some 7,9, € realizing u and b = p (note that S can be chosen the same as at
the beginning of the proof.)

Put 2 := aaB and y := ydebB. Then x = aab te ' 1y~ly € Fyy, because a =) b and
a,€,0,7 € F1 by Lemma 3.27(1). Therefore, using Lemma 3.32, we get

q = tp(z/N) € (F7 n uM) tp(y/N) = (Fr 0 uM)ur.
As we observed above that ur € K, we get ¢ € (Fy n uM)K. O

Proof of Theorem 3.25. By Lemma 3.29(4), we already know that C' is compact, normal, and
symmetric. Let us divide the proof into numbered parts.

(1) C is an error set of f.

By normality of C, it is enough to show that error,(f) € C. We will show more, namely
that error,(f) € (F3 n uM)/H(uM). For that take any g,h € G and we need to show
that F(h)"'F(g) " 'F(gh) € F3 n uM. The left hand side equals (uhu) '(ugu) ‘ughu =
(uhu) "' (ugu) " tghu.

Claim 1. (ugu)~! = tp(xzy~tg~1/N) for some v =y y.

Proof. Let a = u. Then ga |= gu. Let a = (ugu)~! be such that tp(a/N, «) is a coheir over
M. Then u = (ugu) tugu = (ugu)~'gu = tp(aga/N). Put z := aga and y := a. Then
x =) y (as each of these elements realizes u) and a = zy~'g~!. o(claim)

By this claim, we conclude that F(h) 'F(g) 'F(gh) = tp(zt 'h twy lg lgha/N) for
some z =y t, z =x y, and @ | u. But 2t hlay g7 gha = 272" (yh ) la € Fy,
because z =7 ¢, 2" =y y" ' (as & =y y and h € M), and o € Fy (by Lemma 3.27(1)).
Therefore, F(h) 'F(g) 'F(gh) € F3 nuM.

(2) There is a T-open neighborhood V' of u in uM such that V. < Sxa \(N). For any
such V, U := 7|V] is an open neighborhood of the neutral element in uM/H(uM) and
Ul € XY™ Thus, f~'U] € X' also holds for U replaced by any (in particular by a
compact) neighborhood of the neutral element in uM/H(uM) contained in U.

The existence of V is by Lemma 3.28. Then U := #[V] is an open neighborhood of
u/H (uM) in uM/H (uM). By Lemma 3.30, H(uM) S Sxs 3 (N). So 7' [U] = VH(uM) <
SXAI’M(N)S)(G’M(N) c le07M(N). HGDCG, fﬁl[U] = Fﬁl[’]Til[U]] - Fﬁl[leqM(N)], and
the last preimage is contained in X'* by Lemma 3.27(4).

(3) For every compact K € uM/H (uM) there is k € N with f~'[K] < X*.

Consider any compact K < uM/H(uM). By Lemma 3.31(1), K < (Sx»m(N) n
uM)/H(uM) for some n. So

FUK] = FUr K] € FSxn i (N)H (uM)] € F~[Sxnso pr(N)] € X",

where the second inclusion follows from Lemma 3.30 and the last one by Lemma 3.27(4).
(4) fIX"] is relatively compact for every i € N.
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By Remark 3.2, it is enough to show it for ¢ = 1. We have
fIX] = n[F[X]] € 7[u(Sx,m(N) nuM)u] € 7[Sxs 31 (N) nuM] € 7[cl- (Sxs pr (N) nuM)],
where the second inclusion follows from Lemma 3.27(1). By this lemma and the proof of Claim
2 in the proof of Proposition 3.21, we have cl; (Sys 5/ (N)nuM) S Sy7 5, (N). So the argument
in the last paragraph of the proof of Proposition 3.21 shows that cl,(Sxs /(INV) nuM) is quasi-
compact. Thus, m[cl;(Sxs 5/ (N) N uM)] is compact, and so is the closure of f[X].
(5) f71C] = X0, i
By Lemma 3.29(4), C < (Fip n uM)/H(uM). Hence,
f_l[C] = F_l[ﬂ_l[C]] < F_l[(Fl() N UM)H(UM)] < F_l[Flg N UM] -
FSx26 p(N) nuM] € X3,
where the second inclusion follows from Lemma 3.30, the third one from Lemma 3.26, and the
last one from Lemma 3.27(4).
(6) For U from (2) we have f~[UC] < X3*. Thus, the same holds for U replaced by any
(in particular by a compact) neighborhood of the neutral element in uM/H (uM) contained in

U.
We have

fHUCY = F a UC) € FH[Sxa ar(N)Sx20 00 (N) Sxs ar(N)] = F~1 [Sxso 0 (N)] € X7,

where the first inclusion follows from the choice of U and Lemmas 3.29(4) and 3.30, and the
last one from Lemma 3.27(4).

(7) For any compact Z,Y < uM/H (uM) with C?Y n C*Z = & the preimages f~1[Y] and
f7YZ] can be separated by a definable set.

By Lemma 3.31(1), #7![Y] and 7~![Z] are quasi-compact. On the other hand, since
(F7y nuM)/H(uM) € C, we have that

(Fr v uM)(Fr nuM)a Y] A (B nuM)(Fr nuM)n=[Z] = &.
So the following claim will complete the proof of (7) and of the whole theorem.

Claim 2. For any quasi-compact Z,Y < uM such that the sets (Fr 0 uM)Y and (F5 n
uM)(FrnuM)Z are disjoint the preimages F~[Y] and F~[Z] can be separated by a definable
set.

Proof. Let p: Sg.m(N) — Sa(M) be the restriction map. By the definition of the topologies
on type spaces, p is a continuous map. We claim that it is enough to show

() p[E Y] p[F1[2]] = @,
To see that (x) is enough, note that by Lemma 3.31(2) and 3.27(3) both F~1[Y] and F—1[Z]
are contained in some Sxn ps(N). Hence, by (x) and compactness of Sxn ar(N), p[F~1[Y]]

and p[F—1[Z]] are disjoint closed subsets of Sx= (M), and so they can be separated by a basic
open set [¢(z)] for some formula in Ly;. Then the definable set (M) separates F~[Y] and
FZ].

Let us prove (x). Suppose it fails, i.e. there are p € F~=1[Y] and ¢ € F~1[Z] such that
p(p) = p(q). So, taking « |= p and 8 |= ¢, we have o =) 8. Next, F(p) = upu = tp(y1ay2/N)
and F(q) = uqu = tp(y1872/N) for some 71,72 |= u (note that we can choose the same ~1,v2
in both formulas: first we chose 75 = u such that tp(a, 8/N,~2) is a coheir over M, and then
~1 = w such that tp(y1/N, a, 8, 72) is a coheir over M). Put x := y1ay and y := 1 572. Using
Lemma 3.27(1), we conclude that xy 1 = 71a5*17f1 € F3, so x € F3y. By Lemma 3.32, this
implies that F'(p) = tp(z/N) € (F5 nuM)tp(y/N) = (F5s nuM)E(g). On the other hand, by
Lemma 3.33, we have F(p) € (Fy n uM)Y and F(q) € (Fy n uM)Z. Thus, we conclude that
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E(p) is in the intersection of (Fy nuM)Y and (F5 nuM)(Fr nuM)Z, which contradicts the
assumption of the claim. o(claim)

O

3.3. Around the main theorem. In this subsection, we discuss some improvements or
variants of Theorem 3.25.

Concrete numbers in the statement of Theorem 3.25.

In [Hru20, Theorem 4.2], Hrushovski produced a generalized definable locally compact
model f of X with an error set C such that f~![C] € X'2, while in our theorem f~1[C] = X3°.

The proof of part (1) inside the proof of Theorem 3.25 shows that error,(f) S (F3 n
uM)/H (uM). Analogously, one can show that error;(f) € (F3 n uM)/H(uM). Therefore,
if we dropped the definability requirement from the definition of generalized definable locally
compact model (i.e. item (3) of Definition 3.1), then we could decrease our error set C' by
taking F := ((F3 nuM)/H (uM))*M/H@M) in place of F := ((Fy nuM)/H (uM))M/H M)
and setting C' := cl.(F) U cl.(F)~! as before. After this modification, our proofs yield
7Ol € X?2 and f~1[UC] < X?6. A question is whether after this modification item (3) of
Definition 3.1 still holds for some ! (maybe greater than 2). By the proof of part (7) in the
proof of Theorem 3.25, it would hold with [ = 4 if the answer to the second question below
was positive.

Question 3.34. (1) Does Fy % Fyy = Fy i ?
(2) Does (F,, nuM) * (Fp, nuM) = Fy i 0 uM?

_And a final question is whether we could use yet smaller C' obtained by replacing
F = (Fy o uM)/H (uM))PMHE@M) by Fo— (B A uM)/H (uM))MH@M) - For this C
our proof would give us f~1[C] = X®.

Definability over X

In [Hru20, Theorem 4.2], Hrushovski obtains separation by two sets definable over X,
while we got separation by a set definable over M. However, assuming that our approximate
subgroup X is J-definable (in particular, the group operation is piecewise ¢J-definable), it is
not difficult to modify our error set C' to get separation by a set definable over X, and then
we get separation by subsets of some X" which are definable over X (see Remark 3.3). We
explain the necessary modification of C' below.

Notice that, by F-definability of the approximate subgroup X, definability over X is
equivalent to definability over G := (X ). Let us modify the definition of C by replacing
F, = {xlyfl...ajnyrjl s 2,y € G and x; =pr y; for all i < n} by F := {xlyfl...xnygl :
zi,y; € G and x; =¢ y; for all i < n}. Then F!, F', and C' are defined using F in the same
way as the corresponding objects without primes are defined at the beginning of Subsection
3.2.

We claim that Theorem 3.25 holds with C replaced by C’ with the stronger conclusion
that for any compact Z,Y € uM/H(uM) with C?Y n C%2Z = (& the preimages f ![Y] and
fY[Z] can be separated by an X-definable set.

Since the sets with primes are supersets of the corresponding sets without primes, it is easy
to see that the only things to check (in order to apply the whole argument from Subsection
3.2) are the following:

(1) F| = {zy ! : 7,y € X with z =¢ y} € X?;
(2) (F% A uM)*™M C By nuM;
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(3) (*) from the proof of part (7) in the proof of Theorem 3.25 but for p: Sga(N) —
Sc(M) replaced by p': Sg v (N) — Sq(G) being the restriction map.

Proof. (1) The proof of Lemma 3.26 adapts, because the set S from that proof is contained
in G, and so ce G.

(2) Since all types in Sg a(IN) are finitely satisfiable in G, the proof of Lemma 3.29 adapts
choosing « |= ¢ so that tp(a/N, a<7,b<7, B) is a coheir over G.

(3) Replacing p by p’, the proof of () works as before (with & =¢ 8 in place of a =y 8). O

A

An error set for f

Elaborating on the proof of part (1) in the proof of Theorem 3.25, we obtain the following,
where Sg (V) is equipped with its semigroup structure.

Proposition 3.35. The function f: Sg(N) — uM/H(uM) (given by f(p) := upu/H(uM))
is a quasi-homomorphism with error,(f) U error;(f) < (F5 nuM)/H(uM), and so

C=cl, (((135 N uM)/H(uM))“M/H(“M)> U cl, (((1?'5 N u/\/l)/H(u/\/l))W\/t/H(“/Vt))71

is a compact, normal, symmetric error set of f.

Proof. We will only explain how to prove that error,(f) € (F5 n uM)/H(uM). The proof
that error;(f) < (F5 n uM)/H(uM) is similar. The rest follows as at the beginning of the
proof of Theorem 3.25, using an obvious variant of Lemma 3.29(4).

We need to show that (uqu)~'(upu)~'pqu S Fy for all p,q € Sa.m(N). We have pqu =
tp(¢’h a/N) for some ¢’ = p, i |= ¢, and a = u. An obvious extension of Claim 1 in the
proof of Theorem 3.25 yields

(upu) ™' = tp(xy~Lg™!/N) for some z =y y and g = p,
(uqu)™' = tp(2t7th™!/N) for some z =y t and h = q.

Looking at the proof of the aforementioned Claim 1, we can choose all the above data
so that tp(t/N,z,y,9,9', ', ), tp(h/N,t,z,y,9,9', W, a), tp(zt*h~' /N, z,y,9,4 ./, ), and
tp(zy~tg~!/N,¢', I, a) are all coheirs over M. Then,

(uqu) ™ (upu) "tpqu = tp(zt*h T zy g7 g'W a/N) =
tp(ztflxh_l(yh_l)71(gh_1)7lg/h_1h71hla/N) c F57

because z =y t, 2" =y yt (as x =) y and tp(h/M, z,y) is a coheir over M), g =y
g’h_1 (as g =) ¢’ and tp(h/M, g,q’) is a coheir over M), h =p; b/, and o € F. O

Expressing the proof in terms of Boolean algebras

Suppose X is an abstract (rather than definable) approximate subgroup X and one is
interested in finding a generalized locally compact model of X. Taking M = G = (X)
equipped with the full structure, Sg a7 (') becomes the subspace of SG (the space of ultrafilters
on the Boolean algebra of all subsets of G) which consists of the ultrafilters concentrated on
some X" (for varying n). So no model theory is involved in those objects. In this situation, one
should be able to completely eliminate model theory from our construction of the generalized
locally compact model by not using realizations of types, but we find it unnatural and more
technical, so we will not do that.

After the first author’s conference talk on Theorem 3.25, Sergei Starchenko suggested that
it could be interesting to modify our construction of the generalized definable locally compact
model of a definable approximate subgroup X by replacing the Boolean algebra generated
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by externally definable subsets of G' by a smaller (or even smallest possible) Boolean algebra
which does not refer to model theory; then ultrafilters on this algebra would be used in place
of complete external types. One should be able to realize this suggestion by using Newelski’s
work on d-closed G-algebras [Newl4]. Namely, Newelski showed that whenever A is a d-
closed G-algebra of subsets of GG, then there is an explicitly given semigroup operation # on
the Stone space S(A) which extends the action of G and is left continuous. Now, in our
situation of an approximate subgroup X and G := (X), take A to be the d-closure (in the
sense of [New14]) of the G-algebra generated by all left translates of the sets X, X2, X3, ....
Let Sg(A) be the subflow of S(.A) which consists of the ultrafilters containing one of the X™’s
(for varying n). Then the above semigroup operation # on S(.A) restricts to a left continuous
semigroup operation on Sg(A), and Sg(A) is locally compact. One should be able to adapt
the theory developed in this paper for Sg a(N) = Sgext (M) to Sg(A); in particular, to state
and prove a suitable variant of Theorem 3.25 yielding a generalized locally compact model of
X which satisfies a version of definability (i.e. item (3) of Definition 3.1) in which separation
by a definable set is replaced by separation by a set from the G-algebra A (or even from the
Boolean algebra of subsets of G' generated by left and right translates of X, X2, ...).

4. UNIVERSALITY

We will prove that the generalized definable locally compact model from Theorem 3.25 is
an initial object in a certain category. In particular, this will explain what it means to be
a generalized definable locally compact model in terms of factorization through uM/H (uM)
(with the notation from Section 3).

As in Section 3, take the situation and notation as at the end of Subsection 2.1. We
introduce the notion of good quasi-homomorphism which will be used to define morphisms in
our category.

Definition 4.1. Let H be a locally compact group and S a compact, normal, symmetric
subset of H. A good quasi-homomorphism for (H,S) is a quasi-homomorphism h: H — L : T
for some compact, normal, symmetric subset T' of a locally compact group L such that:

(1) for every compact Y € L, h 1[Y] is relatively compact in H;

(2) for every compact V' < H, h[V] is relatively compact in L;

(3) h[S] € T™ for some n € N;

(4) there is m € N such that for any compact Y,Z < L with T™Y n T"Z = &,

Scl(h 1 [Y]) nScl(h }[Z]) = &.

Remark 4.2. Let (H,S) be as in Definition 4.1 and let h: H — L : T be a good quasi-
homomorphism for (H,S). Then:

(1) for every m € N there is n,, € N with h[S™] € T"m;
(2) for every n € N there exists m, € N such that for any compact Y,Z < L with
Tm™Y " T™Z = & we have S cl(h [Y]) n S"cl(h1[Z]) = &.

Proof. (1) follows by an easy induction from item (3) of Definition 4.1 and the assumption
that 7" is an error set of h.

(2) By (1) and the assumption that 7" is an error set of h, we get that h[S" 1h~1[Y]] € TFY
and h[S"'h~1[Z]] € T*"Z for some k,. We will show that m,, := k, +m works for any
m satisfying the conclusion of item (4) of Definition 4.1. For that assume that T""Y n
T Z = . Then T™(T*Y) A T™(T*Z) = & and T*"Y and T*»Z are compact. Hence,
Scl(h=HT*Y]) n Scl(h~}[T* Z]) = & by the choice of m. As the last intersection contains
S™cl(h1[Y]) n S™cl(h1[Z]), we get that S™cl(h [Y]) n S™cl(h 1[Z]) = &. O

Definition 4.3. Let f: G —» H : S and h: G — L : T be definable generalized locally
compact models of X. A morphism from f to h is a function p: H — L which is a good
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quasi-homomorphism p: H — L : T* for (H,S), where k € N is such that p(f(g)) € h(g)T*
for all g € G. The set of morphisms from f to h will be denoted by Mor(f, h).

Remark 4.4. Morphisms are closed under composition, and so the class of definable locally
compact models of X in the generalized sense with morphisms forms a category.

Proof. Let fi: G — Hy: 51, fo: G > Hy: S, and f3: G — Hs : S3 be generalized definable
locally compact models, and p € Mor(f1, f2), 0 € Mor(fa, f3). The goal is to show that there
is k such that error,(6p) = {6(p(y))'d(p(x)) '0(p(zy)) : z,y € G} < S§ and §(p(f1(g))) €
f3(9)SY for all g € G. Indeed, once we prove it, the fact that dp: Hy — Hz : S§ is a
good quasi-homomorphism for (Hi, S1) easily follows using Remark 4.2 which we leave as an
exercise.

Let k1 and ko be numbers witnessing that p and ¢ are morphisms, respectively, and let ny, be
the number from Remark 4.2(1) applied to the good quasi-homomorphism §: Hy — Hs : S§2
for (HQ, SQ)

Regarding the first part of our goal, we have

3(p(y)) o(p(x)) "8 (p(wy)) € S526(p(x)p(y)) 3 (p(wy)) < S5*T**25((p(2)p(y)) "o (p(xy)) <
Sk (p(y) L p(o) L play)) < SiFolSE] < 84T
Regarding the second part of our goal, we have

ko +kong, +k2 2ka+kony,

5(p(f1(9)) € 81£2(9)5'] < 3(f2(9))3155* 1552 < fa(g)Ss = f3(9)S3
We conclude that k := 4ka + kany, works. O

The obtained category will be later modified to get that the generalized definable locally
compact model from Theorem 3.25 is an initial object, as for the above category we will only
obtain existence of a morphism and “approximate uniqueness”. Before going to these main
issues, let us make one more basic observation.

Proposition 4.5. Let f: G — H : S be a generalized definable locally compact model of X
and leth: H — L : T be a good quasi-homomorphism for (H,S). Then there isn € N such that
hof: G — L:T" is a generalized definable locally compact model of X and h € Mor(f,ho f).

Proof. The fact ho f: G — L : T" is a quasi-homomorphism for some n follows from:

(f () h(f (@) (S () € Th(f () f () h(f () S TPR((f @) (1)) (S (xy)
T*h(f(y) " f(z) " f(ay)) < T*R[S] € T,

where n is a number witnessing item (3) of Definition 4.1 applied to the good quasi-
homomorphism h.

To check item (1) of Definition 3.1 for ho f, consider any compact V S L. Then h1[V] is
relatively compact, so (ho f)~![V] = f~A7V]] € X' for some i.

To see item (2) of Definition 3.1, note that cl( f[X]) being compact implies that h[cl(f[X])]
is relatively compact, and so cl(h[f[X]]) is compact.

To see that item (3) of Definition 3.1 holds for h o f, choose [ witnessing item (3) of
Definition 3.1 for f. Next, choose n so big that T™ is an error set of h o f (the existence of
such an n was justified at the beginning of the proof) and for any compact Y,Z < L with
Y nT"Z = &, St (R~ [Y]) n St cl(h™1[Z]) = & (the existence of such an n is guaranteed
by Remark 4.2(2)). Then for any compact Y,Z < L with T"Y n T"Z = (& we have that
(ho £)~1[Y] and (ho f)~![Z] can be separated by a definable set.

The fact that h € Mor(f, ho f) is trivial. O

Theorem 4.6. (Universality of f: G — uM/H(uM): existence) Let f: G — uM/H(uM) :
C be the generalized definable locally compact model of X from Theorem 3.25. Let h: G —
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H : S be an arbitrary generalized definable locally compact model of X. Then there exists a
morphism h € Mor(f, h).

More precisely, define hpr: Sq(M) — H by picking hy(p) arbitrarily from the set
ﬂ¢($)€pcl(h[ap(G)]). Next, define h*: G — H by h*(a) := hy(tp(a/M)), h: Sgu(N) —» H
by h(p) := har(plar), and finally h: uM/H(uM) — H by picking h{p/H(uM)) arbitrarily
from the set h[pH(uM)]. Then h*, h,h are quasi-homomorphisms with the distinguished
error set being S™ for some n € N independent of the choice of h, and he Mor(f, h).

Proof. The proof is dived into parts. Items (1), (2), (6) below show that h*, h, h are quasi-
homomorphisms with suitable error sets. Items (6)-(11) show that € Mor(f, h).

Take [ € N witnessing item (3) of Definition 3.1 for h.

(1) h*: G — H : sS4+,

We have
h*(ab) € N he@) (@] () hle(@IRWH(G]S =
o(z)etp(a/M),(x)etp(b/M) o(x),)(x)
N (A1 RGO - 8) = () FAGT - () FEAG] - S,
(), (x) »(z) P(x)

where p(z) ranges over tp(a/M) and ¢(x) over tp(b/M). (The last two equalities follow from
compactness of h[p(G)], h[(G)], and C for sufficiently small ¢(G) and ¥ (G).) Therefore,

(x)  h*(ab) = apy

for some & € (), (pyep(a/nr) PLE(G)]s B € Ny@yetpeyan MY(G)], and v € S.
We claim that

(+¢)  S'an S'h*(a) # &.

Suppose not. By compactness of S and local compactness of H, there are compact neighbor-
hoods F; of o and Fy of h*(a) such that S'Fy n S'Fy = . Then, by the choice of I, there is
a formula (x) € Ly such that h1[F1] € (M) and h1[Fy] € G\O(M). If §(x) € tp(a/M),
then h*(a) € h[(M)]  F§ which contradicts the fact that F is a neighborhood of h*(a). If
—0(z) € tp(a/M), then o € h[(—0(M)] S Ff{ which contradicts the fact that F is a neigh-
borhood of a. So (##) has been proved. Analogously, S8 n S'h*(b) # . From these two
observations and (x), we get h*(ab) € S*h*(a)S?h*(b)S = S**+'h*(a)h*(b). Thus, (1) has
been proved.

By (1) and the definition of the semigroup operation % on Sg a(N), we immediately get

(2) h: Sgm(N) — H : S4+1L

(3) h(ugu) € h(g)SH4+1),

Item (3) follows by the following computation

h(g)_lﬁ(ugu) _ h(g)—1B(u)h(g)ﬁ(u)52(4l+l) c h(g)—1S4l+1h(g)54l+152(4l+1) _ S4<4l+1),

which uses (2) and the fact that h }g= h (which follows from the formulas for h and hyy).
(4) For every compact V. H, h™'[V] € Sxi p;(N) for some i, and so h™'[V] A uM is
relatively quasi-compact in the T-topology.
Chose a compact neighborhood U of V. We have h~![U] € X* for some i, and we check that

i is good. If not, there is p € Sgar(N)\Sxs (V) with h(p) € V. Then h(p) € h[G\X'] < U°®
which is disjoint from V as U is a neighborhood of V| a contradiction. This implies that
=1 [V] nuM is relatively quasi-compact in the 7-topology by the argument in Claim 2 of the
proof of Proposition 3.21 and the final paragraph of the proof of that proposition.

(5) hlSxi pm(N)] is relatively compact for every i€ N.
This is immediate from the fact that h[Sxi 5;(N)] S h[X'] and h[X7] is compact.
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In order to show that & € Mor(f, h), we will use the above observations and the following
claims.

Claim 1. (z') h*(a~t) € h*(a)~152M+1),
(i) h*(ab™!) € S3UHY) for every a =y b.
(ZZZ) h*[ ]C S(4n 1)(4l+1)

Proof. (i) follows from (1). The computation in (ii) is as follows: h*(ab~1) € h*(a)h*(b1)S4+!
h*(a)h*(b) 1S3 = p*(a)h*(a)~183H+) = g3+ where we used (1), (i), and the defi-
nition of ~A*. Finally, (iii) follows from (ii) and (1). o(claim)

Claim 2. h(p/H(uM)) € h(p)S'24+1),

Proof. By the definition of h, h(p/H (u M)) = h(q) for some ¢ € uM and r € H(uM) such
that ¢ = pr. By Lemma 3.30, H(uM) S F3 nuM, so by Claim 1(iii), h[H(uM)] € ST+,
Therefore, by (2), h(p/H (uM)) = h(q) € h(p)h(r)SH*1 < h(p)ST2H+1), o(claim)

(6) h: uM/H(uM) — H : §37(4+1)

This follows from (2) and Claim 2. Namely, we have: N(p/H (uM) - q/H(uM)) =
h(pq/H (uM)) € h(pg) S">* D < h(p)h(q)S"* W < h(p/H (uM))h(q/H (uM)) ST,

(7) h(f(g)) € h(g)S'U+D.

This follows from (3) and Claim 2. Namely: h(f(g)) = h(ugu/H(uM)) € h(ugu)S2#+1) ¢
h(g)54(4l+1)sl2(4l+1) — h(g)516(4l+1).

(8) For every compact V. H, h'[V] is relatively compact.

This follows from (4). Namely, by the definition of k, b '[V] € 7[h ' [V] n uM] (where
7 uM — uM/H(uM) is the quotient map). By (4), cl-(h~*[V] n uM) is quasi-compact,
and so cl(z[h~1[V] A u/\/l]) = 7[cl, (A~ V] n uM)] is compact. Therefore, cl(h~'[V]) being
a closed subset of cl(z[h~ V] N uM]) is also compact.

(9) For every compact V< u/\/l/H(u/\/l) h[V] is relatively compact in H.

By the definition of h, h[V] € h[x~'[V]]. By Lemmas 3.31 and 3.30, the set 7—'[V] is
contained in some Sy 5/ (N ). Thus, by (5), h[x1[V]] is relatively compact, and so h[V] is
relatively compact, too.

( ) [C] c §5L(4l+1)

By Lemma 3.29(4), C < (Fio n uM)/H(uM). Hence, using Claim 2, A[C] <
h[F10] 824+ By Claim 1(iii), h[Fio] € S+, Therefore, A[C] < S71H+1),

(11) There is m € N such that for any compact Y,Z < H with S™Y n S™Z = &,
Ccl(h™'Y]) nCcl(h~1Z]) = &.

By Lemma 3.29(4), C' € (Fig n uM)/H(uM), so it is enough to find m such that

() S AS"Z =5
implies
1) (Fio 0 uM)/H@uM)A(h7Y]) N (Fio 0 uM)/HuM) (A~ Z]) = &.
N

Since A7 [Y] < aw[h~ Y] A uM], B [Z] < =[h~'[Z] A uM], and h~Y | nuM as
well as h™'[Z] n uM are relatively quasi-compact by (4), we deduce that cl(h~ y)]) <
A(x[h Y] n uM]) = =w[cl (A" Y] A uM)] and cl(h [Z]) < c(x[h '[Z] A uM]) =
7l (h[Z] n uM)]. We conclude that in order to show (), it is enough to show that
(Fio n uM)H(uM) cl-(h 1 [Y] n uM) A (Fig n uM)H (uM)cl.(h [Z] n uM) = &. By
virtue of Lemma 3.30, this boils down to

() (Fiz nuM) el (A7 Y] nuM) A (Fiz 0 uM) el (h7HZ] nuM) = &.

We will show that m := 56(4l + 1) + 2] works. Suppose for a contradiction that (!) holds
for this m, whereas (f1) fails.
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By (4), h~[Y] and h~1[Z] are contained in some Sxn ps(N) which is closed in Sg s (N).
Thus, by the defintion of cl; and an easy compactness argument, we get that any element p
in the intersection from (1) is of the form

tp(aib; ' ... a13bi3 af/N) = tp(ahb ... dizbis e’ B/N)

for some a;, b;, al, b, o, o/, B, B’ € G satistying a; =y b, al =y b, a Eu, o = u, tp(B/N) €
h=1Y], tp(8'/N) € h=1[Z], where h~1[Y] and h—1[Z] are closures computed in Sg (V).
Pick such an element p. By Lemma 3.27(1), it equals

tp(arby ! ... a1ab} B/N) = tp(aiby ... al b B/N)
for some a4, b14, a}y, bty € G with a4 =p7 by and aly =pr by

Claim 3. h*(8) € S2Y and h*(B') € S2Z.

Proof. Suppose for a contradiction that h*(8) ¢ S2Y. So S'h*(8) n S'Y # &. Then S'U n
S'V = ¢ for some compact neighborhoods U of h*(f) and V of Y. By the choice of I, there
is a formula §(x) € Lys such that h [U] € 0(G) and h1[V] € G\O(G).

Case 1. 0(x) € tp(B/M). Since tp(8/N) € h=1[Y], there is q € [0(x)] n h~'[Y]. Then
h(q) € h[0(G)] N Y. On the other hand, h[0(G)] € V¢, which implies that h[#(G)] nY = &,
because V is a neighborhood of Y. This is a contradiction.

Case2. —0(x) € tp(8/M). Then h*(5) € h[G\A(G)]. On the other hand, h[G\O(G)] € U,
which implies that h*(8) ¢ h[G\O(G)], because U is a neighborhood of h*(3). This is a

contradiction. o(claim)

Using (1), Claim 1(iii), and Claim 3, we get:
14 14
B(p) = h* (H aibilﬁ) e h* <H ain-l) h*(5)54l+1 c S55(4Z+I)SQZYS4I+1 — S56(4l+1)+2ly
i=1 i=1

Similarly, h(p) € So6M4+D+2l 7 Hence, SO6(4+D+2ly  §56(4+1D+2l 7 2 & wwhich contradicts
(1) for m := 56(41 + 1) + 2. O

The usual notion of definable map from a definable subset D of M to a compact space
is explained in terms of a factorization of this map through the type space Sp(M) via a
continuous map. The notion of definability in item (3) of Definition 3.1 is less obvious. The
next corollary explains it using a factorization through uM/H (uM).

Corollary 4.7. A quasi-homomorphism h: G — H : S with a compact, normal, symmetric
subset S of a locally compact group H is a generalized definable locally compact model of
X if and only if there exists a good quasi-homomorphism h: uM/H(uM) — H : S™ for
(uM/H(uM),C), for some m € N such that h(f(g)) € h(g)S™ for all g€ G (where f: G —
uM/H (uM) : C is the generalized definable locally compact model of X from Theorem 3.25).

Proof. The implication (=) follows directly from Theorem 4.6.

(<) We check items (1), (2), (3) of Definition 3.1 applied to h.

(1) For any compact V € H the set S™V is also compact, and so h~'[S™V] is relatively
compact. Thus, h='[V] € f~![A~[S™V]] is contained in some X,

(2) We know that f[X] is relatively compact, and so h[f[X]] is relatively compact. Hence,
S™h[f[X]] is relatively compact. Since h[X] € S™A[f[X]], we conclude that h[X] is rela-
tively compact, too.

(3) We will show that [ := m + mg works, where my is a number witnessing that Remark
4.2(2) holds for the good quasi-homomorphism h. For that take any compact Y, Z < H with
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S'Y nS'Z = &. Then S™2(S™Y) n S™2(S™Z) = & and S™Y, S™Z are compact. So, by
the choice of mao,

C?c(h ' [S™Y]) n C* (b [S™Z]) = &.
Therefore, f~'[A'[S™Y]] and f '[h'[S™Z]] can be separated by a definable set. Since
RY] < fUAUS™Y]] and h1[Z] < f A M[S™Z]], we conclude that h~'[Y] and
h~Y[Z] can be separated by a definable set. O

Theorem 4.8. (Universality of f: G — uM/H(uM): approzimate uniqueness) Take f: G —
uM/H(uM) : C from Theorem 3.25. Let h: G — H : S be an arbitrary generalized definable

locally compact model of X, and p € Mor(f,h) any morphism. Let he Mor(f,h) be a (non
uniquely determined) morphism constructed in Theorem J.G. Then there is n € N (depending
only on 1 in item (3) of Definition 5.1 applied to h, and on k in Definition /.3 and msy in
Remark 4.2(2) both applied to p) such that p(p/H(uM)) € h(p/H (uM))S™ for all p € uM.

Proof. We will show that n := 4max(ms,k + 12(4l + 1)) works. Suppose not, ie.
p(p/H(uM)) ¢ h(p/H(uM))S™ for some p € uM. Then Sz p(p/H (uM)) Sz h(p/H(uM)) =
&. So we can find a compact neighborhood V' of the neutral element in H such that

S p(p/ HuM)V ~ SER(p/H@M)V = &,
Put V' := VS%. Then

S5 p(p/H@M)V' 0 STR(p/H(uM)V' = &,
and p(p/H (uM))V' and h(p/H (uM))V' are compact sets. Since n/4 > ma, we get

(x)  C*cl(p p(p/H(uM)V']) 0 C*cl(p ! [A(p/H(uM)V]) = &.

Put P := cl(p~p(p/H(uM))V']) and Q := cl(p~[h(p/H(uM))V']). By the proof of part
(7) of the proof of Theorem 3.25, we conclude from (=) that there exists 8(z) € Ly such that

(vx)  fP]< [6(2)] and f'[Q] < [-6()].

Since p/H(uM) € P and f(p) = upu/H (uM) = p/H(uM), we see that p € F7[P], hence
0(z) € p, and so h(p) € h[6(G)] (where h is chosen as in Theorem 4.6). By Claim 2 from the
proof of Theorem 4.6, we conclude that h(p/H(uM)) € h[6(G)]ST2 4+, So

h(p/H(uM)) e WSHMHD — mSkJrRMHI) c p[f [e(x)]]]sk+12(4l+l) c
m5k+12(4l+1) c (ﬁ(p/H(u/\/l))V’)CSk+12(4l+1) - (B(p/H(uM))Vs%)csk+12(4l+1) c
(h(p/H(uM)VST)eST,

where the first belonging is by the choice of k, the first equality by compacntess of S, the
first inclusion is obvious, the second follows by (x*), the next one by the definition of @,
the next equality by the definition of V', and the last inclusion since n/4 > k + 12(41 + 1).
Thus, h(p/H (uM)) e~(ﬁ(p/H(u/\/l))VS%)CS%, which is impossible, because it implies that
h(p/H(uM)V ST A (h(p/H(uM)VS5) # &. O

To get full uniqueness (i.e. that f is the initial object) we have to modify the notion of
morphism.

Definition 4.9. Let f: G — H : Sand h: G — L : T be generalized definable locally compact
models of X. Let p1,p] € Mor(f,h). We say that p; and p) are equivalent (symbolically,
p1 ~ p}) if for some [ € N, for every p € H we have p/(p) € p1(p)T".

Remark 4.10. ~ is an equivalence relation on Mor(f, h).
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Proposition 4.11. If f;: G — H; : S; fori € {1,2,3} are generalized definable locally compact
models of X and py ~ p} belong to Mor(f1, f2) and pa ~ ph belong to Mor(fs, f3), then
pap1 ~ phpy. Thus, all generalized definable locally compact models of X with morphisms
modulo ~ form a category.

Proof. Let I; and Iy be witnesses for p; ~ p) and py ~ ph, that is p}(p) € p1(p)Sy and
ph(q) € palq)S% for all p e Hy and q € Hy. Let kb be a witness that p) € Mor(fo, f3), that is

ph: Hy — Hs : Sgé and ph(f2(g)) € fg(g)Sgé, and let n;, be the number from Remark 4.2(1)
obtained for pf. Then, for every p € Hy we have

K, Kynyy ok koyny, +ia+ks
P5(P1(P)) € Pilor(p)S3] < Ph(pr(p) LS5 1S5” < palpr(p)) S5 S5™" S5° = palpa(p) S5 2

Thus, for p; € Mor(f1, f2) and ps € Mor(f2, f3) we have a well-defined
p1/~ opa2/~:= (p1o p2)/~ .

So it is clear that the all generalized definable locally compact models of X with morphisms
modulo ~ form a category. O

By Theorems 3.25, 4.6, and 4.8, we get the main result of this section.

Corollary 4.12. The generalized definable locally compact model f: G — uM/H(uM) : C
from Theorem 5.25 is the initial object in the category from the last proposition.

We finish with some natural questions which arise in the special case of Theorem 4.6 when
h := f, where f: G - uM/H(uM) : C is from Theorem 3.25. In this special case, the
construction described in the second paragraph of Theorem 4.6 yields non uniquely determined
functions f: Sg.ar(N) — uM/H(uM) and f: uM/H(uM) — uM/H(uM) such that f e
Mor(f, f). On the other hand, clearly id € Mor(f, f). This leads to

Question 4.13. (1) Can we choose f by the construction in Theorem /.6 so that f = id?

(2) Can we choose f by the construction in Theorem 4.6 so that flum: uM —
uM/H (uM) is the quotient map?

(3) Can we choose f by the construction in Theorem /.6 so that f(p) = f(p) =
upu/H (uM) for all p e Sgm(N)?

By how f is obtained from f, we see that a positive answer to (2) implies a positive answer
to (1). Since f(p) = p/H(uM) for all p € uM, we get that a positive answer to (3) implies a
positive answer to (2).

In the next section, the example with X being a definable, generic, symmetric subset of the
universal cover Sm) of SLy(R) will yield a negative answer to (3), but not to (2).

5. COMPACT CASE

In this section, we focus on the special case when the definable approximate subgroup X
generates a group in finitely many steps. This is equivalent to G := (X) being a definable
group in which X is a definable, generic, symmetric set (X being generic in G means that
finitely many left translates of X cover G). Thus, we will consider just this case or, slightly
more generally, the case of a definable generic subset X of a definable group G (notice that
then (X) has finite index in G), which is fundamental in model theory.

In the case when G = (X), the group uM/H(uM) in the generalized definable locally
compact model f: G — uM/H(uM) from Theorem 3.25 is compact, which follows from the
last paragraph of the proof of Proposition 3.21, since uM < Sxn p(M) for some n € N; in
fact, in this case, all the topological dynamics developed in Subsection 3.1 boils down to the
classical topological dynamics of the compact flow Sg ar(N), so uM/H(uM) is compact.
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In the more general context of X being a definable, generic, symmetric subset of a definable
group G, one can also use the compact group uM/H (uM) computed for the compact G-flow
Sa m(N) and adapting (and even simplifying some parts of) the arguments from Subsection
3.2, we conclude with

Theorem 5.1. The function f: G — uM/H(uM) given by f(g) := ugu/H(uM) has the
following properties.

(1) f is a quasi-homomorphism with compact, normal, symmetric error set C = clT(F) U
cl, (F)~ 1, where:

F, = {xlyfl . ..:Enygl cxi,y € G oand x; = y; for alli < nj,
E, := {tp(a/N) € Sg.m(N) : a € F,},
F = ((Fr 0 uM)/H(uM)) MM,

Moreover, (F3 nuM)/H(uM) is an error set of f.

(2) f o] < x30.

(3) There is a compact neighborhood U of the neutral element in uM/H(uM) such that
f7HU] € X and f7HUC] € X34

(4) For any closed Z,Y < uM/H(uM) with C*Y n C%*Z = & the preimages f~'[Y] and
7Y Z] can be separated by a definable set.

Note that if X is definable, generic, but not symmetric, then replacing it by X X !, we get
a definable, generic, and symmetric set, and it is clear how to modify items (2) and (3) in this
context. So the assumption that X is symmetric is rather minor.

The proof of Fact 3.4(1) adapts to

Remark 5.2. For every neighborhood U of u/H (uM) the preimage f ![UC] is generic in G,
that is the preimage under f of any neighborhood of C' is generic in G.

Theorem 5.1(3) and Remark 5.2 can be thought of as a structural result on definable generic
subsets of an arbitrary definable group GG. In concrete examples, this can lead to more precise
information on generics. o

In Subsection 5.1, we will illustrate it by the universal cover SLa(R) of SLy(R). Our analysis

—~———

of SLa(R) also yields a negative answer to item (3) of Question 4.13, and a positive answer to
item (2) in the special case of definable generics in SLo(R). Moreover, our analysis confirms
a certain weakening of Newelski’s conjecture (that we have had in mind for a while) in the
special case of SLo(R). So we take the opportunity and state this weakened conjecture below.

Let G a group definable in a structure M. Let N > M be |N|"-saturated, and € > N a
monster model. By G we denote the interpretation of G in €. Let uM be the Ellis group of the
flow (G, Se.(N)), and let G99 be the smallest type-definable over M subgroup of G which
has bounded index. Newelski’s conjecture says that the group epimorphism 6: uM — G /G%}
given by 8(tp(a/N)) := a/G%Y is an isomorphism under suitable assumptions on tameness of
the ambient theory [New09]. In [GPP15], the conjecture was refuted for G := SLy(R) treated
as a group definable in M := (R, +, ), where the Ellis group turned out to be Zy while G/G%}
is trivial. On the other hand, the conjecture was confirmed in [CS18] for definably amenable
groups definable in NIP theories. In [KP17], we refined Newelski’s epimorphism 6 obtaining
a sequence of epimorphisms

uM — uM/H(uM) - G/GSP — G/G,
where G970 is the smallest bounded index subgroup of G which is invariant under Aut(¢/M).

This leads to many counter-examples to Newelski’s conjecture. Namely, whenever é%}o # G?\g,
then Newelski’s conjecture fails; in fact, we proved that then even uM/H (uM) — G/GOP is
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not an isomorphism. The first example where GO0 # G0 was found in [CP12]: G := Sm)
treated as a group definable in the two-sorted structure M := ((R,+,-),(Z,+)) has this
property. Many other examples were then found in [GK15], e.g. the non-abelian free groups
equipped with the full structure. Another situation in which Newelski’s conjecture fails is
when H(uM) is nontrivial, equivalently when uM is not Hausdorff in the 7-topology. While
in general we are able to find examples in which ©M is not Hausdorff, we have not found any
such example with NIP. This leads to the following weakening of Newelski’s conjecture.

Conjecture 5.3. If M has NIP, then uM is Hausdorff.

From the above discussion, this is true for definably amenable groups definable in NIP
theories. It is also true whenever uM is finite, as the T—tOp(/)_l%}/f is 71 and so Hausdorff when
uM is finite. In Subsection 5.1, we will confirm it for G := SLy(R) treated as a group definable
in the two-sorted structure M := ((R, +,-), (Z, +)) which clearly has NIP; more precisely, the
E}llis group in this case will turn out to be topologically isomorphic to the profinite completion
Z of Z.

5.1. Case study of SLy(R). From now on, M is the 2-sorted structure with the sorts (R, +, -)

and (Z,+), G := SLy(R), and G := SLy(R). So now G will play the role of G from the above
discussion.

Recall that G can be written as SLy(R) x Z with the group operation given by
(a1,b1)(ag,b2) := (ayaz,by + by + h(by,b2)), where h: G x G — Z is the 2-cocycle de-
fined as follows. For ¢,d € R put

) ife#0
C(d)‘_{d, if ¢ = 0.

Then for any (gll 211 >,<Z22 222 > € SLp(R), writing (le le > . (222 222 ) =

( az b ), we have
c3 dg
a b a b 1, if Cl(dl) > O,Cg(dg) > 0, 03(d3) < 0,
h (( 1 dl ) s ( 2 d2 )) = —1, if Cl(dl) < O,Cz(dg) < O, 03(d3) > 0,
1 2

c c ;
! 2 0, otherwise.

From this formula, we see that h is definable in M, and so G is definable in M. It is clear
that each set of the form G x kZ is a definable generic subset of G. Using Theorem 5.1, we
will deduce a weak converse.

Proposition 5.4. For every definable, generic, symmetric subset X of G there exists a
nonzero k € N such that G x kZ < X%%,

Besides Theorem 5.1, we will need a few other ingredients, some of which will be also used
in the proof of Proposition 5.13 below. The proof of Proposition 5.4 is given after the proof
of Lemma 5.12.

By [CP12, Theorem 3.2], we know that G does not have any definable subgroups of finite
index, so for every definable generic subset X of G we have that (X) = G. Hence, in this
situation, Theorem 5.1 is a particular case of Theorem 3.25.

One of the ingredients will be 12-connectedness of SLa(R) which follows from [Gis10, Theo-
rem 6.5], which we will briefly discuss. By a thick subset of a group H definable in a structure
N we mean a definable symmetric subset Y of H for which there exists a positive m € N such
that for every g1, ..., gm € H there are ¢ < j with g[lgj € Y. Note that when Y is a definable
generic, then Y 'Y is thick. We will say that H is n-connected if for every (definable) thick
subset Y of H we have Y = H. This is equivalent to saying that for P being the intersection
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of all N-definable thick subsets of H := H(€) (where € > N is a monster model) we have
P™ = H. The next fact is a particular case of [Gisl0, Theorem 6.5].

Fact 5.5. SLy(R) is 12-connected in any structure in which SLa(R) is definable, in particular
in M.

Everywhere below € > M is a monster model, and bars are used to denote the interpreta-
tions of various objects in €.

Corollary 5.6. Let X be a definable, generic, symmetric subset of G. Then for every g € G
there exists n € {—12,...,0,...,12} such that (g,n) € X**.

Proof. By Fact 5.5, G = P'2, where P is the intersection of all M-definable thick subsets of
G. Hence, by [Gisl() Lemma 1.3(1)], ¢ = [];2, a; *b; for some a;,b; € G such that a;0b;,

meaning that (a;, b;) starts an infinite M-indiscernible sequence. Then clearly ((a;,0), (b;,0))
starts an infinite M-indiscernible sequence of pairs, i.e.

() (ai,0)0u(bi, 0).

The corresponding entries of matrices a; and b; have the same sign (because they have the

-1
same type), so, using the explicit definition of h recalled above and the formula < Ccl Z ) =

( _i _2 ) for matrices in SLy(R), one easily checks that h(a;l, bi) = h(a;, a;l). Hence,
(ai, 0)7H(b:,0) = (a; ', —h(as, a; ))(b:,0) = (a; 'bi, hla; ', b;) — h(ai, a; ') = (a; 'b;, 0).
As Im(h) = {—1,0, 1}, the last thing implies that
12
[ J(ai, 00" (8:,0) € {Ha b, } x {—12,...,0,...,12}.
i=1
On the other hand, by thickness of X2 (%), and [Gis10, Lemma 1.3(1)], we get that
H%il(ai,O)_l(bi,O) € X%, So there exists n € {—12,...,0,...,12} such that (g,n) € X**. O

The topological dynamics of the G-flow S¢(R) was worked out in [GPP15], including the
computation of the Ellis group which turns out to be Z,. We will also need the topological
dynamics of the G-flow S&(M) studied in [Jaglh, Section 5]. The results below which are
stated without references can be found in [Jagl5, Section 5.

First of all, it is well-known that all types in S(M) are definable, because this is true for
all types in S(R) and in S(Z) and there is no interaction between the two sorts of M. So
Sc(M) and Sg(M) coincide with Sgext (M) and Sg . (M), respectively, and hence the Ellis
semigroup operation on these sets is given by p*q = tp(ab/M ) for some/any b |=qand a | p
such that tp(a/M,b) is a coheir over M.

The Ellis group of the flow Sg(M) consists of two types qo, g1, where qo := tp(A/M) and

q1 := tp(—A/M) for
e 11—z (1—z)c—yb!
‘ yb ye+ (1 —2)b !
where b > R, ¢ > dcl(R,b), x positive infinitesimal, y positive with (1 — z)? + y? = 1, and
tp(x,y/M,b,c) coheir over M (which implies that x,y are greater than all infinitesimals in
dcl(R,b,¢)). Then qp is the neutral element of the Ellis group {qo, ¢1}, so an idempotent in a
minimal left ideal of S (M), and hence we will denote gy by ug.
The space Sz (M) is naturally homeomorphic with Sg(R) x Sz(Z), and the induced semi-
group operation is given by

(p.q)* (. d)=w=*p',q+d +h(p,p)),
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where h(p,p’) := h(a, a’) for some/any a = p and o’ }= p’ such that tp(a/M,a’) is a coheir over
M, and + denotes the semigroup operation on Sz(Z) (which is indeed commutative). From
now on, (Sa(M), ) will be identified with (Sg(R) x Sz(Z), ). Since * uses h, we will denote
this semigroup as Sg(R) x5 Sz(Z). As to the semigroup Sz(Z), we will interchangeably use
additive and multiplicative notation.

As (Z,+) is stable, there is a unique minimal left ideal My and it consists of the generic
types. There is also a unique idempotent uy in My which the generic type concentrated
on the component Z° (the intersection of all definable subgroups of Z of finite index), and
uz My = My.

By the explicit formula for h and the idempotency of u¢, we get h(ug,ug) = 0. So [Jaglh,
Proposition 5.6] yields

Fact 5.7. Let Mg 3 ug be a minimal left ideal of Sg(R). Then:
(1) Mg = Mg x Mgz is a minimal left ideal of Sz(M);
(2) ug = (ug,uz) is an idempotent in Mg;
(3) The Ellis group usMeg equals ugMea <, Mz = ugMa xp, uzMz,.

fi: ugMg — Zo given by q; — i is clearly an ispmorphism. Since (Z, +) is Stalzle, it is
well-known that the natural map fo: uzMy — ZJ/Z° =~ Z given by tp(a/Z) — a/Z° is an
isomorphism. Thus, the following corollary is deduced in [Jagl5, Example 5.7].

Corollary 5.8. The map (f1, f2): vgMea — Zz x 7, is an isomorphism, with the group
operation on Zo x 7 given by (xz,n)(z',n') := (x +2 2',n + n' — za’). The target group is
moreover topologically isomorphic to Z via the map (x,n) — x — 2n.

Our next goal is to show that the isomorphism in Corollary 5.8 is topological. This implies
that us Mz is topologically isomorphic to Z, so Hausdorff which confirms Conjecture 5.3 for

SLa(R).

As the 7-topology on ugMg is T1, it is discrete, and so f; is a topological isomorphism.
Since fo is an isomorphism which is continuous by [KP17, Theorem 0.1], we get that it is a
topological isomorphism (with uzMyz equipped with the 7-topology).

The fact that the isomorphism (f1, f2) from Corollary 5.8 is topological follows immediately
from the above paragraph and the next proposition.

Proposition 5.9. The 7-topology on ugMg X uzMyz is the product of the T-topologies on
uacMea and uzMy,.

Before the proof, let us show a few properties of h which will be used also in the proof of
Proposition 5.13.

Lemma 5.10. (1) h(p,uc) =0 for all pe Sg(M).
(2) h(ug,tp(g/M)) =0 for all g€ G.
(3) h(ug, guc) =0 for all g€ G.

(1—-2)b (1—xz)c—yb!

Proof. (1) Present ug as tp(A/M) for A := < ub ye+ (1 — 2)b-1

> , where z,y,b, c

are as above. Write p as tp(B/M) for B = < 3 ? ) so that tp(B/M,x,y,b,c) is a coheir

C21 €22
yb > 0, by the explicit formula for h, the only possibility for h(p,ug) # 0 would be the case
when v(0) > 0 and co1(co2) < 0. We will show that it never happens, namely co; > 0 whenever
~v(0) > 0. So assume that v(d) > 0.

over M. Then pug = tp(BA/M) and BA = aL e ) with 91 := (1 — x)b + dyb. Since
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If v = 0, then § > 0, and so ca1 = dyb > 0. So assume that v > 0. Suppose for a
contradiction that co; < 0. Then % < % < R which contradicts the assumption that
tp(y,d/R, z,y) is finitely satisfiable in R.

(2) The proof is similar and left to the reader.

(3) By the 2-cocycle formula, we have h(ug, g) + h(ugg, ug) = h(ug, gua) + h(g,ug). So
the conclusion follows from (1) and (2). O

r

Proof of Proposition 5.9. Denote by T the product of the 7-topologies on ugM¢g and uzMsz.
Our goal is to prove that 7 = 7.

(2) It is enough to show that any subbasic closed set of the form F' x uzMyz or u¢g Mg x E
(where F € ugMg and E S uz My, are 7-closed) is closed in 7.

First, consider F' x uzMy. Take any a € cl (F x uzMz). Then a = lim(g;,n;)(fi, a;),
where ((gi,ni))i is a net from G converging to ug = (ug,uz) and (f;,a;) € F x uzMgz. As
(9i, i) (fisai) = (gifi,ni +a; + h(gi, fi)) € {gifi} x Mz, we get that a € cl.(F) x Mz =
F x uz Mgy, as required.

Now, consider ua Mg x E. Take any a € cl (ugMg x E). Then a = lim(g;, n;)(fi, a:),
where ((g;,7:)); is a net from G converging to us = (ug,uz) and (f;,a;) € ugMeg x E.

Claim 1. h(g;, f;) = 0 for i large enough.

Proof. Since lim g; = ug is the type over M of a matrix with positive left bottom entry, there
is ig such that the left bottom entry of g; is positive for all i > ig. Consider any ¢ > ig. If
fi = ug, then h(g;, f;) = 0 by Lemma 5.10(1). If f; = ¢1, then the left bottom entry of any
matrix realizing f; is negative, so h(g;, fi) = 0 by the explicit formula for h. o(claim)

By this claim, (gi, 7:)(fi, a:) = (gifi, i +ai+h(gi, fi)) = (gifi;ni+ai). Soa € cl-(ugMg) x
cl.(E) = ugMg x E, as required.

(€) Consider a 7-closed A S uzM gz We need to show that it is closed in 7. So take any
a = (a1,a2) € clr(A). There are are nets (a1,;); € ugMg and (az;); S uzMyz T-converging
to a1 and ag, respectively, with (a1, a2,) € A for all i. Passing to subnets, we can assume
that the nets (a1;); and (a2;); converge in the usual topologies on Sg(M) and Sz (M) to
some b; and by, respectively. By Lemma 3.19 and Hausdorffness of ug Mg and uz Mz, we get
ugby = a1 and uy + by = as. Approximating ug by elements of G and uz by elements of Z,
using left continuity of the semigroup operations and the fact that the actions of G on Sg(M)
and of Z on Sz(M) are continuous, passing to subnets, we can assume that there are nets (g;);
in G and (n;); in Z converging to ug and ugz, respectively, and such that lim g;a; ; = a1 and
limn; + az; = as (in the usual topology on type spaces). Then lim(g;, n;) = (ug,uz). On the
other hand, by Claim 1, h(g;,a1,;) = 0 for sufficiently large i’s, and so

(9i,mi) (a1, a2;:) = (gia1,i, ni + azi + h(gi,a1:)) = (giari, ni + az;)
for sufficiently large ¢’s. Hence, lim(g;,n;)(a1 4, az2,i) = (a1, a2). Therefore, a € cl.(4) = A. O

The next lemma follows by an elementary matrix computation.
Lemma 5.11. For every tp(B/M) € Sq(M) with B = < ’(; ? ) , writing ug = tp(A/M) =

, (=2 1—2)c—yb! ;=2 Q-2 -yt
tp(A'/M) for A= ( yb ye+ (1 —2)b 1 )7 At:= Y'Y y'd + (1 -2t

(
with the elements satisfying the requirements described before and such that tp(B/M, A) and
tp(A’'/M, B, A) are coheirs over M, we have that ugtp(B/M)ug = tp(C/M) with the left
bottom entry of C equal to y'b (a(1 — )b + Byb) + (y'¢’ + (1 — 2" )'"1)(y(1 — 2)b + dyb).

Lemma 5.12. (1) For B = ( (;é g € G we have that ugtp(B/M)ug = ug = qo if

v >0, and ug tp(B/M)ug = q1 if v <O0.
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(2) uG((f _é)uczug.

(3) ugtp (( _i _(1) ) /M) ug = q1 for all positive infinitesimals .

Proof. First, let B = (: g) € G with v > 0. Pick z,y,b,¢,2’,9/,b,¢ and ma-

trices A and A’ as in Lemma 5.11, satisfying additionally that tp(B/M,z,y,b,¢) and
tp(a’, ', b, /M, x,y,b,¢c,a, 3,7,0) are coheirs over M. Observe that v(1 — z)b + dyb > 0.
Indeed, it is clear if § > 0. If 0 < 0, then it is equivalent to —% > %= which is true
as 72— is a positive infinitesimal, —3 > 0, and tp(vy,d/M,z,y) is a coheir over M. Let
d be the left bottom entry of A’BA. Hence, by Lemma 5.11, we conclude that d > 0 if
(1 —2)b+ Byb = 0. In the case when a(1 — x)b + Byb < 0, we have that d > 0 if and only if
, y
B < (14 LE) (- 235 — (1+ L) (- 255E) = ¢
(1) Since ug = tp(A/M) and ¢1 = tp(—A/M), replacing B by —B, we see that it is enough
to consider the case when v > 0 and to show that then d > 0. By the above consideration,
this boils down to showing that % < Cif a(l —z)b + Byb < 0. By the assumption of (1),
«,f3,7,0 € R. Thus, a(1—2)b+SByb < 0 implies that a < S-%37 which is infinitesimal, so a < 0.

Now, if & = 0, then { > R, so { > %: (as %: is infinitesimal). If o < 0, then ¢ > —2L > lc’,, as
—55 is a positive real number.

(2) is a particular case of (1).

(3) It is enough to see that C 7’ We have ¢ = (1 + 'b’ Loaly(y — %) < 2(y — %) which
is a positive infinitesimal (as 'b’ 7, 7 and ¥ are positive infinitesimals, and tp(y/M, z,y) is
a coheir over M). The conclusion follows from the fact that % is a positive infinitesimal and
tp(t/, /M, x,y,~) is a coheir over M. O

We have now all the tools to prove Proposition 5.4.

Proof of Proposition 5./. Let B := (1) _(1) Then B2 = —I and B* = I. So, by the

explicit formula for the 2-cocycle h, we have h(B,B) = 1 and h(B?,B?) = —1. Hence,
working in G, we get

() (B,0)* = (I,2n(B, B) + h(B% B?) = (I,1).

As observed after Corollary 5.8, usMga = 7. is Hausdorff, so H (uaMg) is trivial. We also

have that fa(uz +n + uz) = n for n € Z. Take f: G — us Mg from Theorem 5.1. Using
Lemma 5.10,

f((g7n)) = (UG,UZ)(Q,“)(UG,UZ) = (UGQUG,UZ +n+uz + h(gqu) + h(quguG)) =
(uggug,uz, + n + ug).

Hence, by Theorem 5.1(3), there is a positive k € N such that {g € G : uggug = ug} x kZ <
X Thus, by Lemma 5.12(2), {B} x kZ < X'*. Therefore, using (), we conclude that
(I} x (1+kZ) € X4 = X% andso I x ({~12,...,0,...,12} + kZ) € X°0'12 = X672 Using
Corollary 5.6, this implies that GxkZc X 672424 _ = X696 U

One could also prove more directly (without using topological dynamics) a version of Propo-
sition 5.4 with a bigger number in place of 696, but we will not do that, as our point was
to illustrate by a non-trivial example how Theorem 5.1 leads to a better understanding of
generics in definable groups.

Finally, we give a negative answer to Question 4.13(3), and a positive answer to Question
4.13(2) in the particular case when X is a definable, generic, symmetric subset of G. First,
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let us describe the context. Let X be a definable, generic, symmetric subset of G. Then X
is a definable in M approximate subgroup and, as discussed after Proposition 5.4, G = (X).
By definability of types in S(M), the flows Sg M( ) and S (M) are identified (as discussed
above). We have already proved that H(uzMg) is trivial. Let f: G — uzMg be the
generalized definable locally compact model from Theorem 3.25 and let f = far: Sa(M) —
uaM g be as discussed before Question 4.13. Note that f extends f. On the other hand, we
have the function f: S &(M) = uzMg given by f( ) 1= ugzpus which also extends f.

Proposition 5.13. The function f is uniquely determined by the construction from Theo-
rem 4.0 and continuous, whereas f is not continuous, and so f # f However, f|ucMc =

Flugm,, = id.

Proof. Identifying uzy My with 7 via f2, the second displayed computation in the proof of
Proposition 5.4 yields
f(g;n)) = (uggua,n).

It follows from Lemma 5.11 and definability of types in S(M) that the sets {g € G : uggug =
ug} and {g € G : uggug # ug} are both definable. On the other hand, the function Z — 7
given by n +— n is definable in the sense that the preimages of any two disjoint closed subsets
of Z can be separated by a definable set.

All of this together with Proposition 5.9 implies that f: G — uaMg is a definable map.
Therefore, by Lemma 3.2 of [GPP14] and its proof, f = fy is uniquely determined by the
construction from Theorem 4.6 and con‘cinuous.1 0

-1
G converging to p := tp(B/M). Then the left bottom entries of the matrices g; are positive for
all ¢ > ig for some ig. So, by Lemma 5.12(1), uggiug = ug for all i > ig. On the other hand,
by Lemma 5.12(3), ugpuc = q1. Therefore, f((p,0)) € {ugpug} x uzMz = {q1} x uzMz and
f((gi,0)) € {uggiug} x uzMgy = {uG} x uz Mgz for all i > ig. Since the net ((gl,O)) tends to
(p,0) and ¢1 # ug, we conclude that f is not continuous at (p,0). Hence, f # f by continuity
of f. More precisely, since f|G = f|G, we get that f(p) # f(p).

It remains to show that f|, Mg = id, as directly from the definition of f we have f lug Mg =
id. Consider any n € Z. Our goal is to show that f((ug,n)) = (ug,n) and f((—ug,n)) =
(—ug,n). We will prove the first equality; the second one can be proved analogously.

Choose any net ((g;,n;)); from G converging to (ug,n). Then the left bottom entry of g; is
positive for all ¢ > iy for some ig. By Lemma 5.12(1), uggiug = ug for all i > ig. Therefore,
using Lemma 5.10, we get

Pick a positive infinitesimal . Let B := . Choose any net (g;); of elements of

F((gi-ni)) = (uggiug, ni + h(gi, uc) + hua, giua)) = (ug,n:)
for all i > 4o, so it clearly tends to (ug,n). Since the net ((gi,n:)); tends to (ug,n), by
continuity of f, we conclude that f((ug,n)) = (ug,n). O
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