Topological dynamics in model theory. List 9. Let \mathfrak{C} be a monster model of a complete theory T and \bar{c} be its enumeration. Let EL be the Ellis semigroup of the $\operatorname{Aut}(\mathfrak{C})$ -flow $S_{\bar{c}}(\mathfrak{C})$. \mathcal{M} is a minimal left ideal in EL and $u \in J(\mathcal{M})$. Let $\mathfrak{C}' \succ \mathfrak{C}$ be a monster model in which \mathfrak{C} is small. **Problem 1.** Let \bar{a} be any tuple in \mathfrak{C} (possibly $\bar{a} = \bar{c}$). Show that the Aut(\mathfrak{C})-orbit of $\operatorname{tp}(\bar{a}/\mathfrak{C})$ in $S_{\bar{a}}(\mathfrak{C})$ is dense. Deduce that the function $\pi_0 \colon EL \to S_{\bar{c}}(\mathfrak{C})$ given by $\pi_0(\eta) := \eta(\operatorname{tp}(\bar{c}/\mathfrak{C}))$ is onto. ## Problem 2. - (i) Check that the function $\hat{f} \colon EL \to \operatorname{Gal}_L(T)$ given by $\hat{f}(\eta) := \sigma' / \operatorname{Autf}_L(\mathfrak{C}')$, where $\sigma' \in \operatorname{Aut}(\mathfrak{C}')$ is any automorphism such that $\eta(\operatorname{tp}(\bar{c}/\mathfrak{C})) = \operatorname{tp}(\sigma'(\bar{c})/\mathfrak{C})$, is well-defined. - (ii) For the function \hat{f} from (i), show that $\hat{f}(\eta) := \sigma' / \operatorname{Autf}_L(\mathfrak{C}')$ for any $\sigma' \in \operatorname{Aut}(\mathfrak{C}')$ such that $\eta(\operatorname{tp}(\bar{d}/\mathfrak{C})) = \operatorname{tp}(\sigma'(\bar{d})/\mathfrak{C})$ for some $\bar{d} \equiv \bar{c}$ (where \bar{d} is from \mathfrak{C}'). **Problem 3.** Prove that the function \hat{f} from the previous exercise is a topological quotient map. Deduce that so is $\hat{f} \upharpoonright_{\mathcal{M}}$. **Problem 4.** Let $p \in S(\emptyset)$ and E be a bounded, invariant equivalence relation on $p(\mathfrak{C})$. Let $\bar{\alpha} \in p(\mathfrak{C})$. Show that the maps g_E and \bar{h}_E from the bottom of page 57 are topological quotient maps. Deduce that $\bar{h}_E[\operatorname{cl}_{\tau}(\ker(\bar{h}_E))] = \operatorname{cl}(\{\bar{\alpha}/E\})$. **Problem 5.** Prove that every closed equivalence relation on a Polish space is smooth. Hint. Using Luzin separation theorem, find a separating, countable family of Borel sets. **Problem 6.** Prove that E_0 is not smooth. Hint. Suupose E_0 is smooth. Then there is a countable family of Borel sets separating classes of E_0 . Prove that each member of this family is either meager or comeager. Deduce that E_0 has a comeager class, which is a contradiction. **Problem 7.** Deduce from Harringtom-Kechris-Louveau dichotomy that every Borel equivalence relation whose all classes are G_{δ} is smooth. **Problem 8.** Assume the language is countable. Let A be a countable set of parameters and assume that Z is A-invariant. Let B be a countable superset of A. Prove that Z_B is Borel [resp. F_{σ} , clopen, analytic] if and only if Z_A is such. **Problem 9.** Let E be a bounded, invariant equivalence relation, and Y a type-definable, E-saturated subset of the domain of E. Let $M \models T$. Prove that $E \upharpoonright_Y$ is type-definable if and only if $E^M \upharpoonright_{Y_M}$ is closed.