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Abstract

We prove that each w-categorical, generically stable group is solvable-by-
finite.

0 Introduction

A general motivation for us is to understand the structure of w-categorical groups
satisfying various natural model-theoretic assumptions. There is, of course, a long
history of results of this kind, for example in a superstable, supersimple or NSOP
context [1, 3, 7, 9] (see [6, Introduction] for a very quick overview of such results).
Recall that each countable, w-categorical group has a finite series of characteristic
(i.e. invariant under the automorphism group) subgroups in which all successive
quotients are characteristically simple groups (i.e. they do not have non-trivial,
proper characteristic subgroups). On the other hand, Wilson (see [10]) proved

Fact 0.1 For each infinite, countable, w-categorical, characteristically simple group
H, one of the following holds.

(i) For some prime number p, H is an elementary abelian p-group (i. e. an abelian
group, in which every nontrivial element has order p).

(ii) H = B(F) or H= B~ (F) for some non-abelian, finite, simple group F, where
B(F) is the group of all continuous functions from the Cantor set C to F,
and B~(F) is the subgroup of B(F') consisting of the functions f such that
f(zo) = e for a fized element xq € C.

(i1i) H is a perfect p-group (perfect means that H equals its commutator subgroup).

*Research supported by the Polish Government grant N N201 545938
92010 Mathematics Subject Classification: 03C45, 20A15
YKey words and phrases: w-categorical group, generically stable type



Recall that all countable elementary abelian groups as well as all the groups of the
form B(F) or B~(F) (for F finite, non-abelian and simple) are w-categorical and
characteristically simple. On the other hand, it remains a difficult open question
whether there exist infinite, w-categorical, perfect p-groups.

Fact 0.1 suggests a method of proving structural results about certain w-categorical
groups. Namely, sometimes induction on the maximal (finite) length of a series of
characteristic subgroups allows one to reduce the situation to the case of character-
istically simple groups and then to apply Fact 0.1.

In [6], w-categorical groups and rings satisfying NIP are considered. It was proved
in there that w-categorical rings with NIP are nilpotent-by-finite, and it was conjec-
tured that w-categorical groups with NIP are nilpotent-by-finite, too. This conjecture
was shown to be true, but under the additional assumption that the group in ques-
tion has fsg (finitely satisfiable generics). In fact, such groups are generically stable
according to the terminology introduced in [4, Section 6]. It remains an open prob-
lem how to deal with w-categorical groups satisfying NIP in the situation when the
fsg assumption is dropped.

In this paper, we do not drop the fsg assumption, but we do drop NIP. More
precisely, we consider w-categorical groups which are generically stable (and some
variants of this situation). Our main result says that each w-categorical, generically
stable group is solvable-by-finite. The proof is by induction on the maximal length
of a series of characteristic (in a generalized sense) subgroups. There are three main
new ingredients in comparison to the proof of [6, Theorem 3.4]. First of all, because
of the lack of NIP, we have to prove certain chain conditions for subgroups uniformly
definable over Morley sequences in generically stable types. Next, using them, we
eliminate items (ii) and (iii) from Wilson’s theorem for some groups occurring in
the proof. This step is similar to the one in [6], but it requires more work, e.g. an
application of finite Ramsey theorem. Finally, in the last part of the proof, we have
to deal with solvable iterated commutators instead of nilpotent commutators, which
requires different computational ideas.

The second author would like to thank Anand Pillay for suggesting that one of
the lemmas in [6] should be true without the NIP assumption, which was the starting
point for considerations contained in this paper.

1 Preliminaries

Recall that a first order structure M in a countable language is said to be w-
categorical if, up to isomorphism, T'h(M ) has at most one model of cardinality X,. By
Ryll-Nardzewski’s theorem, this is equivalent to the condition that for every natural
number n there are only finitely many n-types over (). Assume M is w-categorical. If
M is countable or a monster model (i.e. a model which is k-saturated and strongly
k-homogeneous for a big cardinal k), two finite tuples have the same type over ) iff
they lie in the same orbit under the action of the automorphism group of M, and
hence for each natural number n, the automorphism group of M has only finitely



many orbits on n-tuples (which implies that M is locally finite). Moreover, for any
finite subset A of such an M, a subset D of M is A-invariant iff D is A-definable.

Let T be a first order theory. We work in a monster model € of 7.

Let p € S(€) be invariant over A C €. We say that (a;);e. is a Morley sequence
in p over A if a; = p|Aa; for all i. Morley sequences in p over A are indiscernible
over A and they have the same order type over A. If & > € is a bigger monster
model, then the generalized defining scheme of p determines a unique A-invariant
extension p € S(€’) of p (by the generalized defining scheme of p we mean a family
of sets {pf : i € I,} (with ¢(z,y) ranging over all formulas without parameters)
of complete types over A such that ¢(z,c) € p iff ¢ € U, p7(€)). By a Morley

sequence in p we mean a Morley sequence in p over €. Finally, p*) (where k € wU{w})
denotes the type over € of a Morley sequence in p of length k.

Definition 1.1 A global type p € S(€) is said to be generically stable if, for some
small A, it is A-invariant and for each formula ¢(x;y), there is a natural number
m such that for any Morley sequence (a; : i < w) in p over A and any b from €,
either less than m a;’s satisfy w(b;y) or less than m a;’s satisfy —p(b;y). In this
definition, as a witness set A one can take any (small) set over which p is invariant.
We will say that p is generically stable over A to express that p is invariant over A
and generically stable.

Suppose p € S(€) is A-invariant. Assuming NIP, there are various equivalent
definitions of generic stability of p (see [4, Proposition 3.2]). It turns out that in
general (i.e. without the NIP assumption) all these definitions are implied by the
definition given above (see [8, Proposition 1]). In particular, if p is generically stable,
then a Morley sequence in p over A is an indiscernible set over A. Some observations
on these issues are contained Section 3.

Proposition 1.2 Let p = tp(a/€) be a type generically stable over A, and assume
that b € dcl(a). Then tp(b/C) is also generically stable over A.

Proof. Let € > € be a bigger monster model containing a and b. Let g be a
()-definable function such that b = g(a).

First, we check that tp(b/€) is A-invariant. Consider any f € Aut(€/A). We can
extend it to an f € Aut(¢’/A). Then, tp(f(a)/€) = tp(a/€) and f(b) = g(f(a)), so
tp(f(b)/€) = tp(b/€). Thus, tp(b/€) is A-invariant.

Now, we check the main part of the definition of generic stability for ¢p(b/A).
Let (h;)i<. be a Morley sequence in p over A. We claim that (g(h;))i<. is a Mor-
ley sequence in tp(b/€) over A. Indeed, for any formula ¢(z,g(ho),...,g(hy,)) in
tp(b/qz)’A,g(ho) ..... g(hn—1)» putting w(% Yo, - - - ;ynfl) = gD(g(.T), g<y0)a s 7g(ynfl)) y We
see that ¥(x, ho, ..., hn-1) € D|ang,..hn 1 SO U(hn, ho, ..., hy—1) holds, and thus
o(g(hn),g(ho),- .., g(h,_1)) holds as well.

Consider any formula «a(z;y). Choose m as in the definition of generic stability
for the type p and the formula 8(z;y) := a(x; g(y)). Then, for any b, we have that
either [{i <w = a(b;g(h)}| <mor [{i <w = —a(b;g(h:)}| < m.
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The above observations show that tp(b/€) is generically stable over A. O

Recall that a subset of a group G is said to be left generic if finitely many left
translates of this set cover G. A formula ¢(z) is left generic if the set p(G) is left
generic. A type is said to be left generic if every formula in it is left generic.

Definition 1.3 Let G be a group definable in € by a formula G(x). G has fsg
(finitely satisfiable generics) if there is a global type p containing G(x) and a model
M < €, of cardinality less than the degree of saturation of €, such that for all g, gp
18 finitely satisfiable in M.

Let G be a group (-definable in €. By G we will denote the smallest type-
definable subgroup of bounded index (if it exists). We do not know whether G
always exists when T is w-categorical. Notice, however, that if it exists, then, being
(-invariant, it must be @-definable and of finite index in G.

The following fact was proved in [5, Section 4].

Fact 1.4 Suppose G has fsg, witnessed by p. Then:

(i) a formula is left generic iff it is right generic (so we say that it is generic),

(i) p is generic,

(#i) the family of nongeneric sets forms an ideal, so any partial generic type can be
extended to a global generic type,

() G emists, it is type-definable over (), and it is the stabilizer of any global generic
type of G.

Recall [2, Proposition 0.26].

Fact 1.5 Suppose G has fsg and G is definable. Then G* has a unique global
generic type.

The next definition was introduced in [4, Section 6].

Definition 1.6 G is generically stable if it has fsg and some global generic type is
generically stable.

We say that a group definable in a non-saturated model is generically stable if
the group defined by the same formula in a monster model is such.

A few more observations and questions on generic stability are contained in Sec-
tion 3.

We will say that G is connected if it does not have a proper, definable subgroup
of finite index, and we will say that G is absolutely connected if it does not have a
proper, type-definable subgroup of bounded index.



2 Main results

The goal of this section is to prove the main result of the paper, namely Theorem 2.5.
As was mentioned in the introduction, first we will prove certain chain conditions.
Then, we will use them to eliminate items (ii) and (iii) from Wilson’s theorem for
characteristically simple groups. Finally, using induction and certain computations
involving commutators and centralizers, we will reduce the situation to characteris-
tically simple groups, and we will be done.

Lemma 2.1 Let G be a group which is (-definable in € by a formula G(x). Assume
that p € S1(€) N [G(z)] is generically stable over A.

(i) Let H(x,Zz;y) be a formula over A, defining a family of groups H(G,c;g),qg €
G,c € G*, where k = |z|. Then there is some n < w such that for any ¢ € G¥,
(90,91,...) Ep|ac and iy < --- < iy, the following equality holds

<w

(i) Let H(x,y1,...,yx) be a formula over A, defining a family of groups
H(G hy,...,h), h1,...,h. € G. Then for every (go, g1,...) E p“)|a, there is some
n < w such that

mi1<...<ik H(G7 Girs - - 7gzk) = ﬂi1<--~<ik<n H(G, Giys- - 7glk> =
= ﬂi1<~--<z’k, i1,e0yig €S H(G, gy, 9i)

for any set S C w of cardinality n.

Proof. (i) Let m be such as in the definition of generic stability for p and H(x, z; y).
Fix any ¢ € G*. Now, H(z,y) will denote the formula H(z,c;y). Put H; = H(G, g;).
We will show that (,_, H; = (),<s,, Hi, which will complete the proof, due to the
indiscernibility over Ac of the set {g; : i <w}. Let H =, H;.

Notice that H = U,,,1<;<om(H N H;) for if it is not the case, then any a €
H\ U, ,11<;<om Hi contradicts the choice of m. Now, there is some j € [m + 1,2m)|
such that

) () (HnH)CH,.
M4 1<i<2m,ij
If not, pick some a; € (41 <icom.iz;(H N Hi)\H; for every j € [m +1,2m]. Then,
U102 - - - Qo € H\ U, 11 <;<0m Hi, & contradiction.
By (%) and the indiscernibility over Ac of the set {g; : i < w}, we get that

( (HnH)CH,

mA1<i<2m,i]

for all I > 2m. Thus, (,_,, Hi = ;<o Hi-



(ii) Put H;, ;. = H(G, iy, ...,9;,) for all 4y,..., 0. Fix any 43 < -+ < i) < w.
For every 1 < j < k, let n; be as in the conclusion of (i) for the following formula
Qb(l’, Yy - Yi—1,Yit1s - - - Yk yz) = H(L?le cee 7yk) Put n = ma’x<n17 s ,’I’Lk) and
I =1+ nk+ max(iy,...,0). Since {g; : i <w} is indiscernible over A, we have that
Givs 91, Git1, - - - is @ Morley sequence in p over A, g,,, ..., g;,. By the choice of n, we
conclude that H;, ; 2 ﬂjle[lﬂnfl] Hj, i, Repeating this argument k& times, we
get
H;, i 2 m Hj, -
J1Ell+n—1],j2€l4+n,l+2n—1],....jk €[l4+(k—1)n,l+kn—1]

Similarly, for j; € [[,l+n—1],jy € [[+n,l+2n—1],... ,jx € [+ (k—D)n,l+kn—1],

we have
Hjlvm:jk 2 ﬂ Hsl,...,sk-
51€[0,n—1],82€[n,2n—1],...,5,€[(k—1)n,kn—1]
Hence, H;, . ;. 2 ﬂj1<~~~<jk<lm H;j, . .. We conclude that
ﬂ H(Gagu)agzk): ﬂ H(Gvgip"'vgik)a
1< <l 11 < <ip<kn

which completes the proof, because the set {g; : i < w} is indiscernible over A. [

Lemma 2.2 Let G be a ()-definable group (by a formula G(x)) in € = T, where T
is an w-categorical theory. Assume that G < G is infinite, (-definable, and char-
acteristically simple in (G, €), i.e. il has no non-trivial, proper subgroup which is
invariant under conjugations by elements of G' and invariant under Aut(€). Suppose
p € S1(€)N[G(x)] is a type generically stable over O and such that (VA C G)(Va =
pa)(Vg € G)(a? |= pjas) (e.g. this holds when G = € is a pure group). Let (g;)i<. be
a Morley sequence in p over ). Assume that the intersection of the group-theoretic
definable closure of (g;)i<w with Gy is different from {e}. Then G is abelian.

Proof. By assumption, there exists a function f : G¥ — G (for some k) which is (-
definable in € in the language of pure groups and such that f(go, ..., gx-1) € G1\{e}.
Put H;, . = Co,(f(9iys---,9:,)) forall 4y,...,4, <w, and H = mi1<~~~<ik Hi -
From Lemma 2.1(ii), we have that there is some n < w such that for every S C w of
cardinality n,
H= N Hi,. iy
i1 <o it ooy iR €S

We will show that H is invariant under Aut(€). Take any h € Aut(€). Put
a; = h(g;), and choose a Morley sequence (b;);<,, in p over {a;,g; : i < w}. Notice
that the sequences (g; : i < w)™(b; 1 i <w) and (a; : i < w)"(b; : i < w) are Morley
sequences in p over (), and thus they are indiscernible as sets. Therefore,

H = mi1<---<ik<n CG1 (f(bln s 7blk)) = mi1<---<ik<w CGI (f(ailv e 7aik)) =
= ﬂ¢1<...<ik<w h[CG1 (f(gil’ s 7gik))] = h[H]7



and so H is invariant under Aut(€).
Next, we will show that H is normal in G. Take any g € G. We have

HY = ﬂi1<---<ik CGI (f(gin s 79%))9 = mil<---<ik CGI (f(gila e 7gik)g) =
= mz‘1<...<ik OG1 (f(gill, cee ’gfk))

(the last equality holds, because f is (-definable in the language {-}). Using the
assumptions about p, we see that (¢7);<., is a Morley sequence in p over ). As above,
it easily follows that H =, . _; Cc,(f(9],,---,9i)) = H?, so H is normal in G.

Now, we will show that H # {e}. It follows from the assumptions on G; that G;
is a characteristically simple group. Take a countable (M,-) < (Gy,-). Then M is
also a characteristically simple group, so, by Fact 0.1, M is either a p-group or it is
isomorphic to a group of the form B(F) or B~ (F).

If M is a p-group, then G is also a p-group, so ({f(gi,,---,9i,) 191 < -+ < i <
n}) is a finite p-group, hence it has non-trivial center. As Z({({f(gi,,---.6i,) : 1 <
- <1, <n})) C H, H is also non-trivial.

Now, consider the case when M is of the form B(F) (when M = B~(F), the
argument is similar). Take any y, in the Cantor set. It is easy to see that if finitely
many elements of B(F') have the same value at a point from the Cantor set, then the
intersection of their centralizers is non-trivial. By finite Ramsey theorem, there is a
number R < w such that for every fi,..., fr € B(F), thereexist 1 <y < -+ <1, <
R such that for all 1 < j; < --- < ji < n the value of the function f(fi; ..., fijk) at
Yo is the same. We conclude that M, and hence G, satisfies the following sentence

Vay,...,TR \/ m C(f(xiy,, -y xi;,)) # {e}.

1<i1 < <in <R 1<j1 < <jp<n

Thus, by the choice of n, H is non-trivial.

From these observations, and from the characteristic simplicity in (G, €) of Gj,
we conclude that H = Gy. Thus, Z(G1) # {e}. But Z(G;) is normal in G and
invariant under Aut(€), so Z(G1) = G1. Hence, GG is abelian. O

Now, we have all the tools in order to prove the main results of the paper.

Theorem 2.3 We work in a monster model € of an w-categorical theory. Let G be a
(-definable group having a global generic type p which is generically stable over () and
such that for every ()-definable, normal subgroup L of G, we have (VA C G/L)(Va |=
pa)(Vg € G)(a? |= pjas). Then G is solvable-by-finite.

Proof. We will show that G has a (-definable, solvable subgroup of finite index.
Of course, we can assume that G is infinite. The proof will be by induction on
the greatest natural number n for which there is a series {e} = Gy < Gy < -+ <
G, = G of (-definable (in €) normal subgroups of G (such a number exists by w-
categoricity). Notice that then Gj/Gi_; is characteristically simple in (G, €) for
every k € {1,...,n}.



If n =1, then by Lemma 2.2, G is abelian. We turn to the induction step, where
we assume that n > 1. By induction hypothesis, there is a ()-definable H < G such
that [G : H] < w and H/G is solvable (we leave to the reader checking that the
group G /G satistfies the hypothesis of the theorem; one should use here Proposition
1.2). So, in order to finish the proof, it is enough to show that G, is abelian.

Let (gi)i<w be a Morley sequence in p over (). There exist i < j < w such
that ¢;H = g;H. Then, [g;,9;] € H, 5o [gi,9i,] € H for all iy,is < w. Hence,
from the solvability of H/G;, we get that there is a minimal k¥ < w such that

0k(go, - -, gar_1) € G1, where the iterated commutator 9; is defined recursively as
follows:

do(ar) = ay,

514.1(@1, . ,a2l+1) = [5[(@17 . ,CLQl), 6l<a2l+1, e ,CLQH»I)].

Notice first that we can assume that & > 0. Indeed, if £ = 0, then p € S(€) N
|G1(z)], so G is abelian by Lemma 2.2.

Case 1. 6x(g0,---,9ok_1) = €.

Put K = ﬂi1<~--<i2k_1<w C(0k-1(giy, - - ,giQkfl)). As in the proof of Lemma 2.2, using
Lemma 2.1(ii), one can show that K is a (-invariant, normal subgroup of G. Let
us show now that Z(K) is non-trivial. By Lemma 2.1(ii), there is some m < w
for which K = ﬂi1<m<i2k71<m C(0k-1(giy,-- - ,gi2k_1)). Hence, by the assumption of
Case 1, we get that 0x_1(gm, - - -, Gmior-1-1) € K. On the other hand, it is clear that
K C C(0k—1(gm,- -+ Gmaor—1-1)). Thus, 0x_1(gm, - - - Gmeor-1_1) € Z(K), and, by
the choice of k, 0x—1(Gm, - - s Gmaor—1_1) F €.

Summarizing, Z(K) is a non-trivial, (-invariant, normal, abelian subgroup of G.
So, by induction hypothesis, G/Z(K) has a ()-definable, solvable subgroup of finite
index, hence so does G.

Case 2. 6x(go,---,gor_1) F# €.

If GGy is infinite, then by Lemma 2.2, we get that Gy is abelian, so H is solvable, and
we are done. So, we may assume that G is finite. Then, [G : C(G})] < w, and hence
[9i,, 9i,) € C(Gy) for every iy,is < w. Since k > 0, we see that dx(go,...,gor_1) €
G1 N C(Gy) = Z(Gy), and so Z(G1) is non-trivial. But, Z(G4) is a @-invariant,
normal subgroup of G contained in G;. Therefore, G; = Z(G4), i.e. G; is abelian,
and we are done. 0

The following corollary immediately follows from the last theorem.

Corollary 2.4 (i) We work in a monster model € of an w-categorical theory. Let
G be a (-definable group having a global generic type which is generically stable over
(). Assume that each inner automorphism of G is induced by an automorphism of €.
Then G is solvable-by-finite.

(i) Assume that G is an w-categorical, pure group possessing a global generic type
which is generically stable over (). Then G is solvable-by-finite.

Theorem 2.5 Fvery w-categorical, generically stable group is solvable-by-finite.
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Proof. By Corollary 2.4(ii), it is enough to reduce the situation to the case of a pure
group having a generic type which is generically stable over ().

Let G be an infinite, generically stable group, definable in a monster model €
of an w-categorical theory. Let p be a generically stable (global) generic type in G.
By Fact 1.4(iv), G% exists. Since G% is (-invariant, w-categoricity implies that it is
(-definable. Hence, [G : G”°] < w. By Fact 1.5, G has a unique generic type p/,
which is a translation of p, so it is also generically stable (by Proposition 1.2) and
witnesses fsg in G%. Let M < € be a small model in which p’ is finitely satisfiable.
Let ¢ € S(G") be a type naturally determined by p’ (we consider G with the
structure induced from €). It is easy to check that M N G < G, and that ¢ is
finitely satisfiable in M N G% and invariant under translations by the elements of
G® (by Fact 1.4(iv)). Put r = ¢|;. Then r witnesses fsg in (G%,-), and (G%,) is
absolutely connected (notice that we can choose € so that (G, -) is a monster model
of its theory). Hence, by Fact 1.5, r is a unique generic type in (G%,-). Thus, it is
(-invariant and also generically stable over (), because a Morley sequence in p’ over
() is also a Morley sequence in ¢ over ), which is a Morley sequence in 7 over () (and
there is only one Morley sequence up to the type). Hence, replacing G by (G, ),
we can assume that G is a pure group, G = G and G has a generic type which is
generically stable over (). 0

3 Remarks and questions about generic stability

We work in a monster model € of a theory T. In [4], among others, the following
properties of a global, A-invariant type p are considered:

(i) p is generically stable over A,
(ii) p is definable and finitely satisfiable in some small model containing A,

(iii) a Morley sequence in p over A is indiscernible over A as a set.

Under the NIP assumption, it is proved in [4] that all these properties are equiv-
alent. Moreover, the proofs of implications (i) = (éi) and (i) = (¢i¢) do not use the
NIP assumption, so these implications are true also without NIP. Below we give an
example showing that without NIP the implication (ii7) = (i) is not always true.
As to the implication (i7) = (i), we think it is also false in general, but we have not
found an appropriate example.

Example Let (€, R) be a monster model of the theory of random graphs. This
theory is complete, has quantifier elimination, and is even w-categorical. Let p be
the global type determined by the collection of formulas {R(z,a) Az # a:a € €}.
We see that p is (-invariant. Moreover, if (g; : i € w) is a Morley sequence in p over
(), then, since R is symmetric, R(g;, g;) holds for all pairwise distinct ¢, j < w, and so
(g; : 1 € w) is indiscernible as a set (because we have quantifier elimination). On the



other hand, if M < € is a small model, then the set of formulas {—~R(z,b) : b € M}
is consistent, and for a € € realizing all formulas from this set, the formula R(z,a)
belongs to p but has no realization in M. This shows that (iii) does not imply (ii).

Remark 3.1 Let G = € be an w-categorical group with fsg. Then there is a generic
type in G which is definable over O and finitely satisfiable in a small model M < G.

Proof. By w-categoricity, G is (-definable. From Fact 1.5, we get that in G%
there is a unique global generic type p. So, p is (-invariant, and, by w-categoricity,
it is (-definable. Moreover, by fsg, p is finitely satisfiable in a small model M < G. O

By this remark, we see that if GG is an w-categorical group with fsg, then it has a
(-invariant generic type satisfying property (ii).

Question 3.2 Is it true, that if G is an w-categorical group with fsg, then G has a
generically stable (over ) generic type?

If the answer is affirmative, then in Theorem 2.5 it is enough to assume that G
is w-categorical and has fsg.

We also ask the following question about generically stable types in arbitrary
theories.

Question 3.3 Is it true, that if a global type p is generically stable, then for every
n < w, the type p™ is also generically stable? (Recall that p™ = tp(gos - -+ s Gn-1/€),
where (g;)i<n 18 a Morley sequence in p.)

An affirmative answer would allow us to simplify the proofs of some results of
Section 2. For example, Lemma 2.1(ii) could be easily deduced from Lemma 2.1(i),
and in Lemma 2.2 we would get from the assumptions that tp(d/€) is generically
stable, which would slightly simplify the proof of this lemma.

Theorem 2.5 leads to the following question.

Question 3.4 What solvable-by-finite groups are w-categorical and generically sta-
ble?

The following conjecture strengthening Theorem 2.5 seems reasonable.
Conjecture 3.5 Fvery w-categorical, generically stable group is nilpotent-by-finite.

One could even conjecture that w-categorical, generically stable groups are abelian-
by-finite, but such a conjecture remains a difficult open problem even in the case of
stable groups.

We finish with a few questions about w-categorical rings. In [6], it was proved
that w-categorical rings with NIP are nilpotent-by-finite. One can ask what can
be said about w-categorical rings when the NIP assumption is replaced by the fsg
assumption for the additive group and/or by the assumption of the existence of an
additive generic type which is generically stable over (). For example, we have
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Question 3.6 Are w-categorical, generically stable rings nilpotent-by-finite?

The fact that w-categorical rings with NIP are nilpotent-by-finite was used in [6]

to show that w-categorical groups with NIP and fsg are nilpotent-by-finite. Do we
have something like that without the NIP assumption? More precisely, if the answer
to Question 3.6 is positive, does it help to prove Conjecture 3.5.
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