Stable groups, List 2

We work in a monster model € = €% of a stable theory T. G denotes a group
(-definable in €.

Problem 1. Assume 7T is w-stable.

(i) Let p,q € Sg(A) be stationary and of the same Morley rank. Prove that g-p = ¢
iff g-p=gq.

(ii) Let H be a (-type-definable subgroup of G. Let py,...,ps € S(acl(P)) be all the
generics of H. Let H; :=={g € G :¢g-{p1,...,pa} = {p1,...,pa}t}. Deduce from (i)
that Hi ={9€ G:g9-{p1,...,Pa} = {P1,.--,Pa}} is a subgroup of G.

(iii) Prove that H; defined in (ii) is acl(())-definable.

Problem 2. Let E be a definable subset of € on which G acts definably. Let D C E
be definable and g € GG. Prove that if gD C D, then gD = D.

Problem 3. Prove that each superstable group satisfies wdcc®.

Problem 4. We have proved the theorem saying that in a stable group, for any
given formula ¢(x,y) there is no infinite strictly decreasing sequence of subgroups
which are Boolean combinations of (-definable subgroups. Deduce from this the
Baldwin-Saxl chain condition. (Notice that, in fact, the proof of the aforementioned
theorem yields its generalization to the version with subgroups which are Boolean
combinations of ¢-definable sets.)

Problem 5. Drop the assumption that G is stable.

(i) Prove that if G is centralizer-connected and N <1 G is finite, then N < Z(G).
(ii) Assume G is stable. Prove that if in G there are only finitely many commutators,
then G is central-by-finite.

(iii) Prove that if G is centralizer-connected and Z(G) is finite, then Z(G) = Z»(G).
(iv) Prove that if G is infinite, centralizer-connected and nilpotent, then Z(G) is
infinite.

Problem 6. Let H be an arbitrary nilpotent group, and {e} # N <« H. Prove that
NN Z(H) is non-trivial.

Problem 7. Assume T is w-stable. Assume that G is nilpotent. Prove that for
every definable subgroup H of infinite index in G the index [N(H) : H] is infinite.



Stable groups, List 2’

The problems on this auxiliary list are not meant to be solved during the discus-
sion sessions. Try to solve at least the first two problems (the second one is very easy).

Problem 1. Recall that a formula ¢(z,y) has IP if there are sequences (a;);e, and
(br)1cw such that
o(a;,by) < i€l

Let oPP(y, z) := ¢(x,y). Prove that ¢(z,y) has IP iff ¢°PP(y, x) has IP.

Problem 2. Note that if ¢(x,y) has IP, then it has OP (in other words, it is
unstable).

Problem 3.* Prove that if p(z, y) has OP, then ¢(z,y) has IP or some other formula
¥ (x, z) has SOP. (This implies that each unstable theory has IP or SOP; recall that
a theory has one of these properties if there is a formula with this property).

Problem 4. Prove that ¢(z,y) has IP if and only if there is an indiscernible sequence
(a;)icw and a tuple b such that

= ¢(a;,b) <= i is even.

Deduce that a Boolean combination of NIP formulas (in given variables (z,y)) is also
a NIP formula. (This observation, together with the theorem saying that a theory
has IP iff there is an IP formula p(z,y) with x of length 1, is very useful to check that
some particular theories have NIP. For example, show that every o-minimal theory
has NIP.)



