Topological dynamics in model theory. List 6.

In Problems 2-5, M denotes an o-minimal expansion of $(\mathbb{R}, +, \cdot, \leq)$, and $\mathfrak{C} \succ M$ is a monster model.

Problem 1. Let G = G(M) be a group definable in a model M. Let $N \succ M$. Prove that an heir extension of a G-invariant type $p \in S_G(M)$ to a complete type over N is G(N)-invariant.

Problem 2. Suppose $\operatorname{tp}(\bar{b}/\mathbb{R}, \bar{a})$ is an heir over \mathbb{R} . Let X and Y be \mathbb{R} -definable subsets of \mathfrak{C} (i.e. of finite Cartesian powers of \mathfrak{C}) contained in the ball of radius $r \in \mathbb{R}$ centered at 0, and let $f \colon X \to Y$ be a continuous, \bar{a} -definable function. Prove that $\operatorname{st}(f(\bar{b})) = \operatorname{st}(f(\operatorname{st}(\bar{b})))$.

Problem 3. Let G be a definable group in M with a definable compact-torsion-free decomposition KH. Prove that the function $\psi \colon K \to K$ defined at the bottom of page 39 of the lecture notes is definable.

Problem 4. Let G be a definable group in M with a definable compact-torsion-free decomposition KH. Prove that if Z(G) is finite, then Z(G) embeds into the Ellis group of the G-flow $S_G(M)$.

Problem 5. Prove that for $G := \mathrm{SL}_n(\mathbb{R})$, $K := \mathrm{SO}_n(\mathbb{R})$, and $H := \mathrm{T}_n^+(\mathbb{R})$, $F := K \cap N_G(H) \cong \mathbb{Z}_2^{n-1}$. (Hence, the Ellis group of the G-flow $S_G(M)$ is \mathbb{Z}_2^{n-1} .)