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ON ω-CATEGORICAL GROUPS AND RINGS WITH NIP

KRZYSZTOF KRUPIŃSKI

Abstract. We prove that ω-categorical rings with NIP are nilpotent-by-finite
and that ω-categorical groups with NIP and fsg are nilpotent-by-finite, too.

We give an easy proof that each infinite, ω-categorical p-group with NIP has

an infinite, definable abelian subgroup. Assuming additionally that the group
in question is characteristically simple and has a non-algebraic type which

is generically stable over ∅, we show that the group is abelian. Moreover,
we prove that in any group with at least one strongly regular type all non-

central elements are conjugated, and we conclude that assuming additionally

ω-categoricity, such a group must be abelian.

0. Introduction

Recall that a first order structure M in a countable language is said to be ω-
categorical if, up to isomorphism, Th(M) has at most one model of cardinality ℵ0.
By Ryll-Nardzewski’s theorem, this is equivalent to the condition that for every
natural number n there are only finitely many n-types over ∅. For a countable M
or for M being a monster model (i.e. a model which is κ-saturated and strongly
κ-homogeneous for a big cardinal κ), two finite tuples have the same type over ∅
iff they lie in the same orbit under the action of the automorphism group of M ,
and hence, in this case, ω-categoricity means that for each natural number n the
automorphism group of M has only finitely many orbits on n-tuples (which implies
that M is locally finite).

There is a long history of results describing the structure of ω-categorical groups
and rings. However, many questions in this area are still wide open. It follows
easily that each countable, ω-categorical group has a finite series of characteristic
(i.e. invariant under the automorphism group) subgroups in which all successive
quotients are characteristically simple groups (i.e. they do not have non-trivial,
proper characteristic subgroups). On the other hand, Wilson (see [23, 1]) proved

Fact 0.1. For each countably infinite, ω-categorical, characteristically simple group
H, one of the following holds.

(i) H is an elementary abelian p-group for some prime p.
(ii) H ∼= B(F ) or H ∼= B−1(F ) for some non-abelian, finite, simple group F ,

where B(F ) is the group of all continuous functions from the Cantor set
C to F , and B−(F ) is the subgroup of B(F ) consisting of the functions f
such that f(x0) = e for a fixed element x0 ∈ C.
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(iii) H is a perfect p-group (perfect means that H equals its commutator sub-
group).

Moreover, it is conjectured that (iii) is not realized.
As to ω-categorical rings in general, we know that their Jacobson radical is

nilpotent (see [3, Lemma 1.3] and [5]). However, there are examples of infinite,
ω-categorical rings which are semisimple (i.e. with trivial Jacobson radical) and so
not nilpotent-by-finite [3].

Interesting questions arise when one imposes additional model-theoretic restric-
tions (e.g. stability or simplicity) on our ω-categorical group or ring. In the super-
stable [or, more generally, supersimple] ω-categorical context, everything is clear:
superstable groups are abelian-by-finite [4, 19] and supersimple groups are (finite
central)-by-abelian-by-finite [7]; superstable rings are null-by-finite and supersimple
rings are (finite null)-by-null-by-finite [14]. In the stable [or, more generally, NSOP]
situation, we only know that ω-categorical groups are nilpotent-by-finite [4, 16] and
ω-categorical rings are nilpotent-by-finite [3, 13], too. It is an open question whether
ω-categorical stable groups are abelian-by-finite and whether ω-categorical stable
rings are null-by-finite.

Our motivating problem is to describe the structure of ω-categorical groups and
rings satisfying NIP (non independence property, see Definition 1.4). Structures
with NIP form a wide generalization of stable structures, covering o-minimal struc-
tures (e.g. the field of reals) and many other interesting examples (e.g. algebraically
closed valued fields). Several important papers concerning NIP have been written
in recent years, e.g. [9, 10, 20].

Reasonable conjectures on ω-categorical groups and rings in the NIP context
seem to be:

Conjecture 0.2. Each ω-categorical group with NIP is nilpotent-by-finite.

Conjecture 0.3. Each ω-categorical ring with NIP is nilpotent-by-finite.

In this paper, we prove Conjecture 0.3. As to Conjecture 0.2, we prove it under
the additional assumption that the group has fsg (finitely satisfiable generics, see
Definition 1.7). The fsg condition is an important notion which has been studied
in recent years, e.g. in [9, 10, 6]. Recall that both stable groups and a certain wide
class of groups definable in o-minimal structures have fsg and NIP.

One of the ingredients of our proof of Conjecture 0.2 is the result saying that
each ω-categorical, characteristically simple p-group with NIP and having a non-
algebraic, generically stable over ∅ type is abelian (so, under all these assumptions,
(iii) of Fact 0.1 cannot happen). There is a short discussion on generic stability
in Section 1. This notion (generalizing stability) has been also studied in recent
literature, e.g in [21, 10, 17].

Shelah proved in [20] that if a group, which is a monster model, has NIP and
an infinite abelian subgroup, then it has an infinite, definable, abelian subgroup.
Since ω-categorical groups are locally finite and each infinite, locally finite group has
an infinite abelian subgroup [14, Corollary 2.5]), one concludes that each infinite,
ω-categorical group with NIP has an infinite, definable, abelian subgroup. In the
paper, we give an easy and direct proof of this result for p-groups (where p is a
prime number). It is worth mentioning that Plotkin [18] found examples (so-called
extra special p-groups) of infinite, ω-categorical p-groups with no infinite, definable,
abelian subgroup.
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At the end of the paper, we prove that in any group with at least one strongly reg-
ular type (see Definition 1.10) all non-central elements are conjugated, and we con-
clude that ω-categorical groups with at least one strongly regular type are abelian.

I am grateful to Dugald Macpherson for interesting discussions and suggestions.

1. Preliminaries

Recall that we say that a group G is solvable-by-finite [nilpotent-by-finite or
abelian-by-finite] if it has a finite index (normal) subgroup which is solvable [nilpo-
tent or abelian, respectively]. It is standard (see e.g. [13, Remark 2.5]) that if G
is nilpotent-by-finite [abelian-by-finite], then it has a definable normal subgroup
of finite index which is nilpotent [abelian, respectively]. If G is solvable-by-finite,
it is not clear whether it has a definable, solvable subgroup of finite index (it has
such a subgroup if we additionally assume either icc on centralizers for all definable
quotients of definable subgroups [12, Remark 3.3] or ω-categoricity).

Recall some basic notions from ring theory. In this paper, rings are associative,
but they are not assumed to contain 1 or to be commutative. An element r of a
ring R is nilpotent of nilexponent n if rn = 0 and n is the smallest number with
this property. The ring is nil [of nilexponent n] if every element is nilpotent [of
nilexponent ≤ n and there is an element of nilexponent n]. The ring is nilpotent of
class n if r1 · · · rn = 0 for all r1, . . . , rn ∈ R and n is the smallest number with this
property. An element r is null if rR = Rr = {0}. The ring is null if all its elements
are.

We say that a ring R is nilpotent-by-finite [null-by-finite] if it has a finite index
ideal (equivalently subring by [15]) which is nilpotent [null, respectively]. By virtue
of [13, Remark 2.7], this ideal can be chosen definable.

The Jacobson radical of a ring R, denoted by J(R), is the collection of all
elements of R satisfying the formula ϕ(x) = ∀y∃z(yx + z + zyx = 0) (that is,
it is the set of all elements which generate quasi-regular left ideals.) Equivalently,
J(R) is the intersection of all the maximal regular left [or right] ideals, where a
left ideal I is said to be regular if there is a ∈ R such that x − xa ∈ I for all
x ∈ R (notice that for rings with 1 all ideals are regular). For any ring R, J(R) is
a two-sided ideal. The ring R is semisimple if J(R) = {0}. It is always the case
that R/J(R) is semisimple. For details on Jacobson radical see [8, Chapter 1].

Recall that a ring R is a subdirect product of rings Ri, i ∈ I, if there is a
monomorphism of R into

∏
i∈I Ri whose image projects onto each Ri. The following

is [3, Corollary 1].

Fact 1.1. If R is a semisimple, ω-categorical ring, then R is a subdirect product
of complete matrix rings over finite fields. Moreover, only finitely many different
matrix rings occur as subdirect factors.

By [3, Lemma 1.3] and [5] we have

Fact 1.2. If R is an ω-categorical ring, then J(R) is nilpotent.

So, in order to prove that an ω-categorical ring R satisfying some extra assump-
tions is nilpotent-by-finite, it is enough to show that the semisimple ring R/J(R)
is finite (here Fact 1.1 may be very helpful). We will use this approach in the proof
of Theorem 2.1.

We will also use [13, Theorem 3.15].
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Fact 1.3. Suppose G is a solvable, ω-categorical group such that each ring inter-
pretable in it is nilpotent-by-finite and each group H definable in it has a definable
connected component H0 (i.e. the smallest definable subgroup of finite index). Then
G is nilpotent-by-finite.

Now, we recall the relevant notions from model theory. Let T be a first order
theory. We work in a monster model C of T .

Definition 1.4. We say that T has the NIP if there is no formula ϕ(x, y) and
sequence (ai)i<ω such that for every w ⊆ ω there is bw such that |= ϕ(ai, bw) iff
i ∈ w.

The next fact is Theorem 1.0.5 of [22].

Fact 1.5. If G is a group defined in a theory with NIP, then for each ϕ there is
some N such that the intersection of any finite family of ϕ-definable subgroups of
G is an intersection of at most N members of the family.

Assume T has NIP and G is a group ∅-definable in C. Shelah proved that
then G00 (the smallest type-definable subgroup of bounded index) exists (see [9,
Theorem 6.1]). Assume aditionally that T is ω-categorical. Since G00 is ∅-invariant,
it is ∅-definable, and so it has finite index and it is the connected component of G.

Let p ∈ S(C) be invariant over A ⊂ C. We say that (ai)i∈ω is a Morley sequence
in p over A if an |= p|Aa<n for all n. It turns out that Morley sequences in p over
A are indiscernible over A and they have the same order type over A. If C′ � C is a
bigger monster model, then the generalized defining scheme of p determines a unique
A-invariant extension p̃ ∈ S(C′) of p (by the generalized defining scheme of p we
mean a family of sets {pϕi : i ∈ Iϕ} (with ϕ(x, y) ranging over all formulas without
parameters) of complete types over A such that ϕ(x, c) ∈ p iff c ∈

⋃
i∈Iϕ p

ϕ
i (C)).

By a Morley sequence in p we mean a Morley sequence in p̃ over C. Finally, p(k)

(where k ∈ ω ∪ {ω}) denotes the type over C of a Morley sequence in p of length k.
Recall that (correcting slightly the definition from [17]) a global type p ∈ S(C)

is said to be generically stable if, for some small A, it is A-invariant and for each
formula ϕ(x, y) there is a natural number nϕ such that for any Morley sequence
(ai : i < ω) in p over A and any b from C either at most nϕ ai’s satisfy ϕ(x, b) or
at most nϕ ai’s satisfy ¬ϕ(x, b). Equivalently, p is generically stable if, for some
small A, it is A-invariant and for each Morley sequence (ai : i < ω + ω) in p over
A and each formula ϕ(x) (with parameters from C) the set {i :|= ϕ(ai)} is either
finite or co-finite. In this definition, as a witness set A one can take any (small) set
over which p is invariant. We will say that p is generically stable over A to express
that p is invariant over A and generically stable. Assuming NIP, there are various
equivalent definitions of generic-stability (see [10, Proposition 3.2]). For us, one of
them will be particularly important.

Fact 1.6. Assume T has NIP, and p ∈ S(C) is A-invariant. Then, p is generically
stable iff every/some Morley sequence in p over A is an indiscernible set over A.

Now, we will briefly discuss fsg and generic stability. For more details on these
and related notions see [21, 9, 10].

Definition 1.7. Let G be a group definable in C by a formula G(x).
(i) G has fsg (finitely satisfiable generics) if there is a global type p containing G(x)
and a model M ≺ C, of cardinality less than the degree of saturation of C, such that
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for all g, gp is finitely satisfiable in M .
(ii) G is generically stable if G has fsg and some global generic type of G is generi-
cally stable (recall that a type p is generic if for any formula ϕ(x) ∈ p finitely many
left translates of ϕ(G) by elements of G cover G).

We say that a group definable in a non-saturated model has one of the above
properties if the group defined by the same formula in a monster model has it.

In general, generic stability of G is a strictly stronger notion than fsg, but it
is easy to check that these notions agree when G00 is definable and T has NIP.
Namely, if G has fsg and G00 is definable, then G00 also has fsg, and we can apply
[10, Proposition 6.5]. In the ω-categorical, NIP context, G00 is definable, and thus
we get

Remark 1.8. Assume G is a group definable in an ω-categorical structure with
NIP. Then, it has fsg iff it is generically stable.

We leave the next remark as an easy exercise.

Remark 1.9. If a group G definable in a model (of an arbitrary theory) has fsg,
then the pure group 〈G, ·〉 also has fsg.

Finally, we recall the notion of a strongly regular type from [17].

Definition 1.10. Let p(x) ∈ S(C) be non-algebraic. We say that p(x) is strongly
regular if, for some small A, it is A-invariant and for all B ⊇ A and a from the
sort of x either a |= p|B or p|B ` p|Ba.

The geometric meaning of this notion is explained in [17], which we briefly recall
now. Suppose p ∈ S1(C) is non-algebraic and invariant over ∅. For a subset C of
C we define clp(C) as {c ∈ C : c 6|= p|C}. Then, [17, Lemma 2] tells us that p is
strongly regular iff clp is a closure operator (i.e. clp(clp(C)) = clp(C) for all C ⊆ C).
Assuming additionally that a Morley sequence in p over ∅ is an indiscernible set,
we get that (C, clp) is a pregeometry.

2. ω-categorical rings with NIP

In this section, we prove Conjecture 0.3.

Theorem 2.1. Each ω-categorical ring with NIP is nilpotent-by-finite.

Proof. By Fact 1.2, everything boils down to showing that a semisimple, ω-categorical
ring R with NIP is finite. Suppose for a contradiction that R is infinite.

By ω-categoricity, the two-sided ideals RrR, r ∈ R, are uniformly definable
(because ω-categoricity implies that there is K such that every element of any RrR
is the sum of at most K elements of the form r1rr2 for r1, r2 ∈ R ∪ {1}). Thus, by
NIP and Fact 1.5, there is N ≥ 1 such that for all n ∈ ω and r0, . . . , rn ∈ R, there
are i1, . . . , iN ∈ {0, . . . , n} such that Rr0R ∩ · · · ∩RrnR = Rri1R ∩ · · · ∩RriNR.

Fact 1.1 tells us that R can be treated as a subring of the product
∏
i∈I Ri of

finite rings Ri with identity, which projects onto each Ri, and where there are only
finitely many pairwise distinct rings among the Ri’s, i ∈ I. Let πi be the projection
onto the ith coordinate. For i0, . . . , in ∈ I and rj ∈ Rij , we introduce the set

Rr0,...,rni0,...,in
=

r ∈ R :

n∧
j=0

πij (r) = rj

 .
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Using the assumption that R is infinite and Ri’s are finite, we see that for any
i0, . . . , in ∈ I,

(∗) R0,...,0
i0,...,in

is an infinite two-sided ideal of R.

Claim 1. There are pairwise distinct i0, i1, · · · ∈ I, non-nilpotent elements rj ∈
Rij , and elements ηj ∈ R such that for all n ∈ ω,

ηn ∈ R0,...,0,rn
i0,...,in

.

Proof of Claim 1. Suppose i0, . . . , in, r0, . . . , rn and η0, . . . , ηn have been chosen.
Since R is semisimple, it has no non-trivial nil left [or right or two-sided] ideals [8,

Lemma 1.2.2]. Thus, by (∗), R0,...,0
i0,...,in

contains a non-nilpotent element ηn+1. As
there are only finitely many different Ri’s and they are all finite, we can find in+1

different from i0, . . . , in such that rn+1 := πin+1(ηn+1) ∈ Rin+1 is non-nilpotent. �

Claim 2. There are natural numbers n(0) < · · · < n(N) such that the sets

R
rn(0),0,...,0

in(0),...,in(N)
, R

0,rn(1),0,...,0

in(0),...,in(N)
, . . . , R

0,...,0,rn(N)

in(0),...,in(N)

are non-empty.

Before proving Claim 2, let us notice that it leads to a contradiction. Choose

a0, . . . , aN from R
rn(0),0,...,0

in(0),...,in(N)
, . . . , R

0,...,0,rn(N)

in(0),...,in(N)
, respectively. Put bk =

∑
l 6=k al for

k = 0, . . . , N . Then,

(∗∗) πin(j)
[Rb0R ∩ · · · ∩RbNR] = {0} for j = 0, . . . , N.

On the other hand,
∏
k 6=j bk ∈

⋂
k 6=j RbkR for j = 0, . . . , N . We also have that

πin(j)
[
∏
k 6=j bk] = rNn(j) 6= 0 as rn(j) is non-nilpotent. So,

(∗ ∗ ∗) πin(j)
[
⋂
k 6=j

RbkR] 6= {0} for j = 0, . . . , N.

By (∗∗) and (∗ ∗ ∗), Rb0R ∩ · · · ∩RbNR 6=
⋂
k 6=j RbkR for all j = 0, . . . , N . This is

a contradiction with the choice of N .

Proof of Claim 2. Let c = maxi∈I |Ri|. Define recursively:

LN = c+ 1,
LN−k = cLN+···+LN−k+1+1 + 1 for k = 1, . . . , N − 1.

Put L0 = 0.
We will find

n(0) ∈ I0 := [L0, L0 + L1 − 1],
n(1) ∈ I1 := [L0 + L1, L0 + L1 + L2 − 1],
...
n(N − 1) ∈ IN−1 := [L0 + · · ·+ LN−1, L0 + · · ·+ LN − 1],
n(N) = L0 + · · ·+ LN

satisfying our demands. The essential of the definition of Li’s is the fact that the
length of the interval IN−1 is big enough, the length of the interval IN−2 is big
enough in comparison with the length of IN−1, the length of IN−3 is big enough in
comparison with the length of IN−2 ∪ IN−1, and so on.
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Consider any k ∈ {0, . . . , N − 1}. Suppose each natural number α from the
closed interval IN−k−1 = [L0 + · · ·+ LN−k−1, L0 + · · ·+ LN−k − 1] has color(

πiL0+···+LN−k
(ηα), . . . , πiL0+···+LN

(ηα)
)
∈

L0+···+LN∏
j=L0+···+LN−k

Rij .

In this way, the natural numbers from the interval IN−k−1 have been colored
with at most cLN+···+LN−k+1+1 = LN−k − 1 colors (this formula also works for
k = 0, where we obviously have at most c = LN − 1 colors). Since there are LN−k
such numbers, we can find two natural numbers n(N −k− 1) < n′(N −k− 1) from
the interval IN−k−1 with the same color. Put aN−k−1 = ηn(N−k−1) − ηn′(N−k−1).
Then:

• Since n(N − k − 1) and n′(N − k − 1) have the same color, we get that
πij (aN−k−1) = πij (ηn(N−k−1))−πij (ηn′(N−k−1)) = 0 for all j ∈ [L0 + · · ·+
LN−k, L0 + · · ·+ LN ].
• By the choice of ηn’s and the fact that n′(N−k−1) > n(N−k−1) ≥ L0 +
· · · + LN−k−1, we get πij (aN−k−1) = πij (ηn(N−k−1)) − πij (ηn′(N−k−1)) =
0− 0 = 0 for all j ∈ [L0, L0 + · · ·+ LN−k−1 − 1].
• By the choice of ηn’s and the fact that n(N−k−1) < n′(N−k−1), we get
πin(N−k−1)

(aN−k−1) = πin(N−k−1)
(ηn(N−k−1)) − πin(N−k−1)

(ηn′(N−k−1)) =
rn(N−k−1) − 0 = rn(N−k−1).

Putting additionally n(N) = L0 + · · ·+ LN and aN = ηn(N), we get:

a0 ∈ R
rn(0),0,...,0

in(0),...,in(N)
, a1 ∈ R

0,rn(1),0,...,0

in(0),...,in(N)
, . . . , aN ∈ R

0,...,0,rn(N)

in(0),...,in(N)
.

So, the sequence n(0) < · · · < n(N) satsfies the conclusion of Claim 2. �

In this way, the proof of Theorem 2.1 has been completed. �

3. ω-categorical groups with NIP

In this section, we investigate the structure of ω-categorical groups with NIP.
First, we make some observations on characteristically simple groups in this context.
Then, we prove Conjecture 0.2 under the additional assumptions of fsg. Finally, we
show a variant of Conjecture 0.2 in which the NIP assumption is replaced by the
existence of a strongly regular type.

As was mentioned in the introduction, each ω-categorical group is locally finite,
and so, if it is infinite, it has an infinite, abelian subgroup [14, Corollary 2.5].
Together with [20, Claim 4.3] this shows that an infinite, ω-categorical group with
NIP has an infinite, definable, abelian subgroup. We begin this section with a direct
(avoiding [14, Corollary 2.5] and [20, Claim 4.3]) proof of this result for p-groups.

Proposition 3.1. Let p be a prime number. Then every infinite, ω-categorical
p-group G with NIP has an infinite, definable, abelian subgroup.

Proof. By NIP and ω-categoricity, G has a definable connected component. Replac-
ing G by its component, we can assume that G is connected. If Z(G) is infinite,
we are done. Assume Z(G) is finite. Then, G/Z(G) is centerless, and we claim
that it is enough to prove the proposition for G/Z(G). Indeed, if A is a definable
subgroup of G containing Z(G) and such that A/Z(G) is infinite and abelian, then
the centralizer of every element of A has finite index in A, and so the connected
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component of A is an infinite, definable, abelian subgroup of G. Thus, we have
reduced the situation to the case when G is centerless.

For any x0, . . . , xn ∈ G, 〈x0, . . . , xn〉 is a finite p-group, and so C(x0) ∩ · · · ∩
C(xn) 6= {e}. Hence, if there were x0, . . . , xn ∈ G with C(x0) ∩ · · · ∩ C(xn) finite,
we would find xn+1, . . . , xm ∈ G such that Z(G) = C(x0) ∩ · · · ∩ C(xm) 6= {e}, a
contradiction. So, we have proved the following

Claim. For any n ∈ ω and x0, . . . , xn ∈ G, the intersection C(x0) ∩ · · · ∩ C(xn) is
infinite.

By the Claim, we can choose a sequence (xn)n∈ω of pairwise distinct elements
of G such that xn+1 ∈ C(x0) ∩ · · · ∩ C(xn) for all n ∈ ω. Put Gn = C(x0) ∩
· · · ∩ C(xn). Then, x0, . . . , xn ∈ Z(Gn). Hence, |Z(Gn)| > n. On the other
hand, by NIP and Fact 1.5, there is N such that for any y0, . . . , yn ∈ G, there
are i1, . . . , iN ∈ {0, . . . , n} with C(y0) ∩ · · · ∩C(yn) = C(yi1) ∩ · · · ∩C(yiN ). Thus,
Gn = C(xin1 )∩· · ·∩C(xinN ) for some in1 , . . . , i

n
N ∈ {0, . . . , n}. Since by ω-categoricity

the set {tp(xin1 , . . . , xinN ) : n ∈ ω} is finite, there is n ∈ ω such that Z(Gn) is
infinite. �

The next proposition uses notation from Fact 0.1.

Proposition 3.2. For any non-abelian, finite, simple group F , neither B(F ) nor
B−(F ) have NIP.

Proof. Let C0, C1, . . . be disjoint clopen subsets of the Cantor set C not containing
x0. Choose g ∈ F \ Z(F ). Define a sequence (fi)i∈ω of elements of B−(F ) by:

fi(η) =

{
g if η ∈ Ci,
e if η /∈ Ci.

Now, suppose for a contradiction that B(F ) has NIP (the case when B−(F ) has
NIP is almost the same). Using NIP and Fact 1.5, and reordering Ci’s if necessary,
we can findN such that CB(F )(f0)∩· · ·∩CB(F )(fN ) = CB(F )(f0)∩· · ·∩CB(F )(fN−1).

Take h ∈ F \ C(g) and define f ∈ B−(F ) by:

f(η) =

{
h if η ∈ CN ,
e if η /∈ CN .

Then, we see that f ∈ CB(F )(f0)∩· · ·∩CB(F )(fN−1)\CB(F )(f0)∩· · ·∩CB(F )(fN ),
a contradiction. �

Proposition 3.3. Let p be a prime number. Let M be an ω-categorical struc-
ture with NIP. Assume G is an infinite p-group which is ∅-definable in M and
characteristically simple in M (i.e. G does not have non-trivial, proper subgroups
invariant under Aut(M)). Suppose that G has a global generically stable over ∅
type q different from the type of the neutral element. Then G is abelian.

In particular, if G is an infinite (pure), characteristically simple, ω-categorical
p-group with NIP possessing a global type q which is generically stable over ∅ and
which is not the type of the neutral element, then G is abelian.

Proof. Wlog M = C is a monster model (use the fact that in the monster model of
an ω-categorical theory invariant means ∅-definable).

Let (ai)i∈ω be a Morley sequence in q over ∅. By NIP and Fact 1.5, there is
N such that for any m, C(a0) ∩ · · · ∩ C(am) = C(ai1) ∩ · · · ∩ C(aiN ) for some
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i1, . . . , iN ∈ {0, . . . ,m}. But, using Fact 1.6, (ai)i∈ω is an indiscernible set over
∅. This implies that for any m ≥ N − 1 and 0 ≤ i1 < · · · < iN ≤ m, one has
C(a0) ∩ · · · ∩ C(am) = C(ai1) ∩ · · · ∩ C(aiN ).

Consider any (b0, b1, . . . ) |= q(ω)|∅. Let (ci)i∈ω be a Morley sequence in q over
a<ω

, b<ω. Then, the sequences (ai : i ∈ ω)_(ci : i ∈ ω) and (bi : i ∈ ω)_(ci : i ∈ ω)
are indiscernible over ∅. Thus, by the last paragraph,

⋂
i∈ω C(ai) = C(c0) ∩ · · · ∩

C(cN−1) =
⋂
i∈ω C(bi). But, 〈c0, . . . , cN−1〉 6= {e} is a finite p-group, which implies

that C(c0) ∩ · · · ∩ C(cN−1) 6= {e}. We conclude that
⋂
i∈ω C(ai) is a non-trivial,

∅-invariant in C (so ∅-definable in C) subgroup of G. Since G was characteristically
simple in C, we get

⋂
i∈ω C(ai) = G, which implies that Z(G) 6= {e}, and so

G = Z(G) once again by the characteristic simplicity of G. �

Now, we are ready to prove Conjecture 0.2 under the fsg assumption.

Theorem 3.4. Each ω-categorical group G with NIP and fsg is nilpotent-by-finite.

Proof. We can assume that G is an infinite, pure group which is a monster model.
(In the ω-categorical context, one usually considers pure groups, but here, even
if we consider non-pure groups, Remark 1.9 allows us to replace the group by its
reduct to the pure group structure.)

By NIP and ω-categoricity, G00 is ∅-definable, so it has fsg. Thus, using Remark
1.9, we can assume that G = G00. Then, G has a unique global generic type q [6,
Proposition 0.26], which must be ∅-invariant. So, by Remark 1.8, q is generically
stable over ∅, and it is also non-algebraic as a generic type of an infinite group.

By ω-categoricty, there is a series {e} = G0 � G1 � · · · � Gn = G of ∅-definable
subgroups of G of maximal possible (finite) length n+1. Since inner automorphisms
belong to Aut(G), this series is normal; in particular, G1 � G. Moreover, G1 is
characteristically simple in G, which implies that G1 is a characteristically simple
group. The proof of the theorem will be by induction on n.

Consider the case n = 1. Then, G = G1 is an infinite, characteristically sim-
ple group. Proposition 3.2 eliminates the possibility that a countable elementary
substructure of G is as in point (ii) of Fact 0.1. Proposition 3.3 together with our
previous observation that q is generically stable over ∅ and non-algebraic eliminate
the possibility from point (iii) of Fact 0.1. Thus, G must be abelian.

We turn to the induction step, where we assume that n ≥ 2.

Claim. If H is a non-trivial, ∅-definable subgroup of G, then G/H is nilpotent.

Proof of Claim. As G/H has fsg as a group interpretable in G, by Remark 1.9 and
similar exercises, we conclude that the pure group G/H also has fsg, NIP and it is
ω-categorical and connected. Moreover, we easily see that the maximal length of a
sequence associated with G/H is less than n+ 1 (for this notice that the preimage
of a ∅-definable in the pure group G/H subgroup of G/H is a ∅-definable subgroup
of G). Thus, by the induction hypothesis, G/H is nilpotent-by-finite. So, it is
nilpotent, because the Fitting subgroup of G/H is a nilpotent subgroup of finite
index which is ∅-definable in G and so equal to G/H by the connectedness of G. �

By the Claim, if Z(G) is non-trivial, then G/Z(G) is nilpotent, and so G is
nilpotent. Thus, from now on we assume that Z(G) = {e}.

Once again by the Claim, G/G1 is nilpotent. Let (gi)i∈ω be a Morley sequence
in q over ∅. Since G/G1 is nilpotent, there is a minimal k such that the iterated
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commutator [gk−1, [gk−2, . . . , [g1, g0] . . . ]] ∈ G1. Since g0 is generic over ∅ and G/G1

is infinite, we see that k ≥ 2. Define

hi = [gik+k−1, [gik+k−2, . . . , [gik+1, gik] . . . ]]

for i ∈ ω. Let (g′i)i∈ω be a Morley sequence in q over G. Put

h′i = [g′ik+k−1, [g
′
ik+k−2, . . . , [g

′
ik+1, g

′
ik] . . . ]]

for i ∈ ω. Since tp(g′0, . . . , g
′
k−1/G) = q(k) is invariant over ∅, the type r := tp(h′0/G)

is also invariant over ∅. Moreover, (hi)i∈ω is a Morley sequence in r over ∅. By the
generic stability of q and Fact 1.6, the sequence (gi)i∈ω is an indiscernible set, and
so (hi)i∈ω is an indiscernible set as well. We conclude that r is generically stable
over ∅.

We claim that r is not the type of the neutral element. Otherwise h0 = e. Then,
gk−1 ∈ C(h), where h = [gk−2, . . . , [g1, g0] . . . ] 6= e (from the minimality of k). Since
gk−1 is generic over h, we conclude that [G : C(h)] < ω. But G is connected, so
h ∈ Z(G), a contradiction. Notice also that since G is connected and Z(G) = {e},
G1 is infinite.

Summarizing, G1 is an infinite, ∅ definable subgroup of G which is characteristi-
cally simple in G, and r is a global type of G1 which is generically stable over ∅ and
which is not the type of the neutral element. So, by Proposition 3.3 together with
Proposition 3.2 and Fact 0.1, G1 is abelian. Hence, G is solvable. By Theorem 2.1
and Fact 1.3, we conclude that G is nilpotent-by-finite. �

Dugald Macpherson told me an alternative ending of the above proof, i.e. an al-
ternative proof of the fact that a solvable, ω-categorical group with NIP is nilpotent-
by-finite. Namely, by [2], we know that each countable, solvable, ω-categorical
group which is not nilpotent-by-finite interprets the countable, atomless Boolean
algebra. So, it remains to show that this algebra does not have NIP, which is an
easy exercise.

Remark 3.5. If in Proposition 3.3 one was able to drop the assumption about the
existence of a generically stable type q, then Conjecture 0.2 would be proved in its
full generality.

Proof. This follows easily by induction on the maximal possible length of a series
{e} = G0 � G1 � · · · � Gn = G consisting of ∅-definable subgroups of G. �

Now, we will drop the NIP and fsg assumption, and instead we will assume the
existence of a strongly regular type. Recall the following question from [17].

Question 3.6. Suppose G is a group with at least one strongly regular type. Does
it imply that G is abelian?

Proposition 3.7. If G is any group with at least one strongly regular type, then
all non-central elements of G are conjugated.

Proof. Taking an elementary extension of G, we can assume that there is a global
type p whose strong regularity is witnessed over G. Consider any non-central ele-
ment a ∈ G. Take b |= p|G.

Notice that if ab |= p|G, then the formula defining the conjugacy class of a
belongs to p|G. Thus, all elements a ∈ G for which ab |= p|G are in one conjugacy
class. So, it remains to show that the assumption ab 6|= p|G leads to contradiction.
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This assumption and the strong regularity of p over G imply that tp(b/G) `
tp(b/ab, G). Thus, there is a formula ϕ(x, y) (without parameters) and g ∈ Gn

such that b |= ϕ(x, g) and |= (ϕ(x, g) → ax = ab). So, there is c ∈ G such that
ac = ab, and hence b ∈ C(a)c. This means that p|G ` ‘x ∈ C(a)c’.

Consider two distinct realizations g1 and g2 of p|G (they exist because p is non-
algebraic).
Case 1 c ∈ C(a).
Then, p|G ` ‘x ∈ C(a)’, so g1 ∈ C(a). Take h /∈ C(a). Then, hg1 /∈ C(a). Thus, by
the strong regularity of p over G, we conclude that tp(g1/G, h, hg1) = p|G, h, hg1 =
tp(g2/G, h, hg1). But, the formula x = h−1hg1 belongs to tp(g1/G, h, hg1) and does
not belong to tp(g2/G, h, hg1), a contradiction.
Case 2 c /∈ C(a).
Since g1 ∈ C(a)c, we have g1c

−1 ∈ C(a), and so g1c
−1 /∈ C(a)c. Hence, by

the strong regularity of p, we get tp(g1/G, g1c
−1) = p|G, g1c

−1 = tp(g2/G, g1c
−1).

But, the formula x = g1c
−1c belongs to tp(g1/G, g1c

−1) and does not belong to
tp(g2/G, g1c

−1), a contradiction. �

Corollary 3.8. If G is a group with at least one strongly regular type, then all
non-central elements of G have infinite order. In particular, an ω-categorical group
with at least one strongly regular type is abelian.

Proof. This is a standard argument. We can assume that G 6= Z(G). Suppose
for a contradiction that there is a non-central element of finite order. By the
last proposition, G/Z(G) has one non-trivial conjugacy class. So, all non-trivial
elements of G/Z(G) have the same order, which must be a prime number p. If
p = 2, then G/Z(G) is abelian, so [G : Z(G)] ≤ 2, which implies G = Z(G), a
contradiction. Now, we assume that p is odd. Take a non-trivial g ∈ G/Z(G).
Then, there is h ∈ G/Z(G) such that h−1gh = g−1. So, g ∈ C(h2) \ C(h). Finally
we get

C(h) ( C(h2) ( · · · ( C(h2p−2

) ( C(h2p−1

) = C(h),

which is impossible. �
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