Topological dynamics in model theory. List 5.

 \mathfrak{C} always denotes a monster model of a complete theory. For a group G definable in $M \prec \mathfrak{C}$, $G^* := G(\mathfrak{C})$.

Problem 1. Let G be a group \emptyset -type-definable in a monster model, and $H \triangleleft G$ be an invariant subgroup of bounded index. Prove that G/H equipped with the logic topology is a topological group (i.e. the group operation and inversion are continuous).

Hint. First, prove it for H type-definable, and then use it in general.

Problem 2. Prove that (where \cong denotes topological isomorphisms):

- (i) for any \emptyset -type-definable (in \mathfrak{C}) group G, G/G_A^0 is always profinite;
- (ii) for $M := (\mathbb{Z}, +)$ and $G(M) := \mathbb{Z}, G^*/G^{*00} = G^*/G^{*0} \cong \hat{Z};$
- (iii) for $M:=(\mathbb{R},+,\cdot)$ and $G(M):=S^1,\,G^*/G^{*00}\cong S^1$ and G^*/G^{*0} is trivial;
- (iv) more generally: Let $G = (G, \cdot, ...)$ be a compact topological group with a basis of neighborhoods of the identity consisting of definable subsets. Check that the standard part map st: $G^* \to G$ is a well-defined homomorphism. Assume that all definable subsets of G have the Baire Property. Prove that $\ker(\operatorname{st}) = G^{*00}_G$ and $G/G^{*00}_G \cong G$.

Problem 3. Let G be a group definable in M. Prove that the quotient map $G \to G^*/G^{*00}_M$ is a definable compactification of G.

Problem 4. Prove that the map $\hat{f}: S_{G,M}(N) \to G^*/G_A^{*000}$ given by $\hat{f}(\operatorname{tp}(a/N)) = a/G_A^{*000}$ is continuous (where $A \subseteq M$).

Problem 5. Prove that every externally definable subset of \mathbb{R} (in $M := (\mathbb{R}, +, \cdot)$) is definable. Deduce that every externally definable subset of S^1 is definable.

Problem 6. Let $M := (\mathbb{R}, +, \cdot)$ and $G := S^1$.

- (i) Prove that p_1^- and p_1^+ are the only idempotents in Gen.
- (ii) Prove that for every $\epsilon \in \{-, +\}$, $p_1^{\epsilon} * Gen = \{p_a^{\epsilon} : a \in G\}$.

Problem 7. Let K be a compact group definable in an o-minimal expansion of the reals. For an idempotent $u \in S_K(\mathbb{R})$ and $k \in K$, by u(k) we denote the unique type in u * Gen with $\operatorname{st}(u(k)) = k$. Prove that for every idempotents $u, u' \in S_K(\mathbb{R})$ and elements $k, k' \in K$, u(k) * u'(k') = u(kk').

Problem 8. Choose elements b, c in an elementary extension of $(R, \cdot, +)$ so that $b > \mathbb{R}$ and $c > \mathbb{R}(b)$. Let p_0 be the type of the matrix $\begin{bmatrix} b & c \\ 0 & b^{-1} \end{bmatrix}$ over \mathbb{R} . Prove that $H \cdot p_0 = \{p_0\}$, where H is the group of upper-triangular 2×2 -matrices of determinant 1 with positive elements on the diagonal.

Problem 9 Let G be a group definable in M such that G = KH for some definable

subgroups K and H with $H \cap K = \{e\}$. Then H acts naturally on K by $\varphi_h(k) = h \cdot k := k'$ for a unique $k' \in K$ such that hk = k'h' for some (unique) $h' \in H$. And the same holds in the monster model.

Assume that all types in $S_G(M)$ are definable. Prove that the semigroup $(S_H(M), *)$ acts on $S_K(M)$ by $p \cdot q := \operatorname{tp}(\varphi_h(k)/M)$ for every [some] $k \models p$ and h satisfying the unique heir extension of q over M, k.

Hint. Prove that if all types in $S_G(M)$ are definable, then for every $p, q, r \in S_G(M)$, if $a \models p, b \models q|_{M,a}$, and $c \models r|_{M,a,b}$ (i.e. heir extensions), then $\operatorname{tp}(a/M,b,c)$ is a coheir extension of p.