
GENERATING IDEALS BY ADDITIVE SUBGROUPS OF RINGS

KRZYSZTOF KRUPIŃSKI AND TOMASZ RZEPECKI

Abstract. We obtain several fundamental results on finite index ideals and additive sub-
groups of rings as well as on model-theoretic connected components of rings, which concern
generating in finitely many steps inside additive groups of rings.

Let R be any ring equipped with an arbitrary additional first order structure, and A
a set of parameters. We show that whenever H is an A-definable, finite index subgroup
of pR,�q, then H � R � H contains an A-definable, two-sided ideal of finite index. As a
corollary, we obtain a positive answer to Question 4.9 of [GJK22]: if R is unital, then
pR̄,�q00A � R̄ � pR̄,�q00A � R̄ � pR̄,�q00A � R̄00

A , which also implies that R̄00
A � R̄000

A , where
R̄ ¡ R is a sufficiently saturated elementary extension of R, pR̄,�q00A [resp. R̄00

A ] denotes the
smallest A-type-definable, bounded index additive subgroup [resp. ideal] of R̄, and R̄000

A is
the smallest invariant over A, bounded index ideal of R̄. If R is of positive characteristic (not
necessarily unital), we get a sharper result: pR̄,�q00A � R̄ � pR̄,�q00A � R̄00

A . We obtain a similar
result (but with more steps required) for finitely generated (not necessarily unital) rings. We
obtain analogous results for topological rings. The above result for unital rings implies that
the simplified descriptions of the definable (and so also classical) Bohr compactifications of
triangular groups over unital rings obtained in Corollary 4.5 of [GJK22] are valid for all unital
rings.

We also analyze many concrete examples, where we compute the number of steps needed
to generate a group by pR̄Yt1uq � pR̄,�q00A and study related aspects, showing “optimality” of
some of our main results and yielding answers to some natural questions.

1. Introduction

Our main results belong to algebraic model theory and concern fundamental questions on
relationships between model-theoretic connected components of rings and their additive groups,
yielding, for a large class of definable rings, a very simple description of the former in terms
of the latter, which implies that the “hierarchy” of the ring components is flat in those rings
(see Theorem 1.2 below, as well as Theorem 1.4 for the topological variant). Simultaneously,
this is very strongly related to some purely algebraic issues concerning finite index ideals and
subgroups of arbitrary rings, and all our results have interesting, purely algebraic reformulations.
In particular, we prove the following theorem, which is repeated later as Theorem 4.5 (and see
also Corollary 4.6).

Theorem 1.1. Let R be an arbitrary ring H-definable in a structure M and A �M . Then for
every A-definable finite index subgroup H of pR,�q, the set H �R �H contains an A-definable,
two-sided ideal of R of finite index.

Forgetting about definability and model theory, this specializes (by taking the full structure
on R) to the following (to our knowledge, hitherto unknown) purely algebraic statement: For
an arbitrary ring R, for every finite index subgroup H of pR,�q, the set H �R �H contains a
two-sided ideal of R of finite index.
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Using the above theorem, we obtain the main result of this paper, which answers positively
Question 4.9 of [GJK22]. Before we state it, let us discuss the context. We are working in a
first order structure M whose monster (i.e. sufficiently saturated and homogeneous) model is
denoted by M̄ ; if X is a set definable in M , then X̄ always denotes its interpretation in M̄ .
By A we denote a small (i.e. of size smaller than the degree of saturation of M̄) subset of M̄ .

For a definable group G the model-theoretic connected components Ḡ0
A, Ḡ00

A , and Ḡ000
A (see

Section 2 for the definitions) play a fundamental role in the analysis of definable groups as
first order structures and in the so-called “definable topological dynamics”. They also lead to
certain natural definable compactifications of G; for example, Ḡ{Ḡ0

M is the universal definable,
profinite compactification of G, whereas Ḡ{Ḡ00

M is the universal definable (so-called definable
Bohr) compactification. Taking the full structure on G (i.e. when all subsets of all finite
Cartesian powers of G are H-definable), one can remove the adjective “definable” obtaining
model-theoretic descriptions of classical compactifications of G. In [GJK22], a basic theory
of model-theoretic connected components of rings was developed; in particular, the quotients
by these components yield various compactifications of the ring in question. It was used in
the computation of definable (and classical) Bohr compactifications of some matrix groups.
This development led to some fundamental questions on relationships between connected
components of definable rings and their additive groups. We answer these questions in the
present paper.

Now, we state our main result, which will be deduced from Theorem 1.1 (see Corollaries 4.8
and 4.10 for the full statement).

Theorem 1.2. Let R be a H-definable ring.

(1) If R is unital, then pR̄,�q00
A � R̄ � pR̄,�q00

A � R̄ � pR̄,�q00
A � R̄00

A .
(2) If R is of positive characteristic (not necessarily unital), then pR̄,�q00

A � R̄ � pR̄,�q00
A �

R̄00
A .

Consequently, for both classes of rings, we have R̄0
A � R̄00

A � R̄000
A .

In fact, we prove that, more generally, item (i) holds for all s-unital rings (see Definition 2.6).
Whenever we talk about unital rings in this introduction, we can weaken this assumption to
s-unital rings, which we will not do just to avoid additional terminology.

Let J be the subgroup of pR̄,�q generated by pR̄Yt1uq�pR̄,�q00
A . By Lemma 4.7 of [GJK22],

we know that J � R̄000
A . And by Lemma 4.8 of [GJK22], we know that the following conditions

are equivalent:

(i) R̄000
A is type-definable,

(ii) R̄000
A is generated by pR̄Y t1uq � pR̄,�q00

A in finitely many steps,
(iii) R̄000

A � R̄00
A .

(Strictly speaking, in [GJK22], A is a model, but using [Mas18], one concludes that it works
also over any set of parameters, see Fact 2.3.) Therefore, by Theorem 1.2, we get that the above
equivalent conditions hold for all unital rings and also for all rings of positive characteristic.
Hence, the answer to Question 4.6 of [GJK22] is positive, and so the simplified formulas for
the definable (so also for classical) Bohr compactifications of groups of upper unitriangular
as well as invertible upper triangular matrices over unital rings given in [GJK22, Corollary
4.5] are valid for all unital rings. Theorem 1.2 may also prove to be useful to compute Bohr
compactifications of some other matrix groups over unital rings, or even more general groups
which are in some way “controlled” by rings.

One of the main questions which remain open is whether in Theorem 1.2 one can drop the
assumption that R is unital or of positive characteristic. More precisely,

Question 1.3. Does pR̄Yt1uq � pR̄,�q00
A generate a group in finitely many steps for an arbitrary

ring R? If yes, is there a bound on the number of steps?
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Theorem 1.2 implies that for unital rings 3 steps, and for rings of positive characteristic 2
steps, suffice. We also prove (see Theorem 6.1) that whenever R is generated by n elements
(where n P ω), then for any A containing those elements, n� 2 steps suffice.

One can also ask whether 3 is an optimal bound on the number of steps for all unital rings.
We give examples where exactly 2 steps are needed, e.g. R :� ZrXs equipped with the full
structure (i.e. with predicates for all subsets of all finite Cartesian powers of R) is a unital ring
with this property (see Example 8.1); in Example 8.2, we construct a commutative, unital ring
of characteristic 2 where exactly 2 steps are needed, so 2 is the optimal bound in the second
item of Theorem 1.2. Thus, the remaining question is whether one can decrease the number
of steps in the first item of Theorem 1.2 from 3 to 2. (In Definition 3.1, we will introduce
notions of half-integer numbers of steps which lead to more precise information and are used
throughout this paper, but in the introduction we omit this terminology just for simplicity.)

In Lemma 8.1, we find a finite index, additive subgroup H of R :� ZrXs for which R �H
does not contain a two-sided ideal of finite index. This shows that “2 steps” in Theorem 1.1 is
an optimal bound.

We also analyze many other classical examples, computing the numbers of steps needed in
the context of Theorem 1.1, in the sense of generating a group by pR̄Y t1uq � pR̄,�q00

A , and in
other senses.

We apply Theorem 1.2 to get an analogous result for model-theoretic connected components
of topological rings and their additive groups (for the relevant definitions see Section 7, for the
full statement see Theorem 7.3 and Corollary 7.5):

Theorem 1.4. Let R be a topological ring.
(1) If R is unital, then pR̄,�q00

top � R̄ � pR̄,�q00
top � R̄ � pR̄,�q00

top � R̄00
top.

(2) If R is of positive characteristic (not necessarily unital), then pR̄,�q00
top�R̄ �pR̄,�q

00
top �

R̄00
top.

Consequently, for both classes of rings, we have R̄0
top � R̄00

top � R̄000
top .

This implies that p::q from Subsection 4.5 of [GJK22] holds, and so one gets simplified
formulas for the Bohr compactifications of topological groups UTnpRq and TnpRq over any
unital, topological ring R.

Coming back to the general situation when R is any ring H-definable in M , a question arises
whether for every type-definable, bounded index subgroup H of pR̄,�q the set pR̄Y t1uq �H
generates a group in finitely many steps. Theorems 1.2 and 1.4 tell us that for unital rings
and for rings of positive characteristic it is true for H :� pR̄,�q00

A and H :� pR̄,�q00
top when

R is topological. In general, we give a negative answer (even for commutative, unital rings
of positive characteristic) by finding an appropriate H for R :� Zω2 equipped with the full
structure (see Corollary 8.11). Using the same ring, we also show that it is not the case that
there exists n P ω such that for every (H-definable) finite index subgroup H of pR,�q, the set
pR Y t1uq �H generates a group in n-steps (see Example 8.6); in particular, in Theorem 1.1,
one cannot strengthen the conclusion to saying that H � R � H is a two-sided (or just left)
ideal.

We said that Theorem 1.2 will be deduced from our algebraic Theorem 1.1. But in Section 3,
we will see that the connection is much stronger, e.g. for rings of positive characteristic both
theorems are easily seen to be equivalent. In Section 3, we will distinguish more conditions
closely related to both theorems, in particular (in Proposition 3.4(2)) we will show that
Theorem 1.1 is equivalent to the following version of Theorem 1.2.

Theorem 1.5. Let R be a H-definable ring. Then pR̄,�q0A � R̄ � pR̄,�q0A � R̄0
A, where pR̄,�q0A

[resp. R̄0
A] is the intersection of all A-definable, finite index additive subgroups [resp. ideals]

of R̄.
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Theorem 1.1 can be viewed as a purely algebraic restatement of Theorem 1.5. In Section 9,
we will describe an algebraic restatement of Theorem 1.2, Corollary 4.8, and Theorem 6.1,
and, more generally, of a potential positive answer to Question 1.3. Roughly speaking, this
restatement says that for an appropriate n, for any Bohr neighborhood D in the group pR,�q
there exists a weak “ring version of a Bourgain system” in the n-fold sum pRY t1uq �D� � � � �
pRY t1uq �D.

An important consequence of Pontryagin duality is the fact that each unital, compact,
Hausdorff topological ring is profinite. From this, one gets that for R unital, R̄00

A � R̄0
A. The

same is true for rings of positive characteristic (then also pR̄,�q00
A � pR̄,�q0A) which is pointed

out in Corollary 2.10. Note that in general it may happen that R̄00
A � R̄0

A, e.g. for R being
the ring of integers but with the zero multiplication, equipped with the full structure, we have
R̄00
R � pR̄,�q00

R � pR̄,�q0R � R̄0
R (where the middle inequality follows from [GJK22, Corollary

2.7]).

Structure of the paper. In the preliminaries, we recall the necessary definitions and useful
facts, extending the context of some of them. In Section 3, we distinguish several conditions
concerning generating in a given, finite number of steps (similar to those in the conclusions of
Theorems 1.1 and 1.2) and describe the relationships between them which are used in further
sections to obtain our main results and to study examples. In Section 4, we prove the main
results: Theorems 1.1 and 1.2. In Section 5, we give simpler proofs of these results, but for
commutative, finitely generated, unital rings, and with a weaker conclusion (more steps to
generate a group). In Section 6, we extend Theorem 1.2 to arbitrary finitely generated (not
necessarily unital) rings, but again with more steps required to generate a group. In Section 7,
we discuss model-theoretic connected components of topological rings and prove Theorem 1.4.
In Section 8, we analyze many examples, showing “optimality” of Theorems 1.1 and 1.2(2),
and yielding negative answers to some natural questions discussed in this introduction. In
Section 9, we discuss purely algebraic restatements of our main results.

2. Preliminaries

We are working in a model M of a complete, first order theory T whose monster model
is denoted by M̄ . Recall that by a monster model we mean a κ-saturated and strongly κ-
homogeneous model for a sufficiently large strong limit cardinal κ (for our purposes, any one
greater than |T | will suffice). When we are talking about definable groups or rings, we mean
that they are definable in M or in M̄ ; the reader may assume that M is simply the group
or ring in question (possibly with some additional structure) without much loss of generality.
For a set D definable in M , D̄ will stand for its interpretation in M̄ . We will say that D is
equipped with the full structure if all subsets of all finite Cartesian powers of D are H-definable.
Usually, A will denote a fixed subset of M .1 The term “bounded” will mean “less than κ”.

Let us recall all the relevant notions of connected components. Let R be a H-definable
group [resp. ring].


 R̄0
A is the intersection of all A-definable, finite index subgroups [ideals] of R̄.


 R̄00
A is the smallest A-type-definable, bounded index subgroup [ideal] of R̄.


 R̄000
A is the smallest invariant over A, bounded index subgroup [ideal] of R̄.

Note that we did not specify whether the ideals above are left, right, or two-sided. This is
because of Proposition 3.6, Corollary 3.7, and Proposition 3.10 from [GJK22] which tell us
that

1However, most of the results can be easily adapted to treat the case of an arbitrary small A � M̄ .
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Fact 2.1. The above components of the ring R̄ do not depend on the choice of the version
(left, right, or two-sided) of the ideals. Moreover, instead of “ideal” we can equivalently write
“subring” in the above definitions.2

Of course, R̄000
A ¤ R̄00

A ¤ R̄0
A. It is easy to see (cf. [Gis11, Lemma 2.2(1)]) that the indices

of all these components in R̄ are in fact bounded by 2|T |�|A|. If R is a definable group [or
ring] and S is a type-definable, normal subgroup [ideal] in R̄ of bounded index, then R̄{S is
equipped with the logic topology : closed sets are those whose preimages under the quotient
map are type-definable. This makes the quotient R̄{S a compact, Hausdorff topological
group [ring]. Then R̄{R̄0

R is the universal definable, profinite compactification, and R̄{R̄00
R the

universal definable compactification (so-called definable Bohr compactification) of the group
[ring] R. (See [GPP14] and [GJK22] for definitions and more details; a nice, short discussion
on definable Bohr compactifications of groups can be found in the preliminaries in [GJK22].)
So for example the equality R̄00

R � R̄0
R means precisely that both compactifications coincide.

When R is equipped with the full structure, we can erase the adjective “definable” and we get
classical notions of compactification (described in a model-theoretic way).

Since in this paper R will denote a definable ring, we will write R̄0
A, etc. to denote the

components of R̄ as a ring, and pR̄,�q0A, etc. to denote the components of the additive group
pR̄,�q.

Recall that a definable group G is said to be definably amenable if there is a left invariant,
finitely additive probability measure on the algebra of definable subsets of G. Each abelian
group is amenable as a discrete group so also definably amenable.

Recall the notion of a thick set from [Gis11, Definition 3.1]. For a positive integer n, a
subset D of a group is said to be n-thick if it is symmetric and for any elements g0, . . . , gn�1

there exist i   j   n with g�1
i gj P D; it is called thick, if it is n-thick for some n. A subset D

of G is called (left) generic if finitely many (left) translates of it cover G. Each thick subset is
clearly generic.

Fact 2.2. If G is a definably amenable group (e.g. an abelian group), then Ḡ00
A � Ḡ000

A .

Proof. For A �M (where G � GpMq) this is [KP19, Theorem 3.3]. For an arbitrary A �M
one can argue as follows. By Lemmas 2.2(2) and 3.3 of [Gis11], Ḡ000

A is generated by the
intersection of all A-definable, thick subsets of Ḡ. So, by compactness, it is enough to show
that for every A-definable, thick subset D of G, Ḡ00

A � D̄8. Claim 1 in the proof of [KP19,
Lemma 3.5] (which is based on the main result of [MW15]) yields a descending sequence
D4 � C1 � C2 � . . . of generic, symmetric, M -definable subsets of G such that C2

i�1 � Ci for

all i. Then
�
i C̄i is an M -type-definable subgroup of Ḡ of bounded index and contained in

D̄4. Therefore, Ḡ00
M � D̄4. Since D is A-definable, by [Mas18, Theorem 5.2], we conclude that

Ḡ00
A � D̄8. �

Let R be a definable ring. Using Fact 2.2 together with a result of Newelski, the following
two observations were made in [GJK22] (see Lemmas 4.7 and 4.8 in there), whose proofs we
recall for the reader’s convenience.

PutXÐ :� pR̄Yt1uq�pR̄,�q00
A , XÑ :� pR̄,�q00

A �pR̄Yt1uq, XØ :� pR̄Yt1uq�pR̄,�q00
A �pR̄Yt1uq.

Fact 2.3. The subgroup J of pR̄,�q generated by Xi is precisely R̄000
A for any i P tÐ,Ñ,Øu.

Proof. As pR̄,�q is abelian, pR̄,�q00
A � pR̄,�q000

A � R̄000
A by Fact 2.2. Hence, J is contained

in R̄000
A by Fact 2.1. On the other hand, J is an A-invariant left [or right or two-sided] ideal

which contains pR̄,�q00
A and so has bounded index, hence it must contain R̄000

A by Fact 2.1. �

Fact 2.4. For any i P tÐ,Ñ,Øu, the following conditions are equivalent.

2It is easy to see (cf. for example [Gis11, Lemma 2.2(3)]) that the analogue for groups is also true, i.e.
R̄0

A, R̄
00
A , R̄

000
A are always normal subgroups of R̄, even if R is a non-abelian group.
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(i) R̄000
A is type-definable.

(ii) R̄000
A is generated by Xi in finitely many steps.

(iii) R̄000
A � R̄00

A .

Proof. The implication (i) Ñ (ii) follows from Theorem 3.1 of [New03] (and Fact 2.3); and (ii)
Ñ (i) is trivial. The equivalence (i) Ø (iii) is trivial by the definitions of R̄000

A and R̄00
A . �

As a corollary we see that the statements “R̄000
A is generated by Xi in finitely many steps”

are equivalent for i P tÐ,Ñ,Øu.
Question 4.9 of [GJK22] asks whether these equivalent conditions hold for all unital rings.

As discussed in the introduction, we will answer this question in the affirmative, showing that
3 (and for positive characteristic even 2) steps are enough to generate R̄000

A .
The next fact was observed in [GJK22, Proposition 3.6].

Fact 2.5. If R is unital, then R̄00
A � R̄0

A.

The above fact is based on [RZ10, Proposition 5.1.2] which says that each compact, Hausdorff,
unital ring is profinite, the proof of which goes through when instead of the existence of 1 one
assumes that for every c P R there exists rc P R such that rcc � c.

However, we can say more.

Definition 2.6. Let R be a ring. We say that it is left s-unital if for every r P R we have r P Rr,
right s-unital if for every r P R we have r P rR, and s-unital if it is both left and right s-unital.

Example 2.7. Each unital ring is s-unital. The converse is false: Z`ω2 is s-unital but not unital.
Furthermore, the ring CcpRq of compactly supported, continuous functions on the real line is
s-unital, but it has no nonzero idempotents.

Definition 2.8. If R is a ring and r P R is nonzero, then we say that r is a total left zero divisor
if rR � 0, and we say that r is a total right zero divisor if Rr � 0.

Note that in a left s-unital ring, there are no total right zero divisors, and in a right s-unital
ring, there are no total left zero divisors.

Fact 2.9. If R is a compact, Hausdorff ring which has no total left zero divisors or no total
right zero divisors, then R is a profinite ring.

Proof. This is [Anz43, Theorem 3]. �

The next corollary is a generalization of Fact 2.5.

Corollary 2.10. If R is either of positive characteristic or unital or just left [or right] s-unital,
then R̄00

A � R̄0
A.

Proof. As mentioned before, R̄00
A � R̄0

A if and only if R̄{R̄00
A is profinite (e.g. see the proof of

[GJK22, Proposition 3.6]). If R is left s-unital or right s-unital, then clearly so is R̄ and its
every quotient, including R̄{R̄00

A . Since a left [right] s-unital ring cannot have right [left] total
zero divisors, it follows by Fact 2.9 that R̄{R̄00

A is profinite, so we are done.
If R is of characteristic m ¡ 0, then expand M by the additional sort for the finite ring

Z{mZ with named elements and its natural action on R. Then the induced structure on
M is interdefinable with the original one (without parameters). Consider the unitization
S :� R ` Z{mZ of R; this is a H-definable ring. It is clear that S̄00

A � R̄00
A � t0u and

S̄0
A � R̄0

A � t0u. So it is enough to show that S̄00
A � S̄0

A, but this follows from the first part, as
S is unital. �

As mentioned before, by [GPP14], we know that if G is a (discrete) group considered with the
full structure, then the (classical) Bohr compactification of G coincides with Ḡ{Ḡ00

G � Ḡ{Ḡ00
H .
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If G lives in a model M equipped with the full structure, then this Bohr compactification is
also Ḡ{Ḡ00

M .
The next well-known result is based on Pontryagin duality. For a proof see e.g. [GJK22,

Fact 2.6].

Fact 2.11. Assume G is a discrete abelian group. Then its Bohr compactification is profinite
if and only if G has finite exponent.

Corollary 2.12. If G is a group of finite exponent defined in an arbitrary structure, then Ḡ{Ḡ00
A

is profinite; equivalently, Ḡ00
A � Ḡ0

A.

Proof. This is [GJK22, Corollary 2.8].3 �

Let us observe that the first part of Corollary 2.10 follows from Corollary 2.12. Indeed,
the assumption that R has positive characteristic means that pR,�q is of finite exponent, so
pR̄,�q00

A � pR̄,�q0A. But this always implies that R̄00
A � R̄0

A. Namely, R̄{pR̄,�q00
A � R̄{pR̄,�q0A

is a profinite group which maps onto R̄{R̄00
A which thus must be also profinite as a group. This

implies that R̄{R̄00
A is a profinite ring, so R̄00

A � R̄0
A.

Throughout the paper, when X is a subset of an abelian group, X�n will denote the n-fold
sum X � � � � �X.

3. Generating in finitely many steps — equivalent conditions

In this section, we formulate several conditions concerning generating in finitely many steps
and study relationships between them, showing that they are equivalent in some general
situations. In Section 4, we will show that condition (iii)1 1

2
defined below holds for all rings

which, together with the results of this section, will allow us to automatically deduce the
other conditions, with the appropriate indices and for the appropriate rings, and in particular
Theorem 1.2. The relationships established in this section are also used in the analysis of some
concrete examples in Section 8.

As usual, R is a H-definable ring. For a subset D of R, let:

DÐ :� pRY t1uq �D, DÑ :� D � pRY t1uq, and DØ :� pRY t1uq �D � pRY t1uq.

Analogous notation will be used for D � R̄ (note that there is some ambiguity here, since
R � R̄, but the meaning should be clear from the context in each case). In particular, for
X :� pR̄,�q00

A , we get XÐ, XÑ, and XØ defined before Fact 2.3. Let also:

X 1
Ð :� pR̄Yt1uq�pR̄,�q0A, X

1
Ñ :� pR̄,�q0A �pR̄Yt1uq, and X 1

Ø :� pR̄Yt1uq�pR̄,�q0A �pR̄Yt1uq.

Remembering that J was defined as the subgroup of pR̄,�q generated by Xi (which were
defined analogously to X 1

i, but with pR̄,�q00
A in place of pR̄,�q0A), we define J 1i as the subgroup

generated by X 1
i, for i P tÐ,Ñ,Øu. Then J 1i is an A-invariant, left [or right or two-sided] ideal

of R̄ of bounded index which is contained in R̄0
A. While by Fact 2.3 we know that J � R̄000

A
regardless of the choice of i (and that is why there is no need to write Ji), at this moment we
do not have an analogous fact about J 1i . However, from Corollary 4.7(1), it will follow that
J 1i � R̄0

A, regardless of the choice of i.
By Fact 2.1, in the next definition we can equivalently talk about left, right, and two-sided

ideals, so will be skipping the adjectives before ideals.

Definition 3.1. We introduce the following conditions for any natural number n ¡ 0 and
i P tÐ,Ñ,Øu.

(i)n Jp� R̄000
A q � X�n

i (equivalently, X�n
i � R̄00

A ).

3As pointed out by a referee, the abelianity hypothesis included in [GJK22] is not necessary, since a compact
Hausdorff group of finite exponent is always profinite.
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(ii)n For every (thick) A-definable subset D of R such that D̄ � pR̄,�q00
A , D�n

i contains an
A-definable, finite-index ideal.

(iii)n For every A-definable, finite index subgroup H of pR,�q, H�n
i contains an A-definable

ideal of finite index.
(iv)n J 1i � pX 1

iq
�n.

(v)n pX 1
iq
�n � R̄0

A.

We also consider conditions with half-integer subscripts. E.g. (i)k 1
2
: J � X � X�k

i , where

X :� pR̄,�q00
A ; (ii)k 1

2
: for every (thick) A-definable D with D̄ � pR̄,�q00

A , the set D �D�k
i

contains an A-definable ideal of finite index. The others are defined analogously.
In order to unify the notation, for n � k 1

2 (where k P N), D�n
i will stand for D �D�k

i , etc.

The equivalence of the two formulations of (i)n follows immediately from Facts 2.3 and 2.4,
but it is much easier: J is clearly an A-invariant, bounded index, left [or right or two-sided]
ideal of R̄ contained in R̄00

A and containing X�n
i , so J � X�n

i if and only if X�n
i � R̄00

A .
One should keep in mind that since each pR̄,�q00

A , pR̄,�q0A, R̄00
A , R̄0

A is an intersection of
A-definable symmetric sets, and each A-definable symmetric set containing any of them is
thick, each of these sets is the intersection of A-definable thick sets containing it.

Proposition 3.2. If n is a positive half-integer, then:

(1) (ii)n holds if and only if both (i)n holds and R̄00
A � R̄0

A,
(2) R̄00

A � R̄000
A if and only if for some n we have (i)n,

(3) R̄0
A � R̄000

A if and only if for some n we have (ii)n.

Proof. (1) (Ñ). By (ii)n, we get R̄0
A � X�n

i , and trivially X�n
i � J , which is R̄000

A by Fact 2.3.
On the other hand, R̄000

A � R̄00
A � R̄0

A. So we get R̄000
A � X�n

i � R̄00
A � R̄0

A.
(Ð). By (i)n and R̄00

A � R̄0
A, for any D from (ii)n, R̄0

A � D̄�n
i . So the conclusion follows by

compactness.
(2) is a part of Fact 2.4.
(3) follows from (1) and (2). �

Lemma 3.3. If R is left [right] s-unital, then for every thick set D � R there is N ¡ 0 such that
NR � R �D [resp. NR � D �R]. If R is s-unital, then we get NR � R �DXD �R � R �D �R.

Proof. Let us prove the left version; the right version is similar, and the two-sided version
follows from the one-sided versions (note that s-unitality implies that R �DYD �R � R �D �R).

Fix an n-thick set D. We will show that n!R � R �D. Fix an arbitrary r P R. Choose s P R
with r � sr (by left s-unitality). By n-thickness of D, there is some k P t1, . . . , n � 1u such
that kr P D. Then k divides n!, and it follows that

n!r � n!sr �

�
n!

k



skr P R �D. �

Proposition 3.4. If n is a positive half-integer, then:

(1) (ii)n implies (i)n and (iii)n,
(2) conditions (iii)n, (iv)n, and (v)n are all equivalent,
(3) if R is of positive characteristic, then all conditions (i)n – (v)n are equivalent,
(4) if R is s-unital, then (ii)n is equivalent to (i)n, and (iii)n implies (ii)n�1.

Proof. (1) The implication (ii)n Ñ (i)n follows from Proposition 3.2(1), and (ii)n Ñ (iii)n is
trivial.

(2) The implication (v)n Ñ (iv)n is trivial.
(iii)n Ñ (v)n. By (iii)n and compactness, we get that R̄0

A � pX 1
iq
�n, so (v)n follows from the

obvious observation that pX 1
iq
�n � J 1i � R̄0

A.
(iv)n Ñ (iii)n. By (iv)n, J 1i is an A-type-definable, left [or right or two-sided] ideal containing



GENERATING IDEALS BY ADDITIVE SUBGROUPS OF RINGS 9

pR̄,�q0A. So J 1i is an intersection
�
j Gj of some A-definable subgroups of pR̄,�q of finite

index. Note that StabR̄pGjq :� tr P R̄ : rGj � Gju for i P tÑ,Øu and Stab1R̄pGjq :� tr P

R̄ : Gjr � Gju for i � Ð has finite index, because it is definable and contains J 1i which is of
bounded index. Hence, by [GJK22, Lemma 3.9 and Proposition 3.10], we get that each group
Gj contains an A-definable, finite index, two-sided ideal. So, R̄0

A � J 1i . Therefore, J 1i � R̄0
A.

Since J 1i � pX 1
iq
�n, we get (iii)n by compactness.

(3) By Corollary 2.10, R̄00
A � R̄0

A, so the implication (i)n Ñ (ii)n follows from Proposi-
tion 3.2(1). To show (iii)n Ñ (ii)n, consider any D from (ii)n. By Corollary 2.12, pR̄,�q00

A �
pR̄,�q0A, so we can find a finite index, A-definable subgroup H � D. By (iii)n, H�n

i contains
an A-definable, finite-index ideal, and so does D�n

i .
(4) Again by Corollary 2.10, R̄00

A � R̄0
A, so the implication (i)n Ñ (ii)n follows from

Proposition 3.2(1). To show (iii)n Ñ (ii)n�1, consider any D from (ii)n. Since D is thick,
Lemma 3.3 yields a positive natural number N such that the two-sided ideal NR is contained in
R�DXD�R � R�D�R. Then S :� R{NR is an interpretable ring of characteristic N ¡ 0, and so
pS̄,�q00

A � pS̄,�q0A by Corollary 2.12. On the other hand, pS̄,�q00
A � pR̄,�q00

A {NR̄ � D̄{NR̄.
Thus, there exists an A-definable, finite index subgroup H of pR,�q such that H � D�NR. By
(iii)n, H�n

i contains an A-definable ideal of finite index. This is enough, as H�n
i is contained

in D�n
i �NR � D�n

i � pR �D XD �RXR �D �Rq � D
�pn�1q
i . �

Remark 3.5. We also have an analogue of Proposition 3.4(4) when R is only left [or right]
s-unital. For instance, if R is left s-unital, then (i)n Ñ (ii)n for all i P tÐ,Ñ,Øu, and (iii)n
Ñ (ii)n�1 for i P tÐ,Øu, both with essentially the same proof.

In the next section, we will see that (iii)1 1
2

always holds. However, any ring R with zero

multiplication and pR̄,�q00
A � pR̄,�q0A is an example where (i) 1

2
holds, but (ii)n fails for all n

(by Proposition 3.2(1), as R̄00
A � pR̄,�q00

A � pR̄,�q0A � R̄0
A). Particular examples of this form

are Z equipped with the full structure or the circle S1 treated as a group definable in pR,�, �q.
In Example 8.3, we will check that for R :� XZrXs (a ring without zero divisors) equipped
with the full structure (ii)n also fails for all n.

Question 3.6. Let R be arbitrary. Does (iii)n imply that (i)m holds for some m? Is it true
with m � n� 1 or even with m � n?

As remarked after Fact 2.4, condition Dn(i)n does not depend on the choice of i P tÐ,Ñ,Øu,
because it is equivalent to R̄00

A � R̄000
A . Hence, by Proposition 3.4, the same is true for all

other conditions from Definition 3.1 when R is s-unital or of positive characteristic.

4. Main results

We will prove here Theorems 1.1 and 1.2 (see Theorem 4.5, and Corollaries 4.6, 4.8, and
4.10).

Definition 4.1. We will say that two subgroups H1 and H2 of an abelian group G are coset-
independent if any coset of H1 intersects any coset of H2. They are coset-dependent if they
are not coset-independent.

Remark 4.2. Let G be an abelian group and H1,H2 ¤ G. The following conditions are
equivalent.

(i) H1 and H2 are coset-independent.
(ii) H1 intersects any coset of H2.
(iii) H1 �H2 � G.

Thus, H1 and H2 are coset-dependent if and only if H1 �H2 is a proper subgroup of G.

Proof. Easy exercise. �



10 KRZYSZTOF KRUPIŃSKI AND TOMASZ RZEPECKI

Lemma 4.3. If D is a generic subset of a group G, then xDy is generated in finitely many steps.

Proof. Equip G with the full structure, and let Ḡ ¡ G be a monster model and D̄ the
interpretation of D in Ḡ. Then the group xD̄y is

�
-definable and of finite index, hence, by

compactness, it is definable and generated in finitely many steps.
Alternatively, this can be proved constructively as follows (we thank an anonymous referee for

suggesting this alternative proof): let n be such that G is covered by n translates of D, and put
E � DYt1uYD�1. We will show thatE3n � xDy: if not, we could choose for each 1 ¤ i ¤ 3n�1
an element gi P E

izEi�1. By pigeonhole, two of g1, g4, . . . , g3n�1, say gi and gj (where i   j),

are in the same gD for some g P G. Then i� 2 ¤ j� 1 and g�1
i gj P D

�1g�1gD � D�1D � E2.
Thus gj P giE

2 � EiE2 � Ei�2 � Ej�1, a contradiction. �

Lemma 4.4. Let R be a ring and H be a finite index subgroup of pR,�q. Let T be the collection
of all a P R{H such that for every finite index subgroup K of pR,�q we have a P RK{H. Then
T is a subgroup of pR{H,�q.

Proof. It is clear that T is closed under inverses and that 0 P T . Consider any a, b P T . We
need to show that a� b P T .

For r P R let gr : H Ñ R{H be given by grpxq :� rx{H; this is a group homomorphism.
Since for all s P R, rH : kerpgsqs ¤ rR : Hs which is finite, we can find a smallest natural
number n for which there exists a finite index subgroup Kn of H such that

p@s P Rqpb P sKn{H ñ rKn : kerpgsq XKns ¤ nq.

Case 1. For every finite index subgroup K of Kn, there are r, s P R with a P rK{H and
b P sK{H such that kerpgrq XK and kerpgsq XK are coset-independent subgroups of K.

Then, since g�1
r paqXK and g�1

s pbqXK are cosets of kerpgrqXK and kerpgsqXK, respectively,
they have a non-empty intersection, i.e. there is k P K with rk{H � a and sk{H � b. Hence,
a� b � pr� sqk{H P RK{H. Since this holds for every finite index subgroup K of Kn (so also
for every finite index subgroup of R), we conclude that a� b P T .
Case 2. There exists a finite index subgroup K of Kn such that for all r, s P R with a P rK{H
and b P sK{H, kerpgrq XK and kerpgsq XK are coset-dependent subgroups of K.

By the definition of T , we can pick r0 P R with a P r0K{H. By Remark 4.2, for any s P R
with b P sK{H (by the definition of T , at least one such s exists),

kerpgr0q XK ¤ pkerpgr0q XKq � pkerpgsq XKq ¬ K.

Since kerpgr0qXK is a fixed finite index subgroup of K, there are only finitely many possibilities
L0, . . . , Lm�1 for pkerpgr0qXKq�pkerpgsqXKq when s varies. Also, by the above strict inclusion
and the fact that K ¤ Kn, we have

rpkerpgr0q XKq � pkerpgsq XKq : pkerpgsq XKqs   rK : kerpgsq XKs ¤ rKn : kerpgsq XKns

for every s P R with b P sK{H.
Put Kn�1 :� L0 X � � � XLm�1. This is a finite index subgroup of H contained in pkerpgr0q X

Kq � pkerpgsq XKq for every s P R with b P sK{H. Thus, we conclude that

p@s P Rqpb P sKn�1{H ñ rKn�1 : kerpgsq XKn�1s   rKn : kerpgsq XKnsq :

indeed, if b P sKn�1{H, then b P sK{H (because Kn�1 ¤ K), so, by the above, we have
rLi : kerpgsq X Ks   rKn : kerpgsq X Kns, where Li � pkerpgr0q X Kq � pkerpgsq X Kq, and
clearly rLi : kerpgsq XKs ¥ rKn�1 : kerpgsq XKn�1s.

Therefore, by the choice of Kn, we get

p@s P Rqpb P sKn�1{H ñ rKn�1 : kerpgsq XKn�1s ¤ n� 1q,

a contradiction with the minimality of n. �
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Theorem 4.5. Let R be an arbitrary ring H-definable in a structure M and A �M . Then for
every A-definable finite index subgroup H of pR,�q, the set H �R �H contains an A-definable,
two-sided ideal of R of finite index.

Proof. Without loss of generality we can assume that M is the monster model. Define T as in
Lemma 4.4. Let H 1 :� π�1

H rT s, where πH : RÑ R{H is the quotient map. By Lemma 4.4, H 1

is a subgroup of pR,�q. We can find a finite index subgroup H0 of H such that R �H0{H � T ;
equivalently, H � R �H0 � H 1. For instance, for each a P pR{HqzT , we can choose a finite
index Ha ¤ R such that a R R �Ha{H. Then H 1

0 :� H X
�
aRT Ha is as stated.

In fact, H0 can be chosen to be A-definable, namely H0 :�
�
rPR g

�1
r rT s (where gr : H Ñ

R{H is defined by grpxq :� rx{H) works: it is a subgroup by Lemma 4.4; it has finite index,
as it contains the subgroup H 1

0 defined in the preceding paragraph (since grrH
1
0s � T for each

r P R); it is definable over A by the formula px P Hq ^ p@r P Rqprx{H P T q (note that T is
finite and A-invariant so A-definable, as we work in the monster model); R �H0{H � T by the
definition of T and the fact that the index rR : H0s is finite; R �H0{H � T by the definition
of H0.

Since pRY t1uq �H0 is generic and symmetric, by Lemma 4.3, the left ideal pH0q generated
by H0 is the n-fold sum

ppRY t1uq �H0q
�n � pRY t1uq �H0 � � � � � pRY t1uq �H0

for some n, so it is A-definable. Also, pH0q � H 1 � H �R �H. Since pH0q is an A-definable,
left ideal of R of finite index, we finish using Fact 2.1. �

Corollary 4.6. Every ring R has property (iii)1 1
2

from Definition 3.1, i.e. for every A-definable,

finite index subgroup H of pR,�q:

(i) the set H �R �H contains an A-definable ideal of R of finite index;
(ii) the set H �H �R contains an A-definable ideal of R of finite index;

(iii) the set H � pRY t1uq �H � pRY t1uq contains an A-definable ideal of R of finite index.

Proof. Item (i) is Theorem 4.5, (ii) can be proved analogously, and (iii) follows from (i). �

In Example 8.4, we will see that in item (iii) in that last corollary we cannot write H�R�H �R:
in this example, H �R �H �R � H does not have a finite index ideal. If one assumes that R
is left [or right] s-unital, then one can write H �R �H �R in (iii), because H �R � R �H �R
[resp. R �H � R �H �R].

As a conclusion of Proposition 3.4 and Corollary 4.6, we get

Corollary 4.7. (1) Conditions (iii)1 1
2
, (iv)1 1

2
, and (v)1 1

2
hold for all rings.

(2) All five conditions (i)1 1
2

– (v)1 1
2

hold for all rings of positive characteristic.

(3) Conditions (ii)2 1
2

and (i)2 1
2

hold for all s-unital rings.

The last two items yield Theorem 1.2, more precisely (using also Corollary 2.10):

Corollary 4.8. Let R be a H-definable ring.

(1) If R is s-unital, then

 pR̄,�q00

A � R̄ � pR̄,�q00
A � R̄ � pR̄,�q00

A � R̄00
A � R̄0

A,

 pR̄,�q00

A � pR̄,�q00
A � R̄� pR̄,�q00

A � R̄ � R̄00
A � R̄0

A,

 pR̄,�q00

A � R̄ � pR̄,�q00
A � R̄� R̄ � pR̄,�q00

A � R̄ � R̄00
A � R̄0

A.
(2) If R is of positive characteristic (not necessarily s-unital), then


 pR̄,�q00
A � R̄ � pR̄,�q00

A � R̄00
A � R̄0

A,

 pR̄,�q00

A � pR̄,�q00
A � R̄ � R̄00

A � R̄0
A,


 pR̄,�q00
A � pR̄Y t1uq � pR̄,�q00

A � pR̄Y t1uq � R̄00
A � R̄0

A.
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Remark 4.9. Using Remark 3.5, we can see that Corollary 4.7(3) and Corollary 4.8(1) have
obvious analogues in the case when R is only left [or right] s-unital. For instance, if R is left
s-unital, then


 pR̄,�q00
A � R̄ � pR̄,�q00

A � R̄ � pR̄,�q00
A � R̄00

A � R̄0
A,


 pR̄,�q00
A �pR̄Yt1uq � pR̄,�q00

A � pR̄Yt1uq� pR̄Yt1uq � pR̄,�q00
A � pR̄Yt1uq � R̄00

A � R̄0
A.

Thus, by Fact 2.4 (or Proposition 3.2), we obtain

Corollary 4.10. For an arbitrary H-definable ring R which is (even one-sided) s-unital or of
positive characteristic, R̄0

A � R̄00
A � R̄000

A .

Question 4.11. Do the last two corollaries (except R̄0
A � R̄00

A ) hold for all rings?

Question 4.12. Are 2 or even 11
2 (instead of 21

2) steps enough in Corollary 4.8(1)?

In Examples 8.1 and 8.2, we will see that one cannot decrease the number of steps to 1,
even for commutative, unital rings of positive characteristic.

5. Commutative, finitely generated, unital rings

We will give a different (and easier) proof of the following weaker version of Theorem 4.5
for commutative, finitely generated, unital rings.

Proposition 5.1. Let R be a H-definable, unital, commutative, finitely generated ring, say
generated by 1 and a set A of cardinality n. Then for every finite index subgroup H of pR,�q,

the pn� 1q-fold sum pR �Hq�pn�1q contains an A-definable ideal of R of finite index.

In fact, we prove more:

Proposition 5.2. Let R be a H-definable, unital, commutative, finitely generated ring, say
generated by 1 and a set of cardinality n contained in A.

(1) Then for every thick subset D of pR,�q, pR �Dq�pn�1q contains an A-definable ideal
of R of finite index. Thus, all conditions (i)n�1 – (v)n�1 from Definition 3.1 hold over
A.

(2) If R is additionally of positive characteristic, then we have the same conclusion with n
in place of n� 1.

Proof. (1) By Proposition 3.4, the last claim follows from the first one. To show the first
claim, we can assume that A � ta1, . . . , anu is a set of generators. Since D is thick, for every

i P t1, . . . , nu there exist natural numbers ki   li such that alii � akii P D; for the same reason,

there exists a non-zero k P Z such that k � 1 :� 1�k P D. We claim that the A-definable ideal

I :� pk � 1q � pa1
l1 � a1

k1q � � � � � pan
ln � an

knq

is contained in pR � Dq�pn�1q and has finite index. Only the latter statement requires an
explanation. Since R is a homomorphic image of the ring of polynomials ZrX1, . . . ,Xns, it
is enough to prove it for R � ZrX1, . . . ,Xns and A :� tX1, . . . ,Xn}. Using an inductive
argument and the fact that in the ring of polynomials in one variable over a commutative,
unital ring we can divide with reminders by monic polynomials (the monic polynomials that

we are using here are X li
i � Xki

i ), we easily get that every polynomial in ZrX1, . . . ,Xns is
congruent modulo I to some polynomial in ZkrX1, . . . ,Xns of the Xi-degree less than li for
every i P t1, . . . , nu. Hence, R{I is finite.

(2) If R is of positive characteristic, we do not need the term pk � 1q in I in the above
argument, so n steps is enough. �

Note that in the special case of n � 1, Proposition 5.2(1) decreases the number of steps
obtained in Corollary 4.8(1) [resp. (2)] from 21

2 to 2 [resp. from 2 to 1], but, of course, in a
much more narrow class of rings.
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6. Finitely generated rings

Here, we give a positive answer to Questions 1.3 and 4.11 for arbitrary finitely generated
rings, but with the number of steps dependent on the number of generators and larger than
the number given by Corollary 4.8 (for s-unital or positive-characteristic rings).

Theorem 6.1. If R � xr0, . . . , rn�1y is a H-definable, finitely generated ring, then (i)n�1� 1
2

holds for any A containing r0, . . . , rn�1. In fact, it is enough to assume that R � pR� Zqr0 �
� � � � pR� Zqrn�1 and Rr0 � � � � �Rrn�1 � r0R� � � � � rn�1R.

Note that indeed R � xr0, . . . , rn�1y implies the assumptions after “In fact”, and that for a
commutative R the last assumption trivially holds.

Let R be as above (i.e. satisfies the two assumptions after “In fact”). Put S :� Rr0 � � � � �
Rrn�1. This is a two-sided ideal of R.

Lemma 6.2. Let D be an A-definable, thick subset of R such that pR̄,�q00
A � D̄. Then D �

pR �Dq�pn�1q contains an A-definable, finite index ideal of S.

Proof. For i � 0, . . . , n � 1, let ki P Nzt0u be such that kiri P D (by thickness). Then for
k :� k0 . . . kn�1 we have that kS � pR �Dq�n, because every s P S can be written as

°
i r
1
iri

(for some r1i P R) and then ks �
°
i kr

1
iri �

°
i
k
ki
r1i � kiri P pR �Dq

�n.

On the other hand, S{kS is of positive characteristic and pSXDq{kS is an A-definable, thick
subset of S{kS such that pS̄XD̄q{kS̄ contains pS̄XpR̄,�q00

A q{kS̄ ¥ pS̄,�q00
A {kS̄ � pS̄{kS̄,�q00

A .
Hence, as (ii)1 1

2
holds for rings of positive characteristic (by Corollary 4.7(2)), we get that

pSXDq{kS�S{kS � pSXDq{kS contains an A-definable, finite index ideal of S{kS. Then the
preimage of this ideal by the quotient map S Ñ S{kS is an A-definable, finite index ideal of S

contained in pS XDq � S � pS XDq � kS � D � S �D � kS � D � pR �Dq�pn�1q. �

Since any finite index, A-definable ideal of S contains S̄0
A, we obtain the following by

compactness.

Corollary 6.3. pR̄,�q00
A � S̄0

A � pR̄,�q00
A � pR̄ � pR̄,�q00

A q
�pn�1q.

Lemma 6.4. S̄0
A is a left ideal of R̄.

Proof. Recall that M is a structure in which R is H-definable. Let M 1 be the expansion of M
by the additional sort pZ,�q and the natural action of this sort on R. We choose a monster
model M̄ 1 so that M̄ (i.e. the interpretation of M in M̄ 1) is a monster model of ThpMq. All
the components and definable subsets of R̄ will be in the sense of the original language of M .

Consider any r P R̄. We need to show that rS̄0
A � S̄0

A. By the assumption on R, r P S̄�
°
i Z̄ri.

Since S̄0
A is an ideal of S̄, we have S̄ � S̄0

A � S̄0
A, so it suffices to show (1) and (2), where:

(1) Z̄ � S̄0
A � S̄0

A,
(2) riS̄

0
A � S̄0

A for all i.
Ad 1. S̄0

A �
�
j Īj for some A-definable, finite index ideals Ij of S. Clearly Z � Ij � Ij , so

Z̄ � Īj � Īj . This implies that Z̄ � S̄0
A � S̄0

A.
Ad 2. As ri P A, the map fri : S Ñ S given by fripxq :� rix is an A-definable group

homomorphism. Hence, one easily gets ripS̄,�q
0
A � pS̄,�q0A � S̄0

A. Also, since (v)1 1
2

holds for

all rings (by Corollary 4.7(1)), we have S̄0
A � pS̄,�q0A�S̄ �pS̄,�q

0
A. Using these two observations,

we get riS̄
0
A � rippS̄,�q

0
A � S̄ � pS̄,�q0Aq � ripS̄,�q

0
A � riS̄ � pS̄,�q

0
A � S̄0

A � S̄ � pS̄,�q0A �
S̄0
A � S̄ � S̄0

A � S̄0
A. �

Lemma 6.5. pR̄,�q00
A � S̄0

A is a left ideal of R̄.

Proof. First, note that r0pR̄,�q
00
A � � � � � rn�1pR̄,�q

00
A � pS̄,�q00

A . This follows easily from
the observations that ripR̄,�q

00
A � priR̄,�q

00
A and r0R̄ � � � � � rn�1R̄ � S̄ (the last equality
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follows from the last assumption of Theorem 6.1). Now, consider any r P R̄, and take the
notation described at the beginning of the previous lemma. By that lemma, it remains to show
that rpR̄,�q00

A � S̄0
A. By the assumption on R, r P

°
i Z̄ri � r1iri for some r1i P R̄. Therefore,

rpR̄,�q00
A �

°
i Z̄ripR̄,�q00

A �r
1
iripR̄,�q

00
A �

°
i Z̄�pS̄,�q00

A �r
1
ipS̄,�q

00
A �

°
i Z̄�S̄0

A�r
1
iS̄

0
A � S̄0

A,
where the last inclusion follows from the previous lemma and item (1) in its proof. �

The next corollary implies Theorem 6.1. More precisely, it implies the left version of
Theorem 6.1 (i.e. condition (i)n�1� 1

2
for i � Ð), but the right version is analogous, and the

two-sided version follows from the left version.

Corollary 6.6. We have pR̄,�q00
A � pR̄ � pR̄,�q00

A q
�pn�1q � pR̄,�q00

A � S̄0
A.

Proof. The inclusion p�q is Corollary 6.3. For the opposite inclusion, note that the left hand
side is contained in J � R̄000

A . On the other hand, by Lemma 6.5, the right hand side is a
left ideal of R, which is clearly A-type-definable and of bounded index, so it contains R̄000

A .
Therefore, we get p�q. �

7. Topological rings

Throughout this section, R is a topological ring. Equip it with the full structure (e.g. by
adding predicates for all subsets of all finite Cartesion powers). In Subsection 3.5 of [GJK22],
the following connected component was defined:

R̄00
top :� R̄00

R � µ � R̄00
H � µ,

where µ stands for the infinitesimals. What makes this object interesting is [GJK22, Proposition
3.32] which says that the quotient map RÑ R̄{R̄00

top is the Bohr (i.e. universal) compactification
of the topological ring R. Another point is that Theorem 1.4, which we will prove below, implies
directly that condition (::) in Subsection 4.5 of [GJK22] holds for all unital, topological rings,
and hence (as stated right below (::) in [GJK22]) one gets the simplified formulas for the Bohr
compactifications of the topological groups UTnpRq and TnpRq over any unital, topological
ring R (analogous to those in [GJK22, Corollary 4.5]).

The above ring component is an analog of the component Ḡ00
top :� Ḡ00

H � µ of a topological

group G (equipped with the full structure), which was studied in [GPP14] and [KP19]. It was
introduced because of the same reason as the above component of a topological ring, namely:
the quotient map GÑ Ḡ00

top is the Bohr compactification of the topological group G. And in
[GJK22, Subsection 4.5], this was used to find formulas for Bohr compactifications of UTnpRq
and TnpRq over unital, topological rings.

Returning to the topological ring R, note that pR,�q is a topological group, so we have

pR̄,�q00
top :� pR̄,�q00

H � µ.

The following fact (see [GJK22, Lemma 3.29]) will be important in the proof of Theorem 7.3
below.

Fact 7.1. R̄00
top is a two-sided ideal.

Analogously to [GJK22, Subsection 3.5], one can define

R̄0
top :� R̄0

R � µ � R̄0
H � µ,

and show that it is a two-sided ideal and the quotient map R Ñ R̄{R̄0
top is the universal

profinite compactification of the topological ring R.
By Corollary 2.10, we immediately get

Corollary 7.2. If R is s-unital or of positive characteristic, then R̄00
top � R̄0

top.
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Using this together with Corollary 4.8, we will easily prove the topological counterpart of
the latter, i.e. Theorem 1.4.

Theorem 7.3. Let R be a topological ring.

(1) If R is s-unital, then

 pR̄,�q00

top � R̄ � pR̄,�q00
top � R̄ � pR̄,�q00

top � R̄00
top � R̄0

top,


 pR̄,�q00
top � pR̄,�q00

top � R̄� pR̄,�q00
top � R̄ � R̄00

top � R̄0
top,


 pR̄,�q00
top � R̄ � pR̄,�q00

top � R̄� R̄ � pR̄,�q00
top � R̄ � R̄00

top � R̄0
top.

(2) If R is of positive characteristic (not necessarily s-unital), then

 pR̄,�q00

top � R̄ � pR̄,�q00
top � R̄00

top � R̄0
top,


 pR̄,�q00
top � pR̄,�q00

top � R̄ � R̄00
top � R̄0

top,


 pR̄,�q00
top � pR̄Y t1uq � pR̄,�q00

top � pR̄Y t1uq � R̄00
top � R̄0

top.

Proof. The equality R̄00
top � R̄0

top follows from Corollary 7.2. Let us prove the first equality in
item (1). All the rest is analogous.

We have pR̄,�q00
top�pR̄�pR̄,�q

00
topq

�2 � pR̄,�q00
H�µ�pR̄�ppR̄,�q

00
H�µqq

�2 which is contained

in pR̄,�q00
H � pR̄ � pR̄,�q00

Hq
�2 � µ � pR̄µq�2 � R̄00

H � µ � pR̄µq�2 � R̄00
H � µ (with the first

equality following from Corollary 4.8, and the second one from Fact 7.1) and which contains
pR̄,�q00

H � pR̄ � pR̄,�q00
Hq

�2 � µ � R̄00
H � µ (where the equality follows from Corollary 4.8).

Therefore, pR̄,�q00
top � pR̄ � pR̄,�q00

topq
�2 � R00

H � µ � R̄00
top. �

The following question is related to Theorem 7.3.

Question 7.4. Does pR̄Y t1uqµ generate a group in finitely many steps?

Recall from [KP19] that for a topological group G (equipped with the full structure), Ḡ000
top :�

Ḡ000
H xµḠy. Analogously, for a topological ring R we can define

R̄000
top :� R̄000

H � xpR̄Y t1uqµpR̄Y t1uqy.

This is the smallest bounded index, invariant, two-sided ideal of R̄ containing µ.4

Let Jtop be the subgroup of pR̄,�q generated by pR̄ Y t1uq � pR̄,�q00
toppR̄ Y t1uq. Since by

[HKP20, Corollary 2.37] we know that pR̄,�q00
top � pR̄,�q000

top , the proof of Fact 2.3 adapts to

yield that Jtop � R̄000
top . Thus, Fact 2.4 has its obvious topological counterpart. Hence, in the

same way as in Corollary 4.10, Theorem 7.3 implies

Corollary 7.5. For an arbitrary topological ring R which is s-unital or of positive characteristic,
R̄0

top � R̄00
top � R̄000

top .

Alternatively, one can see R̄00
top � R̄000

top as a consequence of Corollary 4.10 and Fact 7.1.

8. Examples

We study several classical examples, as well as construct some new ones, for which we compute
the number of steps (i.e. n) needed in conditions from Definition 3.1, which show optimality
of some of our results and answer several natural questions discussed in the introduction. In
all the examples considered in this section, we take M � R, equipped with the full structure,
and we take A � H.5

One should keep in mind the relationships obtained in Proposition 3.4, which will be often
used implicitly.

By the examples from Subsections 3.3 and 4.4 of [GJK22], one gets:

4Note that, in contrast to R̄00
top and R̄0

top, we cannot define R̄000
top as R̄000

H � µ, since we do not know whether

the latter is necessarily an ideal.
5Since we have the full structure on M , the choice of A is essentially immaterial.
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(1) for R :� Z, conditions (iii) 1
2

and (i)1 hold, but (i) 1
2

fails (see Example 3.18 and Lemma

4.17 in [GJK22]); thus, (ii)1 holds, while (ii) 1
2

fails;

(2) for R :� K or R :� KrX̄s, where K is an infinite field and X̄ is a tuple of possibly
infinitely many variables, conditions (i)1, (ii)1, and (iii)1 hold by [GJK22, Proposition
4.21], but for example in positive characteristic (i) 1

2
, (ii) 1

2
, and (iii) 1

2
fail (see Example

3.23 in [GJK22]).

8.1. Example: the ring ZrXsZrXsZrXs. Our first goal is to analyze the ring of polynomials ZrXs.
Let R :� ZrXs. By Proposition 5.2, all conditions (i)2 – (v)2 hold. We will show that (iii)1

fails; thus, all other conditions fail for n � 1. This shows that one can not decrease the number
of steps from 11

2 to 1 in Corollary 4.6 (in particular, in Theorem 1.1, thus showing that it is

optimal in the sense of the number of steps) and from 21
2 to 1 in Corollary 4.8(1).

The fact that (iii)1 fails follows immediately from

Lemma 8.1. The group H :� 2R�xXn�Xm : n,m are both prime or both not primey ¤ pR,�q
has index at most 4 in R, but R �H does not contain any finite index ideal of R.

Proof. It is easy to see that rR : Hs ¤ 4, since every element of R{H is represented by one of
0, 1, X2, X2�1. Namely, for any P pXq �

°
j ajX

j P Zrxs we have P pXq � α�βX2 pmod Hq,
where

α �
¸

j nonprime

aj mod 2, β �
¸

j prime

aj mod 2.

(In fact, by the argument in Claim 4 below, we get rR : Hs � 4.)
For each positive integer m and prime p � �1 pmod m!q, consider the polynomial

Qm,ppXq :� Xm!�m � pXm �m!p.

Note that Qm,p is irreducible in R by Eisenstein’s criterion: since p � �1 pmod m!q, p does
not divide m!, so p2 does not divide m!p, and, on the other hand, p divides all coefficients of
Qm,p except for the leading coefficient. Note also that for each m, a prime p � �1 pmod m!q
exists by Dirichlet’s theorem on arithmetic progressions.

Claim 1. If I is an ideal of finite index at most m in R, then the ideal pm!, Xm!�m �Xmq is
contained in I.

Proof. Since rR : Is ¤ m, we clearly have m! P I. We also get that that Xj � Xi P I for
some i   j from t0, . . . ,mu. Then Xm�k �Xm P I for k :� j � i. Therefore, Xm!�m �Xm �
p1�Xk �X2k � . . .�Xm!�kqpXm�k �Xmq P I. �(claim)

Now, write Q1
m for the polynomial Xm!�m �Xm.

Claim 2. If I is an ideal of finite index in R, then for sufficiently large m, for all p � �1
pmod m!q we have Qm,p P I.

Proof. By Claim 1, we have that for any m ¥ rR : Is,

I � Im :� pm!, Xm!�m �Xmq.

On the other hand, if p � �1 pmod m!q, then it is easy to see that Qm,p � Q1m � 0 pmod Imq.
�(claim)

Claim 3. For all m ¥ 2 we have Qm,p � Q1
m pmod Hq.

Proof. Fix any m ¥ 2 and p � �1 pmod m!q. Since m ¥ 2, it follows that 2 divides m!, so
p � �1 pmod 2q and m! � 0 pmod 2q. Since H contains 2R, the conclusion follows. �(claim)

Claim 4. If n is prime and m is not prime, then Xn �Xm R H and 1 R H.
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Proof. This follows from the observation that a polynomial belongs to H if and only if after
reducing its coefficients modulo 2, both the number of monomials Xi with i prime and the
number of monomials Xi with non-prime i are even. �(claim)

Now, let m and p � �1 pmod m!q be arbitrary primes. Then m!�m is clearly not prime,
so, by Claim 4, Q1

m R H, and hence, by Claim 3, Qm,p R H. Since Qm,p is irreducible and
1 R H, it follows that Qm,p R R �H. By infinitude of primes and Claim 2, it follows that R �H
does not contain any ideal of finite index. �

More variables and free rings. Let us briefly look at R :� ZrX,Y s. Since there is an epi-
morphism ZrX,Y s Ñ ZrXs, by Lemma 8.1, we get that (iii)1 fails, while (iii)1 1

2
holds (as

it holds for every ring). By Corollary 4.7, (i)2 1
2

and (ii)2 1
2

hold. The question whether (i)2

holds remains open. The same comments and question are valid for R :� ZrX̄s (where X̄
is a possibly infinite tuple of variables). In order to answer Question 4.12 in the affirmative
for unital, commutative rings, it is enough to restrict the situation to the rings ZrX̄s (for
arbitrarily long X̄), i.e. determine whether (i)2 or (i)1 1

2
holds for such rings. This follows

easily from the existence of an epimorphism ZrX̄s Ñ R (where R is an arbitrary commutative,
unital ring; see the comments after Question 4.9 in [GJK22]). A similar comment applies to
Question 4.12 for arbitrary rings, but using the free rings in non-commuting variables in place
of ZrX̄s. Summarizing, Question 4.12 remains open and it is enough to answer it for free rings:
as we have seen above, the answer is positive for ZrXs (at least in the sense that (i)2 holds;
we do not know whether (i)1 1

2
holds), but already for ZrX,Y s we do not know the answer.

8.2. Example: an exotic ring of characteristic 2. The next example shows that (iii)1 may fail
even if R is unital, commutative, and of positive characteristic, hence 11

2 steps in Corollary 4.6

(in particular, in Theorem 1.1) is an optimal bound even for such rings, and so 11
2 steps is also

optimal in Corollary 4.8(2)
Let G :� Z`ω2 . Put Un :� tη P G : ηpnq � 0u for n   ω. The subgroups pUnqn ω are

coset-independent subgroups of index 2 in G (in the sense that any intersection of cosets of
Un, n P ω, is non-empty, cf. Definition 4.1). Let Ḡ ¡ G be a monster model in the pure
group language expanded by unary relational symbols for U0, U1, . . . . Then pŪnqn are coset
independent in Ḡ, and of index 2. So the linear functionals fn : ḠÑ Z2 such that Ūn � kerpfnq
for all n   ω are linearly independent. Denote the elements of Z2 by 0, e.

Put R :� Ḡ` t0, eu ` t0, 1u. We will define a multiplication on R turning it into a unital,
commutative ring (with unit 1) in which the finite index subgroup Ḡ has the property that
RḠ does not contain an ideal of finite index, i.e. (iii)1 fails.

Note that
�
n ω Ūn is of large cardinality, at least the degree of saturation of Ḡ. Choose a

basis priqi θ of
�
n ω Ūn; then θ is at least the degree of saturation of Ḡ.

Extend priqi θ to a basis priqi λ of Ḡ. First, define f : tri : i   λu � tri : i   λu Ñ Z2 by

fpri, rjq :�

$&
%

fiprjq i   ω
fjpriq j   ω
0 otherwise.

Since fiprjq � 0 whenever i, j   ω, f is well-defined. Now, extend it to a function (also
denoted by f) from ptri : i   λu Y te, 1uq � ptri : i   λu Y te, 1uq Ñ t0, e, 1u by:

fpri, eq � fpe, riq � fpe, eq � 0, fpri, 1q � fp1, riq � ri, fpe, 1q � fp1, eq � e, fp1, 1q � 1.

Finally, extend this extended f to a unique bilinear function � : R�RÑ t0, eu ` t0, 1u. It
is easy to check that � is symmetric, associative, and for every i   ω and r P Ḡ, ri � r � fiprq,
so pR,�, �q is a commutative Z2-algebra, and in particular a ring.

Lemma 8.2. For the ring R defined above, (iii)1 fails.
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Proof. It easily follows from the definitions that

(�) R � Ḡ � Ḡ\

�
e�

¤
rPḠ

Ḡz kerpr�q

�
\ teu.

It remains to show that R � Ḡ does not contain an ideal of finite index. For that consider
any finite index ideal I of R. Then Linpri : i   ωq X I � t0u; so take i0, . . . , im�1   ω
with r :� ri0 � � � � � rim�1 in this intersection. Since fi0 , . . . , fim�1 are linearly independent,
g :� fi0 � � � � � fim�1 is non-zero, so we can pick s P Ḡz kerpgq. Since g � r�, we get that
r � s � 0 which implies that s � r � r � s � e. Hence, e P I (as r P I).

Recall that priqi θ is a basis of
�
n Ūn, and θ ¡ ω � ω. Thus, Linpri : ω ¤ i   θq X I � t0u,

so we can choose a nonzero t from this intersection.
By the last two paragraphs, e� t P I. On the other hand, by the construction of �, we see

that Linpri : ω ¤ i   θq �
�
rPḠ kerpr�q, so t R

�
rPḠ Ḡz kerpr�q. Since also t � 0, by (�), we

get e� t R R � Ḡ. We have proved that e� t P IzpR � Ḡq, so I is not contained in R � Ḡ. �

8.3. Example: the ring XZrXsXZrXsXZrXs. Let R be the non-s-unital ring XZrXs. By Theorem 6.1,
condition (i)2 1

2
holds (although we do not know whether (i)2 holds). Of course, (iii)1 1

2
holds,

and we will adapt the proof of Lemma 8.1 to show that (iii)1 fails. But the most important new
thing in comparison with the previous examples is that (as we will soon see) R̄00

H � R̄0
H, and

so (ii)n fails for all n, although R does not have zero divisors. This shows that the additional
assumptions about R in items (3) and (4) of Proposition 3.4 cannot be dropped (not even for
commutative rings without zero divisors).

Lemma 8.3. (ii)n fails for all n.

Proof. Fix n. By Fact 2.11, pZ̄,�q00
H � pZ̄,�q0H. So there is a thick subset F of Z for which

pZ̄,�q00
H � F̄ and such that the n-fold sum F�n does not contain a finite index subgroup.

Put D :� FX � XR. It is clear that D is thick in R and D̄ contains pR̄,�q00
H , because

D̄ � F̄X � XR̄ � pZ̄,�q00
HX � XR̄ which is H-type-definable of bounded index. On the

other hand, for i P tÐ,Ñ,Øu we have Di � D, so D�n
i � D�n � F�nX �XR, which does

not contain a finite index subgroup of pR,�q (because F�n does not contain a finite index
subgroup of pZ,�q). So (ii)n fails. �

It is clear that the above lemma remains true for XSrXs, where S is any commutative ring
of characteristic 0 (because we only need to know that S satisfies pS̄,�q00

H � pS̄,�q0H).
A more succinct way to show the lemma above is as follows.
Note that I :� pZ̄,�q00X � XR̄ is a bounded index, H-type-definable ideal of R̄, and

pR̄{I,�q � Z̄{pZ̄,�q00 is not profinite, and thus neither is R̄{R̄00
H . Therefore, R̄00

H � R̄0
H, and

so (ii)n fails for all n by Proposition 3.2(1).
We have also shown that R is an example of a finitely generated, commutative ring with no

zero divisors whose Bohr compactification R̄{R̄00
H is not profinite.

Lemma 8.4. (iii)1 fails.

Proof. Similarly to the analysis of ZrXs in Lemma 8.1, consider

H :� 2R� xXn �Xm : n,m ¡ 0 are both prime or both not primey.

As there, H is a subgroup of pR,�q with rR : Hs � 4.
Consider the polynomials Q2

mpXq :� Xm!�m � Xm � m!X, and fix a finite index ideal
I E R. Arguing as in Claims 1 and 2 in the proof of Lemma 8.1, for any m ¥ rR : Is we
have Q2

mpXq P I. On the other hand, Q2
mpXq R R � R, so Q2

mpXq R R � H. Also, if m is
prime, then (arguing as in Claims 3 and 4 in the proof of Lemma 8.1) Q2mpXq R H. Therefore,
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Q2
mpXq R H YR �H � pRY t1uq �H. Since there are arbitrarily large primes, it follows that

we have a prime m such that Q2
mpXq P IzppRY t1uq �Hq. �

8.4. Example: a nilpotent ring. The next example shows that in Corollary 4.6(iii) one cannot
replace RY t1u by R, and in the last item of Corollary 4.8(2) one can not replace R̄Y t1u by
R̄.

Let R be the free commutative, nilpotent ring of nilpotency class 3 and of characteristic
2 in infinitely many generators X0,X1, . . . . (Recall that a ring is nilpotent of class 3 if the
product of any three elements equals 0.) The elements of R are of the form¸

i¥0

aiXi �
¸
i¥0

a0iX0Xi �
¸
i¥1

a1iX1Xi �
¸
i¥2

a2iX2Xi � . . .

with all coefficients in Z2. Below 2jN¡0 denotes the positive integers divisible by 2j . Define a
group homomorphism h : pR,�q Ñ Z2 by

h

�¸
i¥0

aiXi �
¸
i¥0

a0iX0Xi �
¸
i¥1

a1iX1Xi � . . .

�
�
¸
i¥0

a2i�1 �
¸
j¥0

¸
iP2jN¡0

aji.

Let H :� kerphq, a subgroup of pR,�q of index 2.

Lemma 8.5. H does not contain any ideal of finite index.

Before the proof, let us see that this lemma yields the desired properties postulated above.
By 3-nilpotency, H �R �H �R � H and, by Lemma 8.5, this group does not contain a finite
index ideal, so in Corollary 4.6(iii) one cannot replace R Y t1u by R. Let us explain how it
implies that in the last item of Corollary 4.8(2) one can not replace R̄ Y t1u by R̄. First of
all, pR̄,�q00

H � R̄ � pR̄,�q00
H � R̄ � pR̄,�q00

H � pR̄,�q0H, where the last equality follows from

Corollary 2.12. Secondly, pR̄,�q0H � R̄0
H, as otherwise H (which is H-definable in the full

structure) would contain a finite index ideal. Since R̄0
H � R̄00

H (by Corollary 2.10), we get

pR̄,�q00
H � R̄ � pR̄,�q00

H � R̄ � R̄00
H . So it is enough to prove Lemma 8.5.

Proof of Lemma 8.5. Let StabpHq :� tr P R : r � H � Hu. By [GJK22, Lemma 3.13], it is
enough to show that StabpHq has infinite index in pR,�q (actually this sufficiency is easy
to see: if H contains a finite index ideal, then R̄0

H � H̄, but R̄0
H is a two-sided ideal, so

R̄0
H � H̄ � R̄0

H � H̄; thus StabpH̄q is of bounded index, and so of finite index as it is definable;

and clearly StabpH̄q is the interpretation of StabpHq in the monster model).
In order to see that the index rR : StabpHqs is infinite, it is enough to show that each sum°
2-i aiXi (where not all ai are 0) does not belong to StabpHq.

Consider any f � Xi0 � � � � �Xim , where 1 ¤ i0   � � �   im are odd numbers. Let g :� X2i0 .
Then g P H, and we will show that f � g R H. This implies that f R StabpHq, so we will be
done.

We have f � g � Xi0X2i0 �Xi1X2i0 � � � � �XimX2i0 . For every j ¡ 0:


 if ij ¤ 2i0 , then hpXijX2i0 q � 0, because 2ij - 2i0 (as i0   ij),


 if ij ¡ 2i0 , then hpXijX2i0 q � 0, because 22i0 - ij (as ij is odd).

Also, hpXi0X2i0 q � 1. Therefore, hpf � gq � 1, so f � g R H. �

8.5. Example: the rings Z`ωq and Zωq . To study the next series of examples, we need to prove

a lemma from linear algebra. For G :� Z`Nq (i.e. the ring of finitely supported functions from
N to Zq, with N ¤ ω, q P ω, where Z0 :� Z) and any i   N , let Gi be the subgroup of all
elements with the support contained in i� 1. For a subgroup H of G, put Hi :� Gi XH.
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Lemma 8.6. For each finite index subgroup H of G :� Z`Nq (where N ¤ ω and q P ω) there are
gi P Gi, i   N , such that gipiq is not invertible in Zq for less than rG : Hs coordinates i   N ,
and Hi �

°
j¤i Zq � gj for all i   N , and H �

°
i N Zq � gi. Moreover, if q � 0, then gipiq � 0

for all i   N (so H �
À

iPω Z � gi and Hi �
À

j¤i Z � gj).

Proof. We construct gi by induction on i.
Since Gi is an abelian group generated by i� 1 elements, Hi is generated by i� 1 elements

as well. In particular, H0 is generated by one element, which we take as our g0. Suppose
g0, . . . , gi�1 are constructed. Choose i�1 elements generating Hi. Write these elements as rows
of an pi�1q�pi�1q matrix M . Via Gaussian row reduction, transform M to a lower triangular
matrix. The last row of the resulting matrix yields an element gi P Hi. The construction is
finished. We need to check that the constructed gi, i   N , satisfy our requirements.

The fact that Hi �
°
j¤i Zq � gj for all i   N and H �

°
i N Zq � gi is clear.

Assume that gipiq is not invertible; denote it by ai. Let ei be the element of G given
by eipiq � 1 and eipjq � 0 for j � i. Since Hi � Hi�1 � Zqgi ¤ Gi�1 ` aiZqei, if we
choose representatives r0, . . . , rm�1 of all cosets of Hi�1 in Gi�1, then r0, . . . , rm�1 and ei lie
in pairwise distinct cosets of Hi in Gi. Hence, rGi : His ¡ rGi�1 : Hi�1s. Therefore, since
rG : Hs ¥ rGi : His for all i   N , there are less than rG : Hs i’s with gipiq not invertible.

In the case when q � 0, if gipiq � 0 for some i   N , then Hi �
°
j¤i Z � gj � Gi�1, so

rG : Hs ¥ rGi : His ¥ rGi : Gi�1s � ℵ0, a contradiction. �

Proposition 8.7.
(1) Let q P ω. For R :� Z`ωq , (iii)1 holds. Thus (by Proposition 3.4), for q ¡ 0, (i)1 holds

as well, and for q � 0 (i.e. R � Z`ω), (i)2 holds.
(2) Let q ¡ 0. For R :� Zωq , (iii)1 holds. Thus, (i)1 holds as well. For R :� Zω, (i)2 holds.

Proof. (1) Consider any finite index subgroup H of G :� pR,�q. By Lemma 8.6, there is
n P ω and elements gi P Gi for i   ω such that gipiq is invertible in Zq for all i ¥ n and
H �

°
i ω Zqgi; if q � 0, we also have gipiq � 0 for all i   ω.

First, consider the case q ¡ 0. Fix m ¡ n. Then pZnq � t1um�n � t0uωzmq XH � H, and so

t0un � Zm�nq � t0uωzm � R �H. Therefore, the finite index ideal t0u ` � � � ` t0u ` Z`ωznq of R
is contained in R �H, so we have (iii)1.

Now, assume q � 0. Fix m ¡ n. Then for every i   n there exists ai � 0 with |ai| ¤
|gipiq| and pa0, . . . , an�1, 1, . . . , 1, 0, 0, . . . q P H (where there are m � n ones). Put a :�

pg0p0q . . . gn�1pn � 1qq!. Then, pZaqn � Zm�n � t0uωzm � R �H. Therefore, the finite index

ideal pZaqn ` Z`ωzn is contained in R �H, so we have proved (iii)1.
(2) Consider first the case of q ¡ 0. We can, of course, assume that q ¡ 1. Consider any

finite index subgroup H of pR,�q.
For a finite set r̄ � tr0, . . . , rn�1u of elements of R, let Br̄ � tB0, . . . , Bm�1u be the

collection of all atoms of the Boolean algebra of subsets of ω generated by the finite family
tr�1
i pjq : i   n, j   qu. Then put Sr̄ :� tχ0, . . . , χm�1u, where χi P R is the characteristic

function of Bi. Finally, let Rr̄ be the subgroup of R generated by Sr̄. Then Rr̄ is a finite
subring of R containing r̄.

Claim. For every finite subset r̄ of R � Zωq there is an ideal Ir̄ of Rr̄ of index smaller than

qrR:Hs which is contained in Rr̄ � pH XRr̄q.

Proof. Since Rr̄ � Zqχ0` � � � `Zqχm�1 is naturally identified with Zmq , we can choose pgiqi m
provided by the conclusion of Lemma 8.6 (applied to the subgroup H XRr̄ of Rr̄ and N :� m).
Let Zr̄ :� ti   m : gipiq is not invertibleu. By the choice of the gi’s and the fact that
rRr̄ : Rr̄ XHs ¤ rR : Hs, we have that |Zr̄|   rR : Hs.

Define Ir̄ as the subgroup of pRr̄,�q generated by tχi : i R Zr̄u. It is easy to see that it is

an ideal of Rr̄, rRr̄ : Ir̄s   qrR:Hs, and Ir̄ � Rr̄pH XRr̄q. �(claim)
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For any finite r̄ in R, put

Ir̄ :� tI ERr̄ : rRr̄ : Is   qrR:Hs and I � R �Hu.

By Claim 1, Ir̄ is finite and non-empty for every finite r̄ in R.
For r̄1 � r̄, we have Rr̄1 ¤ Rr̄ and we have the restriction map πr̄r̄1 : Ir̄ Ñ Ir̄1 given by

πr̄r̄1pIq � I XRr̄1 .
So we can find

pJr̄qr̄ P lim
ÐÝ

Ir̄,

and put I :�
�
r̄ Jr̄.

It is straightforward to check that I E R, rR : Is   qrR:Hs, and I � R �H. Thus, we have
proved (iii)1, and so (i)1 follows by Proposition 3.4.

To show (i)2 for R :� Zω, note that if D is thick in R, then tquω P D for some q ¡ 0, so
qR � pZ�qqω � R�D. On the other hand, since (i)1 holds for Zωq � Zω{pZ�qqω � R{qR, we have

pR̄{qR̄q�ppR̄,�q00
H{qR̄q � pR̄{qR̄q�ppR̄,�q{qRqq00

H � pR̄{qR̄q00
H � R̄00

H{qR̄, so qR̄�R̄�pR̄,�q00
H �

qR̄�R̄00
H . Therefore, we conclude that R̄00

H � qR̄�R̄ � pR̄,�q00
H � R̄ �D̄�R̄ � pR̄,�q00

H . Applying

it to all thick D � R with pR̄,�q00
H � D̄, we get R̄00

H � R̄ � pR̄,�q00
H � R̄ � pR̄,�q00

H . Since the
opposite inclusion is obvious, we are done. �

Question 8.8.
(1) Does Z`ω satisfy (i)1?
(2) Does Zω satisfy (iii)1 or even (i)1? (Note that here (i)1 Ñ (iii)1 by Proposition 3.4.)

A negative answer to Question 8.8(1) would show that the implication (iii)n Ñ (i)n�1 in
Proposition 3.4(4) cannot be improved to (iii)n Ñ (i)n.

8.6. Example: the ring Zω2 . It is natural to ask whether one could strengthen Theorem 1.1 to
saying that H � R �H is already a left ideal (equivalently, a subgroup). A weaker potential
conclusion could be that there exists n such that for every A-definable finite index subgroup
H of pR,�q, the n-fold sum set ppR Y t1uq � Hq�n is a left ideal (equivalently, subgroup)6.
The next example shows that this may fail, even for a commutative, unital ring of positive
characteristic.

Proposition 8.9. For R :� Zω2 , for every n there exists a finite index subgroup H of pR,�q such
that R �H does not generate a group in n steps.

Proof. Recall that R � pP pωq,M,Xq, so we can and will work in the latter ring, still denoted
by R. For A � R, xAy will denote the subgroup additively (i.e. using M) generated by X.

Consider any n P ω. Choose independent subsets A0, . . . , An�1 of t0, . . . , 2n � 1u. Put
H :� xP pωz2nq Y tA0, . . . , An�1uy. Clearly rR : Hs   ω. It remains to show that the group
additively generated by R �H is not generated in n�1 steps. It is clear that we can reduce this
problem to a “finite situation”: whenever A0, . . . , An�1 are independent subsets of a finite set
X and Hn :� xA0, . . . , An�1y, then the group xP pXq �Hny additively generated by P pXq �Hn

is not generated in n� 1 steps. Observe that A0 Y � � � YAn�1 P xP pXq �Hny (namely, it can
be written as A0 M pX1 XA1q M � � � M pXn�1 XAn�1q, where Xi :� Xz

�
j iAj).

Thus, it is enough to show the following claim.

Claim. A0 Y � � � YAn�1 R pP pXq �Hnq
�pn�1q.

Proof. We proceed by induction on n. The base step n � 1 is trivial. Let us do the induction
step from n to n � 1. Suppose for a contradiction that A0 Y � � � Y An can be presented as a

6Note that H � pR �Hq�n is a subgroup for some n depending on H (e.g. by Lemma 4.3).
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sum of n elements of P pXq �Hn�1, i.e.

A0 Y � � � YAn �

pX0 X pA
ε0,0
0 M � � � M A

ε0,n�1

n�1 qq M � � � M pXm�1 X pA
εm�1,0

0 M � � � M A
εm�1,n�1

n�1 qq M

pXm X pA
εm,0

0 M � � � M A
εm,n�1

n�1 M Anqq M � � � M pXn�1 X pA
εn�1,0

0 M � � � M A
εn�1,n�1

n�1 M Anqq,

(�)

for some X0, . . . , Xn�1 � X, where Aεi,j :� A if εi,j � 1 and Aεi,j :� H if εi,j � 0. Put

Ti :� A
εi,0
0 M � � � M A

εi,n�1

n�1

for i   n.
By an easy induction on n, one can check that for any δ0, . . . , δn�1 P t0, 1u

(��)
pA0qδ0 X � � � X pAn�1qδn�1 � Ti ðñ

¸
tδj : εi,j � 1u is odd,

pA0qδ0 X � � � X pAn�1qδn�1 X Ti � H ðñ
¸
tδj : εi,j � 1u is even,

where pAqδj :� A if δj � 1, and pAqδj :� XzA if δj � 0.
We will prove now that

(� � �) T c0 X � � � X T cm�1 X Tm X � � � X Tn�1 XAn � H,

where T c :� XzT . This yields a contradiction with (�): any element a in the above intersection
belongs to An and does not belong to the right hand side of (�), since a R Ti M An for i ¥ m.

Let B be the Boolean algebra of subsets of A0Y� � �YAn�1 generated by the sets A0, . . . An�1.
By the independence of A0, . . . , An, the set An does not contain any atom of B. On the other
hand, each A

εi,0
0 M � � � M A

εi,n�1

n�1 is a union of some atoms of B. By these two observations
together with (�), we get

(�1) A0Y� � �YAn�1 � pX 1
0XT0q M � � � M pX

1
m�1XTm�1q M pX

1
mXTmq M � � � M pX

1
n�1XTn�1q,

for some X 1
0, . . . , X

1
n�1.

By (�1) and the induction hypothesis, we see that (�1) is a shortest presentation of A0 Y
� � � Y An�1 as a union of elements of P pXq �Hn�1. This easily implies that T0, . . . , Tn�1 are
Z2-linearly independent (with M as addition), e.g. if T2 � T0 M T1, then each atom of B
contained in T2 would be already contained in T0 or in T1, so we could skip X 1

2 X T2 in (�1)
modifying the other X 1

i’s appropriately, and this would contradict the previous sentence.
Let Ji :� tj : εi,j � 1u. Consider the following system of equations:¸

jPJ0

δj � 0^ � � � ^
¸

jPJm�1

δj � 0^
¸
jPJm

δj � 1^ � � � ^
¸

jPJn�1

δj � 1,

where � denotes the congruence modulo 2.
Since T0, . . . , Tn�1 are Z2-linearly independent, the matrix of this system is invertible, hence

it has a solution pδ0, . . . , δn�1q P Zn2 . By (��), the atom pA0qδ0 X � � � X pAn�1qδn�1 is contained
in T c0 X � � � X T cm�1 X Tm X � � � X Tn�1. Since also An X pA0qδ0 X � � � X pAn�1qδn�1 � H, we get
(� � �). �(claim)

�

Finally, we will elaborate on the last example to answer negatively a question from the
introduction whether for every ring R and for any A-type-definable, bounded index subgroup
H of pR̄,�q the set pR̄Y t1uq �H generates a group in finitely many steps? As pointed out in
the introduction, Theorems 1.2 and 1.4 tell us that for unital rings and for rings of positive
characteristic it is true for H :� pR̄,�q00

A and H :� pR̄,�q00
top when R is topological. Our

counter-example takes place in Zω2 , which is unital, commutative and of positive characteristic.
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Lemma 8.10. Let R :� Zω2 . Then there are finite index subgroups H1 ¥ H2 ¥ . . . of pR,�q

such that for every pair m ¥ n ¥ 1, pR �Hmq
�n � pR �Hnq

�pn�1q.

Proof. By recursion with respect to n, we construct independent subsets An0 , . . . , A
n
n�1 of

Yn :� t0, . . . , 2n�1 � 1u as follows.
Let us start from A1

0 :� t0u. Assume that An0 , . . . , A
n
n�1 have been constructed. Choose

independent subsets Z0, . . . , Zn of Yn�1zYn (they exist, as |Yn�1zYn| � 2n�1). Put An�1
i :�

Ani Y Zi for i ¤ n� 1, and let An�1
n :� Ann�1 Y Zn.

Define Hn :� xP pωzYnq Y tAn0 , . . . , A
n
n�1uy (with respect to the group operation M). Then

H1 ¥ H2 ¥ . . . are finite index subgroups of pR,�q (which is identified with pP pωq,Mq).
By the claim in the proof of Proposition 8.9, we know that An0 Y� � �YA

n
n�1 R pR �Hnq

�pn�1q.

Since form ¥ n we have Ami XYn :� Ani for i ¤ n�1, we get thatAm0 Y� � �YA
m
n�1 R pR�Hnq

�pn�1q

(as otherwise An0 Y � � � Y Ann�1 � pAm0 Y � � � Y Amn�1q X Yn P pR � Hnq
�pn�1q X Yn � pP pYnq �

Hnq
�pn�1q � pR � Hnq

�pn�1q, a contradiction). On the other hand (as in Proposition 8.9),
we have Am0 Y � � � Y Amn�1 � Am0 M pX1 X Am1 q M � � � M pXn�1 X Amn�1q P pR �Hmq

�n, where

Xi :� ωz
�
j iA

m
j . So we have proved that Am0 Y � � � YAmn�1 P pR �Hmq

�nzpR �Hnq
�pn�1q. �

Corollary 8.11. Work with R :� Zω2 (equipped with the full structure). Take the sequence
H1 ¥ H2 ¥ . . . of subgroups of pR,�q produced in the last lemma. Let H :�

�
H̄n. Then H

is a H-type-definable, bounded index subgroup of pR̄,�q such that R̄ �H does not generate a
group in finitely many steps.

Proof. Consider any n ¥ 1. By the last lemma and compactness, pR̄ �Hq�pn�1q � pR̄ �H̄n�1q
�n.

Hence, pR̄ �Hq�pn�1q � pR̄ �Hq�n, and so R̄ �H does not generate a group in n steps. �

9. Algebraic restatements and final comments

In this final section, we will explain the purely algebraic meaning of the main results of this
paper. But first, let us briefly summarize the remaining questions and the answers obtained
in this paper.

The main remaining questions are:


 Question 1.3, which asks whether for every ring R condition (i)n holds for some n, and
if yes, whether there exists n good for all rings;


 Question 4.12, which asks whether (i)2 or even (i)1 1
2

holds for all s-unital rings.

Corollary 4.8 yields a positive answer to the first question with n � 21
2 for all s-unital

rings, and with n � 11
2 for all rings of positive characteristic. Example 8.2 shows that we

cannot reduce it to 1 step (not even for s-unital, commutative rings of positive characteristic).
Theorem 6.1 yields a positive answer to Question 1.3 for finitely generated rings (albeit with
no uniform bound on n).

The list of conditions in Definition 3.1 is not complete in some sense (which we discuss
below), and condition (ii)n does not fit this list very well, as it is not equivalent to (i)n; we
used (ii)n as a convenient bridge between (iii)n and (i)n.

When passing from pR̄,�q0A to pR̄,�q00
A , condition (i)n corresponds to the equivalent condi-

tions (iv)n and (v)n. However, what should be the condition corresponding to (iii)n (having in
mind that (iii)n is essentially an algebraic restatement of (v)n)? This is certainly not exactly
(ii)n. The condition would be as follows: for every A-definable (thick) subset D of R such that

D̄ � pR̄,�q00
A there is a descending sequence pD̃kqkPω of A-definable, generic and symmetric

[or thick] subsets of the set D�n
i (where recall that i P tÐ,Ñ,Øu) such that for all k P ω we

have:

(1) D̃k�1 � D̃k�1 � D̃k, and

(2) R � D̃k�1 � D̃k.
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By compactness, it follows easily that this condition is indeed equivalent to (i)n. But how to
express it without referring to the monster model and pR̄,�q00

A ?
In the general case, it seems that we can apply results from Sections 4 and 5 of [CPT22]

(with some minor modifications) to express this condition in terms of the so-called “definable
δ-approximate pε,Tnq-Bohr neighborhoods in pR,�q” (where Tn is the n-dimensional torus),
but it is rather technical and we are not going to do that here.

In the special case when we have the full structure on R (so in a purely algebraic context),
this can be done using [GJK22, Proposition 4.16] in the following way: one should require the

existence of a sequence pD̃kqkPω as above for any D which is a Bohr neighborhood in pR,�q,
i.e. an intersection of finitely many sets of the form χ�1rp� 1

m ,
1
mqs, where χ : pR,�q Ñ S1 is

a character and m is a positive integer (where S1 is identified with the interval r�1
2 ,

1
2q with

addition modulo 1). Also, as we are working with the full structure, we can, of course, erase the

requirement that the D̃k’s should be A-definable. A descending sequence pD̃kqkPω, of generic,
symmetric subsets of pR,�q satisfying (1) and (2) above could be called a (weak) ring version
of a Bourgain system. So we see that (i)n is equivalent to the existence of such a ring version
of a Bourgain system in D�n

i for any Bohr neighborhood D in pR,�q. And this is exactly the
algebraic meaning of a potential positive answer to Question 1.3, and, in particular, of the
answers to this question obtained in Corollary 4.8 (or Corollary 4.7) and in Theorem 6.1. In
the case when R̄00

A � R̄0
A, so e.g. in Corollary 4.8, this simplifies as follows: the ring Bourgain

system pD̃kqkPω can be replaced by a genuine ideal of finite index and contained in D�n
i .

Overall, the above algebraic restatement of (i)n seems much more complicated than condition
(iii)n which we were able to completely understand in this paper, showing that it holds for all
rings with n � 11

2 and providing examples where it fails with n � 1.

If we allow changing n, the above requirement D̄ � pR̄,�q00
A can be dropped, which we now

explain. So for any i P tÐ,Ñ,Øu and positive half-integer n, consider the following condition.

(ii)1n For every generic and symmetric [or thick], A-definable subset D of R, there is a

descending sequence pD̃kqkPω of A-definable, generic and symmetric [or thick] subsets
of D�n

i such that for all k P ω we have:

(a) D̃k�1 � D̃k�1 � D̃k, and

(b) R � D̃k�1 � D̃k.

Proposition 9.1. For any positive integer n, (ii)1n Ñ (i)n and (i)n Ñ (ii)18n. If A is a model,
then 8n can be replaced by 4n. In particular, if R is equipped with the full structure, then 8n
can be replaced by 4n.7

Proof. The implication (ii)1n Ñ (i)n follows easily by compactness. To show (i)n Ñ (ii)18n,
consider any D as in (ii)18n. As explained in the proof of Fact 2.2, D̄�8 � pR̄,�q00

A [and
D̄�4 � pR̄,�q00

A when A is a model]. So, by (i)n and compactness, the desired sequence

pD̃kqkPω exists in pD�8q�ni [in pD�4q�ni when A is a model]. We finish using the fact that
pD�mq�ni � D�mn

i . �

By the last proposition, Corollary 4.8 and Theorem 6.1 yield condition (ii)1n for the appropri-
ate n (for the rings in question). This means that for those rings we have proved that for every
A-definable, generic and symmetric [or thick] subset D of pR,�q there exists an A-definable
ring Bourgain system in D�n

i for a sufficiently large n (roughly 8 or 4 times larger than the
one obtained in Corollary 4.8 and in Theorem 6.1). And again, whenever R̄00

A � R̄0
A, so e.g.

in Corollary 4.8, the A-definable ring Bourgain system pD̃kqkPω can be replaced by a genuine
A-definable ideal of finite index and contained in D�n

i . In the purely algebraic setting, we can
drop all the above definability requirements (and the number n is roughly 4 times larger than
the one obtained in Corollary 4.8 and in Theorem 6.1).

7We leave stating an analog of this proposition for a positive half-integer but not integer n as an easy exercise.
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