
Stable groups, List 2

We work in a monster model C = Ceq of a stable theory T . G denotes a group
∅-de�nable in C.

Problem 1. Assume T is ω-stable.
(i) Let p, q ∈ SG(A) be stationary and of the same Morley rank. Prove that g · p = q
i� g · p̃ = q̃.
(ii) Let H be a ∅-type-de�nable subgroup of G. Let p1, . . . , pd ∈ S(acl(∅)) be all the
generics of H. Let H1 := {g ∈ G : g · {p1, . . . , pd} = {p1, . . . , pd}}. Deduce from (i)
that H1 = {g ∈ G : g · {p̃1, . . . , p̃d} = {p̃1, . . . , p̃d}} is a subgroup of G.
(iii) Prove that H1 de�ned in (ii) is acl(∅)-de�nable.

Problem 2. Let E be a de�nable subset of C on which G acts de�nably. Let D ⊆ E
be de�nable and g ∈ G. Prove that if gD ⊆ D, then gD = D.

Problem 3. Prove that each superstable group satis�es ωdcc0.

Problem 4. We have proved the theorem saying that in a stable group, for any
given formula ϕ(x, y) there is no in�nite strictly decreasing sequence of subgroups
which are Boolean combinations of ϕ-de�nable subgroups. Deduce from this the
Baldwin-Saxl chain condition. (Notice that, in fact, the proof of the aforementioned
theorem yields its generalization to the version with subgroups which are Boolean
combinations of ϕ-de�nable sets.)

Problem 5. Drop the assumption that G is stable.
(i) Prove that if G is centralizer-connected and N �G is �nite, then N ≤ Z(G).
(ii) Assume G is stable. Prove that if in G there are only �nitely many commutators,
then G is central-by-�nite.
(iii) Prove that if G is centralizer-connected and Z(G) is �nite, then Z(G) = Z2(G).
(iv) Prove that if G is in�nite, centralizer-connected and nilpotent, then Z(G) is
in�nite.

Problem 6. Let H be an arbitrary nilpotent group, and {e} 6= N �H. Prove that
N ∩ Z(H) is non-trivial.

Problem 7. Assume T is ω-stable. Assume that G is nilpotent. Prove that for
every de�nable subgroup H of in�nite index in G the index [N(H) : H] is in�nite.
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Stable groups, List 2'

The problems on this auxiliary list are not meant to be solved during the discus-
sion sessions. Try to solve at least the �rst two problems (the second one is very easy).

Problem 1. Recall that a formula ϕ(x, y) has IP if there are sequences (ai)i∈ω and
(bI)I⊆ω such that

ϕ(ai, bI) ⇐⇒ i ∈ I.

Let ϕopp(y, x) := ϕ(x, y). Prove that ϕ(x, y) has IP i� ϕopp(y, x) has IP.

Problem 2. Note that if ϕ(x, y) has IP, then it has OP (in other words, it is
unstable).

Problem 3.* Prove that if ϕ(x, y) has OP, then ϕ(x, y) has IP or some other formula
ψ(x, z) has SOP. (This implies that each unstable theory has IP or SOP; recall that
a theory has one of these properties if there is a formula with this property).

Problem 4. Prove that ϕ(x, y) has IP if and only if there is an indiscernible sequence
(ai)i∈ω and a tuple b such that

|= ϕ(ai, b) ⇐⇒ i is even.

Deduce that a Boolean combination of NIP formulas (in given variables (x, y)) is also
a NIP formula. (This observation, together with the theorem saying that a theory
has IP i� there is an IP formula ϕ(x, y) with x of length 1, is very useful to check that
some particular theories have NIP. For example, show that every o-minimal theory
has NIP.)
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