Stable groups, List 12

(G,S) is a type-definable (in a monster model $\mathfrak C$ of a theory T) homogeneous space.

Problem 1. Prove that:

- (i) the group operation on G is a relatively definable subset of G^3 ; even more: there is a formula $\theta(x, y, z)$ such that $\theta(G)$ is the group operation and $\forall x, y \exists ! z \theta(x, y, z)$ (for x, y, z realizing $\theta(x, y, z)$ we write $x \cdot y = z$),
- (ii) the action of G on S is a relatively definable subset of $G \times S \times S$; even more: there is a formula $\zeta(x,y,z)$ such that $\zeta(\mathfrak{C}) \cap (G \times S \times S)$ is the action of G on S and $\forall x \forall y \exists ! z \zeta(x,y,z)$ (for x,y,z realizing $\zeta(x,y,z)$ we write x * y = z),
- (iii) the function of taking the inverse of an element of G is a relatively definable subset of $G \times G$; even more: there is a formula i(x, y) such that i(G) is the graph of inversion and $\forall x \exists ! y i(x, y)$ (for x, y realizing i(x, y) we write $y = x^{-1}$).
- **Problem 2.** Let $\Phi(x)$ and $\Psi(x)$ be partial types closed under conjunction and defining G and S, respectively. Consider formulas θ, ζ, i , from the previous problem. Prove that there exist formulas $\varphi_0(x) \in \Phi(x)$ and $\psi_0(x) \in \Psi(x)$ such that:
- (i) $(\forall x, y, z \in \varphi_0(\mathfrak{C}))((x \cdot y) \cdot z = x \cdot (y \cdot z)),$
- $(ii)(\forall x \in \varphi_0(\mathfrak{C}))(\forall y_1, y_2 \in \varphi_0(\mathfrak{C}))(y_1 \neq y_2 \to (x \cdot y_1 \neq x \cdot y_2 \land y_1 \cdot x \neq y_2 \cdot x)),$
- (iii) $(\forall x \in \varphi_0(\mathfrak{C}))(e \cdot x = x \cdot e = x),$
- (iv) $(\forall x \in \varphi_0(\mathfrak{C}))(x \cdot x^{-1} = x^{-1} \cdot x = e).$
- (v) $(\forall x_1, x_2 \in \varphi_0(\mathfrak{C}))(\forall y \in \psi_0(\mathfrak{C}))(x_1 * (x_2 * y) = (x_1 \cdot x_2) * y),$
- (vi) $(\forall x \in \varphi_0(\mathfrak{C}))(\forall y_1, y_2 \in \psi_0(\mathfrak{C}))(y_1 \neq y_2 \to x * y_1 \neq x * y_2),$
- (vii) $(\forall y \in \psi_0(\mathfrak{C}))(e * y = y).$

Notice that for $\varphi_0(x)$ and $\psi_0(x)$ with the above properties we additionally have:

- (i') $(\forall g, g_1, g_2 \in G)(\forall x \in \varphi_0(\mathfrak{C}))(g_1 \cdot (g_2 \cdot (g \cdot x)) = (g_1 \cdot g_2) \cdot (g \cdot x)),$
- (ii') $(\forall g \in G)(\forall y_1, y_2 \in G \cdot \varphi_0(\mathfrak{C}))(y_1 \neq y_2 \rightarrow g \cdot y_1 \neq g \cdot y_2),$
- (iii') $(\forall g, g_1, g_2 \in G)(\forall x \in \psi_0(\mathfrak{C}))(g_1 * (g_2 * (g * x))) = (g_1 \cdot g_2) * (g * x)),$
- (iv') $(\forall g \in G)(\forall y_1, y_2 \in G * \psi_0(\mathfrak{C}))(y_1 \neq y_2 \to g * y_1 \neq g * y_2).$

Problem 3. Let $X \subseteq S$ be relatively definable and $g \in G$. Prove that g * X and X^{-1} are both relatively definable in G.

- **Problem 4.** Assume that T is stable. Let $X \subseteq S$ be relatively definable. We define a 2-sorted structure $C_0 := (S, G; R)$, where $C_0 \models R(x, y)$ iff $x \in S$, $y \in G$ and $x \in y * X$.
- (i) Prove that R(x, y) is stable in $Th(C_0)$.
- (ii) During the lecture, it was shown that X is generic iff R(x, e) does not divide over \emptyset in the sense of $Th(C_0)$. Note that the same proof yields that $S \setminus X$ is generic iff $\neg R(x, 1)$ does not divide over \emptyset in $Th(C_0)$.
- **Problem 5.** Assume that T is stable. Prove that there exists a generic type $p(x) \in S(\mathfrak{C}) \cap [\Psi(x)] = S_S(\mathfrak{C})$ (where $\Psi(\mathfrak{C}) = S$).

Problem 6. Assume T is stable. Prove directly (pointing out the order property if the conclusion fails) that if $X \subseteq G$ is relatively definable, then X is a 2-sided generic or $G \setminus X$ is a 2-sided generic.

Problem 7. (i) Let Δ be a finite set of formulas and let $\pi(x)$ be a type over some small $A \subset \mathfrak{C}$. Prove that $R_{\Delta}(\pi(x)) = CB([\pi(x)]_{\Delta})$, where $[\pi(x)]_{\Delta} := \{p(x) \in S_{\Delta}(\mathfrak{C}) : p(x) \cup \pi(x) \text{ is consistent}\}.$

(ii) Prove the same for stratified ranks $R_{\Delta_{\varphi}}$ defined during the lecture.