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Abstract

We prove that every non-trivial valuation on an in�nite superrosy �eld of

positive characteristic has divisible value group and algebraically closed residue

�eld. In fact, we prove the following more general result. Let K be a �eld such

that for every �nite extension L of K and for every natural number n > 0 the

index [L∗ : (L∗)n] is �nite and, if char(K) = p > 0 and f : L → L is given

by f(x) = xp − x, the index [L+ : f [L]] is also �nite. Then either there is a

non-trivial de�nable valuation on K, or every non-trivial valuation on K has

divisible value group and, if char(K) > 0, it has algebraically closed residue

�eld. In the zero characteristic case, we get some partial results of this kind.

We also notice that minimal �elds have the property that every non-trivial

valuation has divisible value group and algebraically closed residue �eld.

0 Introduction

A motivation for our work comes from some open structural questions concerning
�elds in various model-theoretic contexts.

A fundamental theorem says that each in�nite superstable �eld is algebraically
closed [18, 4]. An important generalization of superstable theories is the class of
supersimple theories and yet more general class of superrosy theories. Superrosy
theories with NIP (the non independence property) also form a generalization of
superstable theories which is �orthogonal� to supersimple theories in the sense that
each supersimple theory with NIP is superstable. Recall that a �eld K is bounded
if for every natural number n > 0, K has only �nitely many separable extensions
of degree n (up to isomorphism over K); equivalently, the absolute Galois group of
K is small, i.e., it has only �nitely many closed subgroups of any �nite index. It is
known from [12] that perfect, bounded, PAC (pseudo algebraically closed) �elds are
supersimple. A well-known conjecture predicts the converse:

Conjecture 1 Each in�nite supersimple �eld is perfect, bounded and PAC.
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A complementary conjecture on in�nite superrosy �elds with NIP was formulated
in [6].

Conjecture 2 Each in�nite superrosy �eld with NIP is either algebraically or real
closed.

Recall that both algebraically closed and real closed �elds are superrosy with
NIP. After dropping the NIP assumption, one has to extend the list of possibilities
in the conclusion of the above conjecture. Namely, since perfect, bounded, PAC
�elds as well as orderable, bounded, PRC (pseudo real closed) �elds are known to
be superrosy [20, Appendix A], the following conjecture is strongest possible. (See
Section 4 for the de�nition of PRC �elds, which is chosen so that PAC �elds are
PRC).

Conjecture 3 Each in�nite superrosy �eld is perfect, bounded and PRC.

It is known that a PAC �eld is simple if and only if it is bounded [12, 2, 3];
it is supersimple if and only if it is perfect and bounded. Similarly, a PRC �eld is
superrosy if and only if it is perfect and bounded (see Fact 4.1). Thus, in Conjectures
1 and 3, once we know that the �eld is PAC [resp. PRC], the rest of the conclusion
is automatically satis�ed. It is also easy to see that Conjecture 3 implies Conjecture
1, because one can show that orderable PRC �elds have strict order property, and
so they are not simple (see Remark 4.2). By Fact 4.3, Conjecture 3 also implies
Conjecture 2.

We will be often talking about de�nable valuations. Throughout the paper `de-
�nable' means `de�nable with parameters'.

There are interesting questions and conjectures concerning NIP �elds (without
assuming superrosiness). By [13], in�nite NIP �elds are closed under Artin-Schreier
extensions. A. Hasson and S. Shelah formulated some dichotomies between nice
algebraic properties of the �eld in question and the existence of non-trivial de�nable
valuations. In particular, one can expect that the following is true.

Conjecture 4 Suppose K is an in�nite �eld with NIP with the property that for
every �nite extension L of K and for every natural number n > 0 the index [L∗ :
(L∗)n] is �nite. Then either there is a non-trivial de�nable valuation on K, or K is
either algebraically or real closed.

Note that if a pure �eld K is algebraically or real closed, then there is no non-trivial
de�nable valuation on K (e.g. because K is superrosy and we have Fact 1.8). Notice
also that by Facts 1.8 and 1.9, Conjecture 4 implies Conjecture 2.

Another interesting problem is to classify strongly dependent �elds [22, Section
5].

Independently of the questions of A. Hasson and S. Shelah in the NIP context,
our approach to attack Conjectures 2 and 3 was to assume that the �eld in question
does not satisfy the conclusion and try to produce a non-trivial de�nable valuation
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(existence of which contradicts rosiness by Fact 1.8). This approach led us to the
following conjecture whose assumptions generalize the situations from Conjectures 1,
2, 3 and 4, but whose conclusion is weaker than the conclusions of these conjectures
(see Section 4 for explanations). So, one could say that it is a common approximation
of these conjectures. Before we formulate our conjecture, let us introduce a certain
name for the �elds satisfying its assumptions, which was suggested by the referee.

De�nition 5 We say that a �eld K is radically bounded if for every �nite extension
L of K and for any natural number n > 0 the index [L∗ : (L∗)n] is �nite and, if
char(K) = p > 0 and f : L→ L is given by f(x) = xp−x, then the index [L+ : f [L]]
is also �nite.

It is a well-known fact that each perfect, bounded �eld is radically bounded,
whereas the converse is not true as it has been very recently shown in [10]. Fact
1.9 tells us that superrosy �elds are radically bounded. In fact, Remark 2.5 and the
proof of [24, Theorem 5.6.5] show that they are perfect and bounded, but we will
not need it.

Conjecture 6 Let K be a radically bounded �eld. Then either there is a non-trivial
de�nable valuation on K, or every non-trivial valuation on K has divisible value
group and either algebraically or real closed residue �eld.

Our main result is the proof of Conjecture 6 in the positive characteristic case.
In fact, we will prove the following theorem.

Theorem 7 Let K be a radically bounded �eld. Then either there is a non-trivial
de�nable valuation on K, or every non-trivial valuation on K has divisible value
group and, in the case when char(K) > 0, it has algebraically closed residue �eld.

By Facts 1.8 and 1.9, one gets the following corollary.

Corollary 8 Every non-trivial valuation on a superrosy �eld of positive character-
istic has divisible value group and algebraically closed residue �eld.

Since in�nite NIP �elds are closed under Artin-Schreier extensions [13], we also
get the following corollary.

Corollary 9 Suppose K is a �eld of positive characteristic, satisfying NIP and with
the property that for every �nite extension L of K and for every natural number
n > 0 the index [L∗ : (L∗)n] is �nite. Then either there is a non-trivial de�nable
valuation on K, or every non-trivial valuation on K has divisible value group and
algebraically closed residue �eld.

The proof of Theorem 7 relies on [14], where the appropriate results on the exis-
tence of non-trivial de�nable valuations under the presence of certain multiplicative
or additive subgroups were established. In contrast, directly from the de�nition of
minimality, we obtain the following variant of Corollary 8 for minimal �elds.
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Theorem 10 Every non-trivial valuation on a minimal �eld has divisible value group
and algebraically closed residue �eld.

Recall that the famous Podewski's conjecture predicts that each minimal �eld is
algebraically closed [21]. This conjecture is known to be true in the positive charac-
teristic case [23]; a progress towards a proof in full generality has been made in [17].
As to Theorem 10, Arno Fehm pointed out to me that it can also be deduced from
Ralf Shmüker's Ph.D. thesis. We decided to leave our proof, because it is direct and
very simple.

Our results tells us that, in various situations, all non-trivial valuations on the
�eld in question have divisible value groups and algebraically closed residue �elds.
The ultimate goal is to show that the original �eld (i.e. the residue �eld with respect
to trivial valuation) is algebraically closed [or PAC]. So a questions arises what
information about the �eld in question can be deduced from the information that
for all non-trivial valuations the value groups are divisible and the residue �elds are
algebraically closed. A discussion and some questions about it are included in the
last section.

The paper is constructed as follows. First we give prelimnaries concerning rosy
theories and valuations, listing all the facts from [14] which are used in the course of
the proof of Theorem 7. Section 2 is devoted to the proof of Theorem 7 and some
partial results concerning Conjecture 6 in the zero characteristic case. A very short
and easy Section 3 is self-contained and yields a proof of Theorem 10. In the last
section, we discuss some facts and questions concerning potential applications of our
results to prove the original conjectures.

Katharina Dupont is currently working around Conjecture 4 in her Ph.D. project
under the supervision of Salma Kuhlmann and in collaboration with Assaf Hasson.
She has a di�erent approach than the one presented in this paper (although also
based on [14]). A few details on this are mentioned in the last section.

The author would like to thank Thomas Scanlon for discussions and suggestions
concerning superrosy �elds during the visit at Berkeley in 2007, and the referee for
interesting comments and suggestions.

1 Preliminaries

1.1 Valuations

In this subsection, we list the de�nitions and facts from [14] which will be useful in
this paper. But before that, let us recall the de�nition of valuation and other basic
notions. A good reference for �elds with valuations is for example [9].

De�nition 1.1 A valuation on a �eld K is a surjective map v : K → Γ ∪ {∞},
where (Γ,+) is an ordered group and Γ < ∞, satisfying the following axioms. For
all x, y ∈ K:

1. v(x) =∞ =⇒ x = 0,
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2. v(xy) = v(x) + v(y),

3. v(x+ y) ≥ min{v(x), v(y)}.

Let v be a valuation on a �eld K. De�ne

Ov := {x ∈ K : v(x) ≥ 0}.

This is a valuation ring, i.e., a subring of K such that for any x ∈ K, either x ∈ Ov
or x−1 ∈ Ov. We say that the valuation v is trivial if Γ = {0}; equivalently, Ov = K.
The group O∗v of units of Ov equals {x ∈ K : v(x) = 0}. Finally,

Mv := {x ∈ K : v(x) > 0}

is the unique maximal ideal of Ov, and

Kv := Ov/Mv

is called the residue �eld of v.
With a valuation v we associated its valuation ring Ov. Conversely, starting from

a valuation ring O, one can de�ne a valuation v so that Ov = O, and one can do it
in such a way that both operations are inverses of each other (after the appropriate
identi�cation of value groups). Namely, having a valuation ring O, we de�ne Γ :=
K∗/O∗ with xO∗ + yO∗ := xyO∗, and we order it by xO∗ ≤ yO∗ ⇐⇒ y/x ∈ O;
then we de�ne a valuation v by v(x) = xO∗ ∈ Γ.

De�nition 1.2 We say that a valuation v : K → Γ∪{∞} on a �eld K (possibly with
an additional structure) is de�nable if the ordered group Γ is interpretable in K and
after the interpretation of Γ in K, graph(v) is de�nable. By the above discussion,
this is equivalent to the fact that Ov is de�nable in K.

If K ⊆ L is a �eld extension and w is a valuation on L, we say that w extends v if
w�K= v (after an isomorphic embedding of the value group of v into the value group
of w); equivalently, Ow ∩K = Ov. In such a situation, we write (K,Ov) ⊆ (L,Ow).
Let Γv be the value group of v and Γw the value group of w. Then Γv can be treated
as a subgroup of Γw, and e(Ow/Ov) := [Γw : Γv] is called the rami�cation index
of the extension (K,Ov) ⊆ (L,Ow). Similarly, since Mw ∩ Ov = Mv, we get that
Kv = Ov/Mv ↪→ Ow/Mw = Lw, and f(Ow/Ov) := [Lw : Kv] is called the residue
degree of the extension (K,Ov) ⊆ (L,Ow).

Fact 1.3 Whenever (K,Ov) ⊆ (L,Ow) with n := [L : K] being �nite, one has the
following inequality e(Ow : Ov)f(Ow : Ov) ≤ n.

When v and w are two valuations on the same �eld K, we say that w is a
coarsening of v if Ov ⊆ Ow. In such a situation,Mw ⊆ Mv is a prime ideal of Ov.
In this way, one gets a 1-1 correspondence between overrings of Ov and prime ideals
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of Ov. Going further, one gets a 1-1 correspondence between this set of prime ideals
and the set of convex subgroups of Γv (the value group of v):

∆ 7→ p∆ := {x ∈ K : v(x) > δ for all δ ∈ ∆}
p 7→ ∆p := {γ ∈ Γ : γ,−γ < v(x) for all x ∈ p}.

For details on this, see [9, Chapter 2.3]. Let us add that two valuations v and w on
K are said to be comparable if Ov ⊆ Ow or Ow ⊆ Ov.

From the model-theoretic perspective, an important question is when there exists
a non-trivial de�nable valuation on a given �eld K. A deep insight into this question
is provided in [14]. In particular, with an additive [resp. multiplicative] subgroup
T the author associates a certain valuation ring, denoted by OT , and he gives a
complete characterization of when OT is �rst order de�nable in (K,+, ·, 0, 1, T ).
Here, we recall some de�nitions and results from [14] which we will use later.

De�nition 1.4 Let v be a valuation on K and T an additive [resp. multiplicative]
subgroup.

1. v is compatible with T ifMv ⊆ T [resp. 1 +Mv ⊆ T ].

2. v is weakly compatible with T if A ⊆ T [resp. 1 +A ⊆ T ] for some Ov-ideal A
with

√
A =Mv.

3. v is coarsely compatible with T if it is weakly compatible with T and there is
no proper coarsening w of v such that O∗w ⊆ T .

Fact 1.5 [14, Lemma 1.2] Let v be a valuation on K. If either T is a multiplicative
subgroup such that for some n ∈ ω\{0}, (K∗)n ⊆ T and we have (n, char(Kv)) = 1 or
char(Kv) = 0, or T is an additive subgroup, char(K) = p and {xp−x : x ∈ K} ⊆ T ,
then v is (fully) compatible with T if and only if v is weakly compatible with T .

Fact 1.6 [14, Proposition 1.4] For an additive [resp. multiplicative] subgroup T of a
�eld K, any two coarsly compatible valuations are comparable, and there is a unique
�nest coarsly compatible valuation ring of K which we will denote by OT . Moreover,
OT is non-trivial, whenever T is proper (i.e., T 6= K [resp. T 6= K∗]) and admits
some non-trivial weakly compatible valuation.

The author concludes that for any additive [resp. multiplicative] subgroup T of
a �eld K exactly one of the following possibilities holds:

• groups case: there is a valuation v on K such that O∗v ⊆ T .
In this case, OT is the only coarsely compatible valuation ring with this prop-
erty, and all weakly compatible valuations are fully compatible; moreover, all
valuations w such that O∗w ⊆ T are re�nements of OT .
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• weak case: there is a weakly, but not fully compatible valuation on K.
In this case, OT is the only valuation ring with this property; the weakly
compatible valuations are the coarsenings of OT ; there is no valuation v with
O∗v ⊆ T .

• residue case: all weakly compatible valuations are fully compatible, and there
is no valuation v with O∗v ⊆ T .
In this case, OT is the �nest fully compatible valuation ring.

Now, we are going to recall [14, Theorem 2.5], which will be the main tool in
this paper. This is a complete characterization of when, for a given additive [resp.
multiplicative] subgroup T of a �led K, the ring OT is de�nable in the language L :=
{+, ·, 0, 1, T}. In fact, in our applications we will only use the positive part of this
characterization (namely the cases when one has de�nability). Before we formulate
the full characterization, we should emphasise that here by de�nability in L we do not
just mean de�nability in the structure (K,+, ·, 0, 1, T ), but the existence of a formula
ϕ(x) in L which de�nes OT ′ in every model (K ′,+, ·, 0, 1, T ′) ≡ (K,+, ·, 0, 1, T ).

Fact 1.7 [14, Theorem 2.5] Let K be a �eld with an additive [resp. multiplicative]
subgroup T . Denote byMT the maximal ideal of OT , and by T the subgroup induced
by T on the residue �eld of OT . Then OT is de�nable in L := {+, ·, 0, 1, T} in the
following cases:

T ≤ (K,+) T ≤ K∗

group case i� OT is discrete or (∀x ∈MT )(x−1OT * T ) always
weak case i� OT is discrete i� OT is discrete

residue case always i� T is no ordering

1.2 Rosy theories

In this paper, we will only need two properties of rosy groups and �elds. Although
they are a folklore, for the reader's convenience we recall fundamental de�nitions
concerning rosiness and we give proofs of these two properties.

Fact 1.8 Let K be a rosy �eld. Then there is no non-trivial de�nable valuation on
K.

Fact 1.9 Let G be a commutative superrosy group. Then for every natural number
n > 0, if G[n] := {g ∈ G : gn = e} is �nite, the index [G : Gn] is also �nite, where
Gn denotes the subgroup consiting of n-th powers.

In particular, if K is a superrosy �eld, then for every n > 0 the index [K∗ : (K∗)n]
is �nite and similarly, if char(K) = p 6= 0, then the image of the function f : K → K
de�ned by f(x) = xp−x is a subgroup of �nite index in K+. Since any �nite extension
of an elementary extension of K is also superrosy, this holds for all �nite extensions
of any elementary extension of K, too. Thus, superrosy �elds are radically bounded.
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For details on rosy theories the reader is referred to [1, 7, 20], and on rosy groups
to [6]. More information about rosy groups and �elds can be found in [15, 16].

In this subsection, we work in Ceq where C is a monster model of a theory T in a
language L.

A motivation to consider rosy theories is the fact that in a sense it is the largest
class of theories which allows the application of techniques from stability theory,
especially of basic forking calculus. This class contains stable and more generally
simple theories as well as o-minimal theories. The de�nition of rosiness which justi�es
what we have just said is the following: T is rosy if there is a ternary relation |̂ ∗
on small subsets of Ceq satisfying all the basic properties of forking independence in
simple theories except for the Independence Theorem. Such a relation will be called
an independence relation. There is a concrete, particularly useful independence
relation in rosy theories, called þ-independence, which we are going to de�ne now.

A formula δ(x, a) strongly divides over A if a is not algebraic over A and the set
of formulas {δ(x, a′)}a′|=tp(a/A) is k-inconsistent for some k ∈ N. We say that δ(x, a)
þ-divides over A if we can �nd some tuple c such that δ(x, a) strongly divides over
Ac. A formula þ-forks over A if it implies a (�nite) disjunction of formulas which
þ-divide over A.

We say that a type p(x) þ-divides over A if there is a formula implied by p(x)
which þ-divides over A; þ-forking is similarly de�ned. We say that a is þ-independent
from b over A, denoted a |̂ þ

A
b, if tp (a/Ab) does not þ-fork over A.

In rosy theories, þ-independence is the weakest independence relation in the sense
that a |̂ ∗

C
b implies a |̂ þ

C
b for any independence relation |̂ ∗.

By a rosy group [or �eld] we mean a group [or �eld], possibly with an additional
structure, whose theory is rosy.

Rosy theories can be also de�ned by means of local þ-ranks.

De�nition 1.10 Given a formula ψ(x), a �nite set Φ of formulas with object vari-
ables x and parameter variables y, a �nite set of formulas Θ in variables y, z, and
natural number k > 0, we de�ne the þΦ,Θ,k-rank of ψ inductively as follows:

1. þΦ,Θ,k(ψ) ≥ 0 if ψ is consistent.

2. For λ a limit ordinal, þΦ,Θ,k(ψ) ≥ λ if þΦ,Θ,k(ψ) ≥ α for all α < λ.

3. þΦ,Θ,k(ψ) ≥ α + 1 if there is ϕ ∈ Φ, some θ(y; z) ∈ Θ and parameter c such
that

(a) þΦ,Θ,k(ψ(x) ∧ ϕ(x; a)) ≥ α for in�nitely many a |= θ(y; c), and

(b) {ϕ (x; a)}a|=θ(y;c) is k−inconsistent.

Given a (partial) type π(x) we de�ne þΦ,Θ,k(π(x)) to be the minimum of þΦ,Θ,k(ψ)
for ψ ∈ π(x).
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Recall that a theory is rosy if and only if for each ψ,Φ,Θ, k as above, the local
thorn rank þΦ,Θ,k(ψ) is �nite. One could prove Fact 1.8 using this characterization.
However, one can give an immediate proof using another characterization of rosiness
in terms of the so-called equivalence ranks considered in [7, Section 5].

De�nition 1.11 Let π(x) be a partial type, and let ∆ be a �nite set of formulas in
variables x, y, z. De�ne eq-rk∆(π(x)) as follows:

1. eq-rk∆(π(x)) ≥ 0 if π(x) is consistent.

2. For λ a limit ordinal, eq-rk∆(π(x)) ≥ λ if eq-rk∆(π(x)) ≥ α for all α < λ.

3. eq-rk∆(π(x)) ≥ α + 1 if there is some equivalence relation E(x, y) de�ned by
δ(x, y, c) with δ(x, y, z) ∈ ∆ and c ∈ Ceq, and there are representatives bi,
i < ω, of di�erent equivalence classes, such that eq-rk∆(π(x) ∧ E(x, bi)) ≥ α.

From [7, Section 5], we know that T is rosy if and only if for every ∆ and π(x)
as above, eq-rk∆(π(x)) is �nite.

Proof of Fact 1.8. Suppose for a contradiction that there is a non-trivial de�nable
valuation v on the rosy �eld K. We can assume K is a monster model. For x, y from
the sort of K and z from the sort of Γ consider the formula

δ(x, y, z) = (v(x− y) ≥ z).

Then, for γ ∈ Γ the formula δ(x, y, γ) de�nes an equivalence relation on K which we
denote by Eγ(x, y). Put ∆ = {δ(x, y, z)}.

It is enough to show that eq-rk∆(δ(x, b, γ)) ≥ n for all n ∈ ω, γ ∈ Γ and b ∈ K,
because then eq-rk∆(δ(x, b, γ)) are in�nite, so K is not rosy.

We argue by induction on n. The case n = 0 is trivial. Suppose eq-rk∆(δ(x, b, γ)) ≥
n for all n ∈ ω, γ ∈ Γ and b ∈ K. Consider any γ ∈ Γ and b ∈ K. By saturation,
there is γ′ ∈ Γ such that γ′ > γ and Eγ′(x, y) re�nes [b]Eγ into in�nitely many classes,
say with representatives bi, i ∈ ω. Then, taking c := γ′ in the de�nition of eq-rk∆,
we get eq-rk∆(δ(x, b, γ)) ≥ n+ 1. �

Using |̂ þ, we de�ne Uþ-rank in the same way as U-rank is de�ned in stable

theories by means of |̂ , namely Uþ is a unique function from the collection of all
complete types to the ordinals together with∞ with the property that for any ordinal
α, Uþ(p) ≥ α+ 1 if and only if there is some tuple a and some type q ∈ S(Aa) such
that q ⊃ p, Uþ (q) ≥ α and q þ-forks over A. Uþ-rank in rosy theories has most of the
nice properties that U -rank has in stable theories, e.g. it satis�es Lascar Inequalities:

Uþ(a/b, A) + Uþ(b/A) ≤ Uþ(a, b/A) ≤ Uþ(a/b, A)⊕ Uþ(b/A).

Assume T is rosy. If D is an A-de�nable set, then Uþ(D) := sup{Uþ(d/A) : d ∈ D}.
Of course, if this supremum is �nite, then it is just the maximum. It turns out that if
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D is a de�nable group, then the supremum is also attained [6, Remark 1.20]. For D a
de�nable set, Uþ(D) = 0 if and only if D is �nite. There are also Lascar inequalities
for groups: For de�nable groups H ≤ G we have

Uþ(H) + Uþ(G/H) ≤ Uþ(G) ≤ Uþ(H)⊕ Uþ(G/H).

We say that T is superrosy if Uþ(p) < ∞ for every type p; a group [or �eld] is
superrosy if its theory is superrosy.

Proof of Fact 1.9. We only show the �rst part of the fact. Let H = Gn. We
claim that Uþ(G) = Uþ(H). To see this, take g ∈ G with Uþ(g/∅) = Uþ(G). Of
course, gn ∈ acl(g), so Uþ(gn/g) = 0. Since G[n] is �nite, we get g ∈ acl(gn),
and so Uþ(g/gn) = 0. Thus, by Lascar Inequalities, we get Uþ(gn) = Uþ(g), so
Uþ(H) = Uþ(G). Using Lascar Inequalities for groups, we immediately conclude
that Uþ(G/H) = 0, so G/H is �nite. �

De�nition 1.12 We say that a theory T has the NIP if there is no formula ϕ(x, y)
and sequence 〈ai〉i<ω such that for every w ⊆ ω there is bw such that |= ϕ(ai, bw) i�
i ∈ w.

The main result of [13] says that an NIP �eld K has no Artin-Schreier extensions,
i.e., if char(K) = p > 0, then the function x 7→ xp − x from K to K is surjective.
The proof in general uses some algebraic geometry, but assuming that the image of
the function x 7→ xp − x is of �nite index, this is an immediate consequence of the
existence of (K+)00 (i.e., of the smallest type-de�nable subgroup of K+ of bounded
index (wlog we assume here that K is a monster model)). Indeed, one easily checks
that (K+)00 is a non-trivial ideal ofK, so (K+)00 = K. Since the image of x 7→ xp−x
is a de�nable subgroup of K+ of �nite index, we get that it contains (K+)00 = K,
so it is equal to K.

2 Radically bounded �elds

This section is devoted to the proof of Theorem 7 and some observations concerning
Conjecture 6 in the zero characteristic case.

We start from some preparatory observations.

Remark 2.1 If K ⊆ L is an algebraic �eld extension and v is a non-trivial valuation
on L, then v�K is also non-trivial.

Proof. Suppose for a contradiction that v �K is trivial. Consider any a ∈ L with
v(a) > 0. Let P (x) = xn + an−1x

n−1 + . . . + a0 ∈ K[x] be the minimal monic
polynomial of a over K. Then v(an) > v(an−1a

n−1) > . . . > v(a0) = 0, so ∞ =
v(0) = v(P (a)) = v(a0) = 0, a contradiction. �
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Remark 2.2 Let L be a �nite extension of a �eld K. Suppose that any non-trivial
valuation on L has the property that its residue �eld is algebraically closed. Then the
residue �eld of any non-trivial valuation on K is either algebraically or real closed.

Proof. Consider any non-trivial valuation v on K. By Chevalley's Extension Theo-
rem, v has an extension to a (non-trivial) valuation w on L. By assumption, Lw is
algebraically closed. Since, by Fact 1.3, Lw is a �nite extension of Kv, the conclusion
follows. �

Lemma 2.3 Let v be a valuation on a �eld K. Let F be a �nite extension of the
residue �eld Kv. Then there is a �nite extension L of K and an extension w of v to
L such that the �eld F is isomorphic over Kv to the residue �eld Lw.

Proof. It is enough to prove it for 1-generated extensions. So, let F = Kv(α)
for some α ∈ F . Choose P (x) ∈ Ov[x] a monic polynomial such that P (x) is the
minimal monic polynomial of α overKv, where P (x) ∈ Kv[x] denotes the polynomial
obtained from P (x) by reducing the coe�cients modulo Mv. Consider a root β of
P (x), put L := K(β) and take any extension of v to a valuation w on L. Since the
coe�cients of P (x) are in Ov with the leading coe�cient equal to 1, one easily gets
that w(β) ≥ 0, so β ∈ Ow.

Now, for β := β +Mw ∈ Lw, we have that P (β) = 0. Since P is irreducible, we
get

[Lw : Kv] ≥ [Kv(β) : Kv] = degP = degP ≥ [L : K],

so we have everywhere equalities by Fact 1.3. Therefore, Lw = Kv(β) which is iso-
morphic to F over Kv. �

The next lemma recalls a standard method of showing that a given �eld is alge-
braically closed.

Lemma 2.4 Let K be a �eld. If for every �nite extension L of K and for every
prime number n>0, (L∗)n = L∗ and, in the case when char(K) = p > 0, the function
f : L→ L given by f(x) = xp − x is onto, then K is algebraically closed.

Proof. By assumption, K is perfect. If it is not algebraically closed, then it has a
proper Galois extension F of minimal degree k > 1. There is an intermediate �eld
L with Gal(F/L) ∼= Zq for some prime number q.

If q = p = char(K), then Galois theory tells us that F is the splitting �eld over
L of a polynomial of the form xp − x − a for some a ∈ L, but, by assumption, this
polynomial has at least one zero in L, so all its zeros are in L, a contradiction.

Assume q 6= char(K). Since q ≤ k and for a primitive q-th root of unity ζq the
�eld K(ζq) is a Galois extension of K of degree less than q, by the choice of k, we
conclude that ζq ∈ K. So ζq ∈ L. By Galois theory, we conclude that F is a splitting
�eld over L of a polynomial of the form xq − a for some a ∈ L. By assumption, this
polynomial has a zero in L, so all its zeros are in L, a contradiction. �
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Remark 2.5 Let K be an in�nite �eld of characteristic p > 0. Then either Kp = K,
or the index [K∗ : (K∗)p] of multiplicative groups is in�nite and the index [K+ :
(K+)p] of additive groups is also in�nite. In particular, if the index [K∗ : (K∗)p] is
�nite, then K is perfect.

Proof. Suppose Kp 6= K, and let b ∈ K be such that b and 1 are linearly independent
over Kp. Then 1 + kpb for k ∈ K are in di�erent cosets modulo (K∗)p. So the index
[K∗ : (K∗)p] is in�nite. Similarly, the elements kpb for k ∈ K are in di�erent additive
cosets modulo (K+)p, so the index [K+ : (K+)p] is also in�nite �

Proof of Theorem 7. Suppose there is no non-trivial de�nable valuation on K.

Part 1. The value group of any non-trivial valuation v on K is divisible.

Proof. Suppose for a contradiction that some γ ∈ Γv is not divisible by n. Put

T = O∗v · (K∗)n.

Claim 1 T is a proper, de�nable subgroup of K∗ such that O∗v ≤ T and (K∗)n ≤ T .

Proof of Claim 1. Since (K∗)n is a �nite index subgroup of K∗, we get that T is a
union of �nitely many cosets of (K∗)n, so T is de�nable and contains (K∗)n. The
fact that O∗v ≤ T follows directly from the de�nition of T . To see that T is proper,
suppose for a contradiction that T = K∗. Then there is a ∈ T such that v(a) = γ.
By the de�nition of T , we can write a = r · kn for some r ∈ O∗v and k ∈ K∗. Then
γ = v(a) = nv(k) ∈ nΓv, a contradiction. �

By Claim 1, we know that T is proper and 1 +Mv ⊆ O∗v ≤ T , so v is fully com-
patible with T . By Fact 1.6, we conclude that OT is non-trivial. We also get that
we are in the group case, so Fact 1.7 tells us that OT is de�nable in (K,+, ·, 0, 1, T ),
but T is de�nable in K, so OT is de�nable in K. This is a contradiction, which
completes the proof of Part 1. �

Part 2. Assuming that char(K) = p > 0, the residue �eld of any non-trivial valua-
tion v on K is algebraically closed.

Proof. By Lemmas 2.3 and 2.4, we will be done if we prove the following two claims.

Claim 2 For every �nite extension L of K, for every extension w of v to a valuation
on L, and for every prime number n, one has (L

∗
w)n = L

∗
w.

Claim 3 For every �nite extension L of K and for every extension w of v to a
valuation on L one has that the function f : Lw → Lw given by f(x) = xp − x is
onto.

Proof of Claim 2. First, notice that by Remark 2.1, we can assume that L = K.
Indeed, since L is de�nable in K (living in some Cartesian power of K), by Remark
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2.1, we get that there is no non-trivial de�nable valuation on L; it is also clear that
L is radically bounded.

Consider the case n 6= pn 6= pn 6= p.

Subclaim Kn(1 +Mv) = K

Proof of the subclaim. Suppose it is not true. Then T := (K∗)n(1 +Mv) is a proper
subgroup of K∗, and v is fully compatible with T . By Fact 1.6, OT is non-trivial.

Since [K∗ : (K∗)n] is �nite, we see that T is de�nable, so there is no non-trivial
valuation on K de�nable in (K,+, ·, 0, 1, T ).

Let KT be the residue �eld corresponding to the valuation ring OT . Since
(K∗)n ≤ T and (n, char(KT )) = 1, Fact 1.5 gives us that we are either in the
group case or in the residue case (if we were in the weak case, then OT would be
weakly but not fully compatible with T which would contradict Fact 1.5). By Fact
1.7, in the group case, OT is de�nable in (K,+, ·, 0, 1, T ) which is impossible, and, in
the residue case, either OT is de�nable in (K,+, ·, 0, 1, T ) which is impossible or T
is the positive cone of an ordering on KT . However, the last thing is also impossible
as char(KT ) = p > 0. �

By the subclaim, K
n

v = Kv. Indeed, for any a ∈ Ov, a = kn(1 + m) for some
k ∈ K and m ∈Mv. Since 1 +m ∈ O∗v, we get that k ∈ Ov, so a = k

n ∈ Kn

v .

Now, consider the casen = pn = pn = p. Suppose for a contradiction thatK
p

v is a proper sub-
�eld of Kv. As we have already proved that K

m

v = Kv whenever (m, char(Kv)) = 1,
we see that Kv is in�nite. Thus, Remark 2.5 implies that [K

∗
v : (K

∗
v)
p] is in�nite.

Moreover, if aK
p

v 6= bK
p

v for some a, b ∈ Ov, then aKp 6= bKp, because otherwise
either akp = b or a = bkp for some k ∈ Ov, and so either ak

p
= b or a = bk

p
, a

contradiction. This implies that [K∗ : (K∗)p] is in�nite, which contradicts the as-
sumption that K is radically bounded. �

Proof of Claim 3. As in the proof of Claim 2, by Remark 2.1, we can assume that
K = L. Let F : K → K be given by F (x) = xp − x.
Subclaim F [K] +Mv = K.

Proof of the subclaim. Suppose it is not true. Then T := F [K] +Mv is a proper
subgroup of K+, and v is fully compatible with T . By Fact 1.6, OT is non-trivial.
As [K+ : F [K]] is �nite, T is de�nable in K, so there is no non-trivial valuation on
K de�nable in (K,+, ·, 0, 1, T ).

Since F [K] ≤ T , Fact 1.5 ensures that we are either in the group case or in the
residue case. In the residue case, OT is de�nable by Fact 1.7, a contradiction. In the
group case, since we know that OT is not de�nable, Fact 1.7 yields some x ∈ MT

with x−1OT ⊆ T .
Now, we will adopt the argument from the proof of [14, Theorem 3.1]. For the

reader's convenience, we give all the details.
Let AT be the largest fractional OT -ideal contained in T . We aim at de�ning
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a certain fractional OT -ideal AαT which will properly contain AT and which will be
contained in T . This will contradict the choice of AT .

Denote by vT and by ΓT the valuation and the value group corresponding to OT .
For a real number α and γ1, γ2 ∈ ΓT , by γ1 ≥ αγ2 we mean that γ1 ≥ rγ2 for all
rationals r ≤ α if γ2 ≥ 0, or for all rationals r ≥ α if γ2 < 0. This de�nition makes
sense since ΓT is divisible by Part 1 of the proof. By γ1 < αγ2 we mean the negation
of γ1 ≥ αγ2. For α > 1 de�ne

AαT := {x ∈ K : vT (x) ≥ αvT (y) for some y ∈ AT}.

This is, of course, a fractional OT -ideal. Since x−1OT ⊆ T and x ∈ MT , we have
that AT properly contains OT . This easily implies that AT ⊆ AαT . Now, we check
that this inclusion is proper.

Take a natural number n such that α > 1 + 1
n
. There is y ∈ AT \ OT such

that (1 + 1
n
)vT (y) /∈ vT (AT ), as otherwise one easily gets that for all y ∈ AT \ OT ,

yOT generates a valuation ring properly containing OT and contained in T , which
contradicts the fact that vT is coarsely compatible with T . Choose z ∈ K with
vT (z) = 1

n
vT (y). Then vT (zy) = (1 + 1

n
)vT (y) ≥ αvT (y), so zy ∈ AαT \ AT .

The proof of the subclaim will be completed if we show that AαT ⊆ T for α ∈
(1, 2 − 1

p
). It is enough to prove that every element t ∈ AαT \ AT belongs to T . We

have vT (t) ≥ αvT (y) for some y ∈ AT \ OT . Since t /∈ AT , we immediately get
vT (ty−1) = vT (t) − vT (y) < 0. Therefore, ty−1 ∈ K \ OT . Thus, by Remark 2.5,
ty−1 = ap for some a ∈ K \ OT , and so ta−p = y ∈ AT \ OT ⊆ T \ OT , hence
ta−p = bp − b + m for some b ∈ K \ OT and m ∈ Mv ⊆ OT . (To see the last
inclusion, one should consider two cases. The �rst one is when Ov * T . Since T is
an additive subgroup, this implies that v is coarsely compatible with T , so OT ⊆ Ov,
henceMv ⊆ OT . The second case is when Ov ⊆ T . Then we are in the group case,
so Ov ⊆ OT .) As α < 2− 1

p
, we obtain

vT (apb) = vT (ap) + vT (b) = vT (ty−1) + vT (b) = vT (t)− vT (y) + 1
p
vT (y)

≥
(
α− 1 + 1

p

)
vT (y) > vT (y).

Therefore, vT (ab) > vT (apb) > vT (y) and vT (apm) > vT (apb) > vT (y). Hence,
ab, apb, apm ∈ AT ⊆ T , and so t = ((ab)p − ab) + ab− apb+ apm ∈ T . �

By the subclaim, f [Lv] = Lv. Indeed, for any a ∈ Ov, a = kp − k + m for some
k ∈ K and m ∈Mv. Then k ∈ Ov, so a = k

p − k. �

So, the proof of Part 2 and of the whole theorem has been completed. �

As was pointed out in the introduction, Corollary 8 follows from Theorem 7 and
Facts 1.8 and 1.9, and Corollary 9 follows from Theorem 7 and the fact that NIP
�elds are closed under Artin-Schreier extensions.
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Proposition 2.6 Let K be a radically bounded �eld of characteristic zero. Then ei-
ther there is a non-trivial de�nable valuation on K, or for every non-trivial valuation
v on K:

1. if char(Kv) > 0, then K
n

v = Kv for every n > 0,

2. if char(Kv) = 0 and
√
−1 ∈ K, then there is a prime number p such that for

all primes n di�erent from p, K
n

v = Kv.

Proof. Suppose there is no non-trivial de�nable valuation on K.

(1) Almost the same argument (based on Facts 1.5, 1.6 and 1.7) as in the proof of
Claim 2 in the proof of Theorem 7 works. The only di�erence is that we show the
weaker version of the subclaim which says that T := (K∗)n(1+Mv) ⊇ O∗v and which
is of course strong enough to �nish the proof. The distinction between cases n 6= p
and n = p is considered for p := char(Kv). To prove this weaker version of the
subclaim, one can apply the same argument as before, noting that since we assume
that O∗v * T , we get OT ⊆ Ov, so char(KT ) = char(Kv) = p is �nite.

(2) Suppose that for some prime p, K
p

v 6= Kv. Then T := (K∗)p(1 +Mv) is a
proper, de�nable subgroup of K∗. If p 6= char(KT ), then we get a contradiction as
in the proof of the subclaim in the proof of Claim 2 in Theorem 7, noting that the
assumption

√
−1 ∈ K eliminates the possibility that T is the positive cone of an

ordering on KT . So p = char(KT ).
Consider any prime n 6= p. Let T ′ := (K∗)np(1 +Mv). Then T ′ ≤ T . On the

other hand, since T is de�nable and OT is not de�nable, Fact 1.7 implies that T
does not belong to the group case. Thus, we conclude that OT ⊆ OT ′ , and hence
char(KT ′) ∈ {0, p}. However, it is impossible to have char(KT ′) = 0, as in this case
once again one gets a contradiction as in the proof of the subclaim in the proof of
Claim 2 in Theorem 7. So char(KT ′) = p. Our goal is to show thatKn(1+Mv) = K.
If this is not the case, then T ′′ := (K∗)n(1 +Mv) is a proper, de�nable subgroup
of K∗, and once again Facts 1.5, 1.6 and 1.7 yield that (n, char(KT ′′)) 6= 1 and T ′′

does not belong to the group case. Since T ′ ≤ T ′′, we conclude that OT ′′ ⊆ OT ′ , but
char(KT ′) = p, and so we get that char(KT ′′) = p. This contradicts the assumption
that n is di�erent from and so relatively prime to p. �

If one was able to strengthen the conclusion of Proposition 2.6(2) by showing
that K

n

v = Kv for all primes n, then using Remark 2.1 and Lemmas 2.3 and 2.4, one
would get that, under the assumption of Proposition 2.6 (together with

√
−1 ∈ K),

either there is a non-trivial de�nable valuation on K, or for any non-trivial valuation
v with char(Kv) = 0 the residue �eld Kv is algebraically closed. So, using Remark
2.1 and arguing as in the proof of Remark 2.2, one would also get that the assumption
that the �eld is radically bounded implies that either there is a non-trivial de�nable
valuation on K, or for any non-trivial valuation v with char(Kv) = 0 the residue �eld
Kv is either algebraically or real closed. In fact, strengthening slightly the de�nition
of radical boundedness, this would imply the full conclusion of Conjecture 6.
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Proposition 2.7 Suppose that the conclusion of Proposition 2.6(2) can be strength-
ened to `K

n

v = Kv for all primes n'. Let K be a �eld whose all elementary extensions
are radically bounded. Then either there is a non-trivial de�nable valuation on K,
or every non-trivial valuation on K has divisible value group and either algebraically
or real closed residue �eld.

Proof. Suppose there is no non-trivial de�nable valuation on K. Using Remarks 2.1
and 2.2, we can assume that

√
−1 ∈ K. Let v be any non-trivial valuation on K.

Divisibility of Γv was proved in Theorem 7. By this theorem, it remains to consider
the case char(K) = 0. From the discussion above Proposition 2.7, we are done in
the case char(Kv) = 0. So it remains to consider the case char(Kv) = p > 0.

Take a monster model (K̃, Γ̃, ṽ) � (K,Γv, v). Let O be a maximal valuation ring

in K̃ containing Oṽ and such that 1
p
/∈ O. LetM be the maximal ideal of O. Then

p ∈M, so k := O/M is of characteristic p.

We claim that there is a non-trivial valuation ring O1 in K̃ such that O ( O1.
To see this, recall that O corresponds to the proper convex subgroup Γ̃O of Γ̃ de�ned
by

Γ̃O := {γ ∈ Γ̃ : (∀x ∈M)(ṽ(x) > γ,−γ)}.

So, there is γ > Γ̃O. Put Γ̃1 :=
⋃
n(−nγ, nγ) a convex subgroup of Γ̃ properly

containing Γ̃O. By saturation, Γ̃1 6= Γ̃. So, Γ̃1 = Γ̃O1 for some non-trivial valuation
ring O1 ) O.

Since O ( O1, we have that
1
p
∈ O1, hence the residue �eld k1 := O1/M1 (where

M1 is the maximal ideal of O1) is of characteristic 0. So k1 is algebraically closed
(as the conclusion of Proposition 2.7 holds in the residue zero characteristic case,

also for K̃ in place of K). As Oṽ ⊆ O1, this implies that the residue �eld K̃ ṽ is
algebraically closed, and so Kv is algebraically closed, too. �

By [10], we know that the property `all elementary extensions of K are rad-
ically bounded' is strictly stronger than radical boundedness and strictly weaker
that boundedness. By Fact 1.9, superrosy �elds satisfy this strengthening of radical
boundedness (as was mentioned in the introduction, they are even bounded).

3 Minimal �elds

We will prove here Theorem 10. In contrast to Theorem 7, where the proof relies on
non-trivial results from [14], the proof of Theorem 10 is a trivial consequence of the
de�nition of minimality.

Recall that a minimal �eld is an in�nite �eld whose every de�nable (in one vari-
able) subset is �nite or co-�nite.

Proof of Theorem 10. Consider any non-trivial valuation v on K.
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By minimality, for every natural number n > 0, (K∗)n = K∗. (To see this, notice
that (K∗)n is an in�nite multiplicative subgroup of K, so it is a co-�nite subgroup,
so it is everything.) From this, it is clear that Γv is divisible.

Consider any monic polynomial P (x) = xn+an−1x
n−1+. . .+a0 ∈ Kv[x] of positive

degree n; here a0, . . . , an−1 ∈ Ov. Let P (x) = xn + an−1x
n−1 + . . . + a0. Since P (x)

takes co-�nitely many values in K andMv is in�nite, there exists a ∈ K such that
P (a) ∈ Mv. Then a ∈ Ov, as otherwise v(a) < 0, and so v(aia

i) = v(ai) + iv(a) >
nv(a) = v(an) for i = 0, . . . , n− 1, which implies that v(P (a)) = v(an) = nv(a) < 0,
a contradiction with the fact that P (a) ∈Mv. Therefore, P (a) = 0, i.e., P (x) has a
root in Kv. �

4 Final comments

We will say that a given �eld K has Property (∗) if every non-trivial valuation on
K has divisible value group and algebraically closed residue �eld. We will say that
it has Property (∗−) if every non-trivial valuation on K has divisible value group
and either algebraically or real closed residue �eld. By Remark 2.2, a �eld K has
Property (∗−) if and only if K(

√
−1) has Property (∗).

Having the results and conjectures discussed in this paper, a natural questions
arises what can be said about the structure of �elds with Property (∗) or (∗−). In
particular, can one deduce from our results Conjectures 1, 2, 3, 4 (at least in positive
characteristic) or Podewski's conjecture?

Recall that a �eld is orderable if it can be equipped with some order making it an
ordered �eld; equivalently, it is formally real (i.e., −1 is not a sum of squares). A �eld
K is PAC (pseudo algebraically closed) if every absolutely irreducible variety over
K has a K-rational point. A �eld K is PRC (pseudo real closed) if every absolutely
irreducible variety over K which has an F -rational point in every real closed �eld F
containing K has a K-rational point. With such de�nitions each PAC �eld is PRC.
We know that if K is an orderable PRC �eld, then K(

√
−1) is (perfect) PAC [20,

Lemma A.1.1.3].

Fact 4.1 A PRC �eld is superrosy if and only if it is perfect and bounded.

Proof. (←) was proved in [20, Appendix A] for orderable PRC �elds and in [12] for
PAC �elds. To see the converse, note that the same argument as in [24, Theorem
5.6.5] yields boundedness. Finally, suppose for a contradiction that K is not perfect.
Then, by Remark 2.5, [K∗ : (K∗)p] is in�nite, which contradicts Fact 1.9.

Remark 4.2 An orderable PRC �eld has the strict order property, so it is not simple.
In particular, Conjecture 3 implies Conjecture 1.

Proof. Let K be a formally real PRC �eld. We claim that any element which is a
sum of �nitely many squares is a sum of two squares. For this, consider any non-
zero element a ∈ K which is a sum of �nitely many squares. Then the polynomial
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x2+y2−a has a zero in any real closed �eld containingK. Since x2+y2−a is absolutely
irreducible (e.g. by the Eisenstein criterion) and K is PRC, this polynomial has a
zero in K, and so a is a sum of two squares in K.

Now, de�ne the relation ≤ on K by

x ≤ y ⇐⇒ y − x is a sum of squares of �nitely many elements of K.

We claim that ≤ is a partial order with an in�nite chain. The fact that ≤ is
antisymmetric follows from the fact that K is formally real. Transitivity is clear.
The existence of an in�nite chain can be seen as follows. Take any a 6= 0. Then
a2 < 2a2 < 3a2 < . . ..

Since, by the �rst paragraph of the proof, x ≤ y if and only if y − x is a sum of
two squares, we see that ≤ is de�nable. �

Fact 4.3 A non separably and non real closed PRC �eld does not have NIP. In
particular, Conjecture 3 implies Conjecture 2.

Proof. The main result of [5] says that a non separably closed PAC �eld does not
have NIP. Now, consider a non separably and non real closed PRC �eld. Suppose for
a contradiction that it has NIP. Then K(

√
−1) still has NIP (as it is interpretable

in K) and it is PAC but not separably closed, a contradiction. �

By [8], perfect PAC �elds have Property (∗), so, by [20, Lemma A.1.1.3], perfect
PRC �elds have Property (∗−). One could ask whether for in�nite �elds Property
(∗−) [or (∗)] implies that the �eld in question is PRC (in the non formally real case,
PRC can be replaced by PAC). By virtue of our results and Fact 4.3, the positive
answer would imply Conjectures 1, 2, 3 and 4 in positive characteristic. Unfortu-
nately the answer is negative, which we brie�y explain now. In [8] and [11], the Hasse
principle for Brauer groups is considered. It is shown in [8, Theorem 3.4] that if K
is a perfect PAC �eld, then any extension F of K of relative transcendence degree 1
satis�es the Hasse principle for the Brauer groups. On the other hand, it is shown
in [8, Theorem 4.1] that whenever K is a perfect �eld such that the Hasse princi-
ple for the Brauer groups holds for all extensions F of K of relative transcendence
degree 1, then the �eld K has Property (∗). It was also asked in [8, Question 4.2]
whether a non formally real in�nite perfect �eld K such that the Hasse principle for
the Brauer groups holds for all extensions F of K of relative transcendence degree
1 is necessarily PAC? In [11], a counter-example was constructed. The authors in-
troduced the class of the so-called weakly PAC �elds, they proved that weakly PAC
�elds are non formally real and that (assuming perfectness) they satisfy the Hasse
principle for the Brauer groups for all extensions of relative transcendence degree 1,
and they constructed perfect weakly PAC �elds which are not PAC. In particular,
perfect weakly PAC �elds have Property (∗).

The above discussion leads to the following questions in our context.

Question 4.4 Does there exist a weakly PAC but not PAC superrosy [resp. super-
simple] �eld?

18



The positive answer would refute Conjecture 3 [resp. Conjecture 1]. The negative
answer would support (but not prove) these conjectures.

Question 4.5 Let K be an in�nite perfect �eld with NIP satisfying Property (∗) [or
(∗−)]. Is it true that K is either algebraically or real closed?

Applying the trick with adding
√
−1, we see that both versions of this question

are equivalent. By Corollaries 8 and 9, the positive answer would imply Conjectures
2 and 4 in positive characteristic.

Question 4.6 Does there exist a non algebraically closed, perfect weakly PAC �eld
which [is superrosy and] has NIP?

The positive answer would yield the negative answer to Question 4.5. The positive
answer to the extended version would refute Conjecture 2. Notice that since by [5]
we know that non separably closed PAC �elds do not have NIP, if the answer to the
above question was positive, the witness �eld would have to be weakly PAC but not
PAC.

In any case, in order to �nd counter-examples to Conjectures 1, 2, 3 or 4, one could
try to construct suitable non PRC �elds with Property (∗−); possible candidates
could be among perfect weakly PAC but not PAC �elds. Or, try to prove the
conjectures by showing that there are no such �elds.

A generalization of Corollary 8 to the characteristic zero case is an open problem.
Of course, Thereom 7 yields the divisibility of the value groups, but the problem is
with the residue �elds.

Conjecture 11 Every non-trivial valuation on a superrosy �eld has divisible value
group and either algebraically or real closed residue �eld.

Another idea of attacking Conjecture 2 by means of Corollary 8 (or rather Conjec-
ture 11), suggested to the author by E. Hrushovski, is to try to show that a superrosy
�eld with NIP is the residue �eld with respect to some non-trivial valuation on an-
other superrosy �eld with NIP, and use Corollary 8 (or Conjecture 11 in the zero
characteristic case) to conclude that the original �eld is either algebraically or real
closed.

As was mentioned in the introduction, K. Dupont has a di�erent approach to
Conjecture 4 (and so also to Conjecture 2). After adding

√
−1 to the �eld, the goal

is to show that either for every �nite extension L of K and for every prime number n,
(L∗)n = L∗ (as then K is algebraically closed by Lemma 2.4), or there is a non-trivial
de�nable valuation on K. Assume that the �rst possibility fails for some L and n.
Put T = (L∗)n. It follows from the assumptions and Remark 2.5 that L is perfect,
so n 6= char(L). The �rst goal is to show that OT is a de�nable valuation ring on L.
Further, K. Dupont deduced from [14] that OT is non-trivial if and only if the family
of sets {aT +a : a ∈ L∗} is a subbasis of open neighborhoods of zero of a V -topology
on L. The second goal of her project is to show (using the NIP assumption) that
the last condition holds.
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