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1 Introduction

The main aim of this thesis is to study convergence rate to stationarity of selected Markov chains. Some
stress we put on the property of stochastic monotonicity introduced by Daley in [12]. Expressing speed of
convergence depends on how we measure the distance. The measures we use are total variation distance,
separation distance and L2(π) distance. If we write about some distance at time instant t (either real or
discrete), we always mean the distance between the distribution of the chain at time t and its stationary
distribution.

Many authors faced such problems. For example, Fisz [21] using matrix analysis showed geometric rate
of convergence in total variation distance for finite state space assuming only that transition matrix P

is regular. Feller [19] and Kingman [29] used another approach: they incorporated renewal equations
to Markov chains and using some facts from the number theory he showed when ergodicity holds.
The classical theorem of Perron and Frobenius (which can be found for example in Seneta [43]) can
be used to show that for finite state spaces, geometric rate of convergence holds (see e.g. Cinlar [9]).
Having second-largest eigenvalue one can have upper bound for total variation distance. However,
calculating eigenvalues, even in quite simple cases, is rather difficult. For reversible Markov chains there
are established ways to bound it, for example the techniques using Cheeger’s or Poincare’s constants.
We give an example of calculating Poincare’s constant for symmetric random walk on the cube and both
constants for random walk on Zn. This technique was investigated by many authors, see for example
Diaconis and Stroock [16], Chen and Wang [7], Fulman and Wilmer [22], Chung [8]. However, till 1991
most of the research on random walks has concerned only reversible Markov chains. In 1991, Fill [20]
showed that one can use symmetrization: multiply matrix of original (potentially non-reversible) process

X and matrix of time-reversed process X̃. That way one obtains a matrix of some new reversible process
which is useful to bound total variation distance in original X. We give details of proofs in this thesis.

The coupling method is well known and widely used method in examining the rate of convergence
in Markov chains. The idea is to construct a joint process {(Xn, Yn), n ≥ 0} such that marginally
{Xn, n ≥ 0} is a Markov chain with given matrix P and arbitrary initial distribution µ, and {Yn, n ≥ 0}
is also a Markov chain with the same matrix P but with initial distribution π being its stationary
distribution. Then observe the chains till the first time they meet (this is random variable T called
coupling time). By estimating the tail of coupling times, one is able to bound the total variation
distance for convergence. Classical references for coupling are for example Lindvall [34], Liggett [32] and
Thorisson [46].

Strong Stationary Times give a probabilistic approach to bounding the rate of convergence to stationarity
for Markov chains. They were introduced by Aldous and Diaconis in [2], were they gave sharp bounds
in examples which were not amenable to other techniques such as spectral analysis or coupling. The
same authors in [3] develop this technique, showing for example that Minimal Strong Stationary Time
do always exists for ergodic Markov chains. Other references on Strong Stationary Times are: book of
Diaconis [13], thesis by I. Pak [37], Saloff-Coste [40] and Diaconis and Bayer [14]. Diaconis and Fill in
[15] show that there always exists a dual chain, in which first hitting time to some absorbing state is
equal, in distribution, to Strong Stationary Time in the original chain. We give detailed proofs of most
important theorems, some known examples to illustrate the method and use it to show that 2n logn+cn
steps are enough to make the total variation distance in example of “matching in graph” smaller then
1/c2, where 2n is the number of vertices and c a positive constant.

We study also factorization of first passage times distributions in presence of some monotonicity prop-
erties in Markov chains. Under some assumptions the first passage time from initial distribution µ to
a selected state ẽ has the same distribution as the sum of two independent random variables: Yẽ (with

distribution function P (Yẽ ≤ n) = µPn(ẽ)
ẽ

) plus the first passage time from stationary distribution to
ẽ. Such factorization leads to explicit formulas for Minimal Strong Stationary Time and for separation
distance. We give some special cases for such factorizations. One of them is when the time-reversed
process is stochastically monotone. Such monotonicity was studied for example by Keilson and Kester
[28], Aldous [1] and Tweedie and Roberts [47]. We exploit this property in two examples: non-symmetric
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random walk on d−dimensional cube and in the closed tandem with 3 servers and N customers. While
studying a preprint of Brown [5] we found a false statement. The conditions on the parameters of the
random walk given by Brown do not guarantee stochastic monotonicity. We elaborate this topic and
give conditions for stochastic monotonicity and conditions to have factorizations. For random walk on
the cube we also indicate the following phenomenon: in discrete time we need some (quite sophisticated)
conditions on parameters in order to have described factorizations, whereas in continuous time we always
have them (assuming just things which guarantee irreducibility and ergodicity).
It is also worth noting, that some monotonicity properties in Markov chain play important role in
“coupling from the past“, the algorithm which returns unbiased sample from distribution being stationary
distribution of given chain, for details see Propp and Wilson [38], Häggström [23].

In more complicated systems, especially for chains with infinite state space, like queueing networks, it is
difficult to estimate exact convergence rate in general. It is desirable to know if there exists geometric
rate of convergence under some natural assumptions. Fayolle, Malyshev, Menshikov, Sidorenko [18]
showed (using Foster-Lyapunov criteria) that there exists geometric rate of convergence in total variation
distance in Jackson networks, provided the service intensities µi(·) = µi are constant, i.e. they do not
depend on the number of customers waiting to be served and that mean service time is shorter then
mean time of waiting for new customer. In the same year, Hordijk and Spieksma [24] showed similar
result also obtaining geometric rate of convergence, but measured in a different distance.
The unreliable Jackson network is the network where some nodes can be broken or repaired. The
breakdowns and repairs events are of rather general structure. In case when nodes are broken, there are
several rules what can be done. Most often routing matrix is changed. For full details of such networks
see Sauer and Daduna [42], and Sauer [41]. In the latter also a rich historical overview of such networks
can be found. Sauer in her thesis [41] showed (using techniques of Malyshev et al.) that in case of
constant service rates µi(·) = µi and without rerouting (i.e. customers are allowed to join the queue at
broken server, where it waits till repair, the stationary distribution is not known in this case) there is
geometric rate of convergence in total variation distance under some conditions.
Stationary distribution of Jackson network has one nice property: it is of product form. Sauer and
Daduna [42] showed that the same property has stationary distribution of unreliable Jackson network.
Product form of stationary distribution is the crucial property used in proof of our main result on the
existence of spectral gap for general networks.
The only article about spectral gap for Jackson networks with non-constant service rates µi(·), as far as
we know, is McDonald and Iscoe [36]. They show, working on a different problem, that if a stationary
distribution is a product of light-tailed distributions, then the spectral gap exists.
In this thesis we present the stronger, “if and only if”, result which holds in both standard and unreliable
Jackson networks: spectral gap exists if and only if stationary distribution is a product of light-tailed
distributions, i.e. there is surely no spectral gap when at least one of these distributions is heavy-tailed
and surely there is spectral gap when all of them are light-tailed. It is worth noting that in general it does
not need to be the case: there are processes with positive spectral gap, although stationary distribution
is heavy-tailed. Our proof differs from the one of McDonald and Iscoe, for comparison we also include
their proof.

All facts taken from literature have bibliographic citations.

In section 3 we prove Theorem 3.1.4, which is a known fact from the number theory, but we did not
succeed in finding a complete proof of it. Theorem 3.4.1 is a reformulated result of Fisz [21], where in our
proof we stressed the role of total variation distance. We introduce Lemma 3.8.5 (for reversible chains
and 3.9.3 for non-reversible), where we give necessary number of steps needed to make total variation
distance arbitrary small, given we have Poincare’s or Cheeger’s constant calculated. In subsection 3.8.1
we calculate Poincare’s bound for symmetric random walk on d-dimensional cube. In subsection 3.9.2
(clockwise random walk on Zn, example of Fill [20]) we give full details in calculating Poincare’s and
Cheeger’s constant and we compare them. Subsection 3.11 is fully taken from paper of the author of
this thesis et al. [17], where classical methods to study speed of convergence in an applied model are
used.

Section 4 is a reformulation and recompilation of papers by Aldous and Diaconis [2], [3], Diaconis and Fill
[15] and thesis of Pak [37]. The proof of Lemma 4.1.5 is given with full details. Besides known examples,
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where Strong Stationary Time was used to find the mixing time, we give new example “matching in
graph” is subsection 4.6.

In section 5 we give some factorization of passage time distributions and exact formulas for separation
distance. It is based on a preprint by Brown [5], but we introduce notion of ratio minimality and utilize it
in statements. Proofs of Lemma 5.1.3 and 5.3.3 are completely different then the ones of Brown. Brown
proved everything in continuous time. In Lemma 5.1.13 we show that positive spectrum of transition
matrix implies (by Lemma 5.1.5) some factorizations, and in Lemma 5.1.14 we show that if we observe
only every second step of a reversible Markov chain, then we always have some factorizations.
In subsection 5.4 we investigate example of Brown “non-symmetric random walk on d-dimensional cube”
and indicate that he was wrong in his preprint [5], where his conditions did not imply stochastic mono-
tonicity. We introduce another partial ordering and give sufficient conditions in Theorem 5.4.2. We
also discover a phenomena in non-symmetric random walk on cube: the difference in behaviour between
continuous and discrete time. In discrete time we have to have some conditions on parameters in order
to have ratio minimality (we give an example which did not fulfill these conditions and in which there is
no ratio minimality), whereas these conditions are not needed in continuous time, as stated in Theorem
5.4.5.
In subsection 5.5 we give one more example illustrating tools introduced in section 5. We investigate
closed tandem of 3 servers and N customers and we introduce partial ordering of state space and show
that time-reversed process is stochastically monotone what implies ratio minimality and thus exact
formula for separation distance.

Further results of the thesis are in section 6. Under some natural assumptions, we show that spectral
gap exists (and thus we have geometric rate of convergence) in Jackson network if and only if each of
marginal distributions is light-tailed. This is done for both: standard (Theorem 6.5.2) and unreliable
(Theorem 6.5.6) Jackson networks. The idea of proof is to take process which is a product of independent
birth and death processes. This process has the same stationary distribution as original network process,
and it is easier to show that spectral gap for this process exists if and only if stationary distributions
of birth and death processes are light-tailed. The main part of proof is to conclude that if spectral gap
for this process is equal to zero, then the same holds for original process, and that existence of spectral
gap for this process implies existence of spectral gap for original process. This is done by comparing
Cheeger’s constants of both processes, and can be done due to the fact, that stationary distribution is
of product form.
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2 Markov chain definitions and notation, discrete time

2.1 Notation

For a Markov chain X = {Xn, n ≥ 0} with a state space E, by π we denote the stationary measure,
and by, µ we denote initial measure on E. We assume E is finite or enumerable and its elements will be
denoted E = {e1, e2, . . .}, and in the case when we have linear ordering: E = {1, 2, . . .}.
We use the following notation:

δeP
n(B) = Pe(Xn ∈ B) = P (Xn ∈ B|X0 = e) − Probability of hitting B at, time n starting from

X0 = e (δe denotes atom at e)

τe(B) = inf{n : Xn ∈ B,X0 = e} − First passage time to B starting from X0 = e

τµ(B) =
∫
E
τe(B)dµ(e) − First passage time to B starting with X0 ∼ µ

µPn(B) = Pµ(Xn ∈ B) − Probability of hitting B at time n starting with
X0 ∼ µ

If set B will be one state set, i.e. B = {e}, it will be shortly written B := e.

We denote the Laplace transform of discrete, real-valued random variable Y by

ψY (s) =

∞∑

n=−∞
e−snP (Y = n).

We assume that the state space E will be partially ordered with an ordering ≺. Set A is an upper
(denoted by A ↑), if x ∈ A and x ≺ y implies y ∈ A. Similarly set B is a lower set ( B ↓), if x ∈ B and
y ≺ x implies y ∈ B.

Function h : E → R is increasing relative to ≺ if x ≺ y ⇒ h(x) ≤ h(y).

We define stochastic ordering by:

µ ≺st ν ⇐⇒ ∀(A ↑) µ(A) ≤ ν(A)
(
≡ ∀(f increasing

∫
fdµ ≤

∫
fdν

)
. (2.1)

Define transition matrix P with elements being probabilities of getting from one state to another. We
will shortly write P(i, j) := P(ei, ej) = P (Xn+1 = ej |Xn = ei). If E = {1, 2, . . . , } then we will use
pij := P(i, j).
The distribution of the chain, which started with initial distribution µ, at k−th step will be denoted by
µPk(·).
Markov chain {Xn, n ≥ 0} with transition matrix P is stochastically monotone if

∀(µ ≺st ν) µP ≺st νP
(
≡ ∀(f increasing) Pf is increasing

)
. (2.2)

If |E| = N , and ≺ is the linear ordering, then stochastic monotonicity is equivalent to condition:

t−1Pt ≥ 0 ≡ (t−1)TPtT ≥ 0, P = [pij ], (2.3)

where t is of size N ×N and is defined as follows:

t =




1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
...

...
...

...
...

...
1 . . . . . . . . . . . . 1




, t−1 =




1 0 0 0 0 0
−1 1 0 0 0 0
0 −1 1 0 0 0
...

...
...

...
...

...
...

...
...

... −1 1



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2.2 Distances: total variation norm, separation distance

Let µ, ν be measures on E = {e1, e2, . . .}. One of the most popular distance between two probability
measures is given by the total variation norm:

d(µ, ν) = max
B⊂E

|µ(B) − ν(B)|. (2.4)

On Figure 1,

-

6

e1 e2 en−1 en

?

6 6

?

µ

ν

Figure 1: Example: d(µ, ν)

the length of arrows denotes µ(ei) − ν(ei) and orientation show if it is positive or negative. Of course
all the arrows sum up to 0, so looking closer at the definition of d(µ, ν) we have the following equivalent
equalities:

d(µ, ν) = max
B⊂E

|µ(B) − ν(B)| =
∑

e:µ(e)≥ν(e)
(µ(e) − ν(e)) =

∑

e:ν(e)≥µ(e)

(ν(e) − µ(e)) =

∑

e∈E
(µ(e) − ν(e))+ =

∑

e∈E
(ν(e) − µ(e))+ =

1

2

∑

e∈E
|µ(e) − ν(e)| . (2.5)

We define separation distance as follows:

s(µ, ν) = max
e∈E

(
1 − µ(e)

ν(e)

)
, (2.6)

where 1
0 := ∞. Or equivalently s(µ, ν) is the smallest s ≥ 0 such that:

µ = (1 − s)V + sV, (2.7)

for some distribution V .
Note that s is not a metric, it is possible that s(µ, ν) 6= s(ν, µ). If the support of µ is contained in that
of ν then s(µ, ν) is equal to 1.
A useful property of s is that it is an upper bound for d:

d(µ, ν) =
∑

e∈E
(ν(e) − µ(e))+ =

∑

e∈E
ν(e)

(
1 − µ(e)

ν(e)

)

+

≤
∑

e∈E
ν(e) max

k

(
1 − µ(ek)

ν(ek)

)

= s(µ, ν)
∑

e∈E
ν(e) = s(µ, ν) · 1.

So we have

d(µ, ν) ≤ s(µ, ν). (2.8)

There is no general inverse inequality: let for example ν be uniform distribution on finite E and µ
uniform distribution on E \ {e}. Then d(µ, ν) = 1

|E| , while s(µ, ν) = 1.
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3 Classical ergodic theorems for Markov chains

3.1 Facts from number theory

We will use 3 equalities:

(∗) a mod n = a−
⌊
a
n

⌋
n,

(∗∗) d|a i d|b ⇒ d|(ax + by) ∀(x, y ∈ Z),

(∗ ∗ ∗) gcd{a, b, c} = gcd{gcd{a, b}, c},

where ⌊x⌋ = sup{n ∈ Z : x ≤ n}.
We shall use the following theorem, which we give with a proof for completeness.

Theorem 3.1.1 (Cormen et al. [10]). If a and b are any integer numbers not both equal to 0, then
gcd{a, b} is the smallest positive element of the set {ax+ by : x, y ∈ Z} - linear combination of a i b.

Proof. Let s be the smallest such combination, i.e. let s = ax+ by for some x, y ∈ Z. Let q =
⌊
a
s

⌋
. Then

from equation (∗):

a mod s = a − qs = a − q(ax + by) = a(1 − qx) + b(−qy),

thus a mod s is also a linear combination of a and b. But a mod s < s therefore a mod s = 0, because s
is the smallest positive linear combination. So s|a and analogically (i.e. considering b mod s) s|b, so s is
a common divisor of both numbers and therefore s ≤ gcd{a, b}, thus from (∗∗) we have that gcd{a, b}|s
and it is enough to take d = gcd{a, b} - of course then d|a and d|b, and s is a linear combination of a
and b, so we have s ≥ gcd{a, b}.
If s ≥ gcd{a, b} and s ≤ gcd{a, b} then s = gcd{a, b}.

Conclusion 3.1.2. For any integers a and b such that they both are not equal 0 there exist x, y ∈ Z

such that
gcd{a, b} = ax+ by.

�

Lemma 3.1.3. For any positive integers a, b and k and for c = k · gcd{a, b} there exist x, y ∈ N \ {0}
such that

ax− by = c. (3.9)

Proof. From Conclusion 3.1.2 there exist x′, y′ ∈ Z such that

gcd{a, b} = ax′ + by′.

Multiplying both sides by k we obtain

c = k · gcd{a, b} = akx′ + bky′.

Observe that x = bh+ kx′, y = ah− ky′ for any h ∈ N are solutions to the (3.9):

ax− by = a(bh+ kx′) − b(ah− ky′) = abh+ akx′ − abh+ bky′ = akx′ + bky′ = k · gcd{a, b} = c,

and we can take any h, so take such that both x and y are positive.

The next theorem is a known fact from the number theory, but the author of this thesis did not succeed
in finding a complete proof of it, therefore a proof is provided here.

Theorem 3.1.4. Let a1, . . . , am be any natural numbers ≥ 2 such that ai 6= aj for i 6= j. Then
any number k being multiplicity of gcd{a1, . . . , am} and k > a1 · · ·am can be written in the following
representation: k = a1x1 + + . . .+ amxm, where xi, j = 1, . . . ,m are integer and positive.
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Proof. By induction:
For m = 2

We want to write k as a linear combination: k = r · gcd{a1, a2}. From Conclusion 3.1.2 there exist y′1
and y′2 such that gcd{a1, a2} = a1y

′
1 + a2y

′
2. Multiplying both sides by r we have

k = r · gcd{a1, a2} = a1ry
′
1 + a2ry

′
2 = a1y1 + a2y2,

where y1 = ry′1, y2 = ry′2.

If y1 and y2 are non-negative the proof is finished. Otherwise one of y1 and y2 is negative (both cannot).
Assume y1 > 0 and y2 < 0. Then add +a1a2 − a1a2:

k = a1y1 + a2y2 + a1a2 − a1a2 = a1(y1 − a2) + a2(y2 + a1).

If y2 +a1 > 0 we are done, otherwise again we add +a1a2−a1a2. Generally we can add +sa1a2−sa1a2:

k = a1y1 + a2y2 + sa1a2 − sa1a2 = a1(y1 − sa2) + a2(y2 + sa1)

as long as y1 − sa2 > 0, so s ≤
⌊
y1
a2

⌋
.

Consider two cases:

•
⌊
y1
a2

⌋
< y1

a2

Take s =
⌊
y1
a2

⌋
. So we have y1 − sa2 > 0 and

k = a1

(
y1 −

⌊
y1
a2

⌋
a2

)
+ a2

(
y2 +

⌊
y1
a2

⌋
a1

)
.

What is left is to show :

y2 +

⌊
y1
a2

⌋
a1 > 0, / · a2

a2y2 +

⌊
y1
a2

⌋
a2a1 > 0.

Using
⌊
b
a

⌋
a ≥ ( ba − 1)a = b− a we obtain

a2y2 +

⌊
y1
a2

⌋
a2a1 ≥ a2y2 + (y1 − a2)a1 = a2y2 + a1y1 − a1a2 = k − a1a2 > 0.

•
⌊
y1
a2

⌋
= y1

a2

Then take s = y1
a2

− 1. We have y1 − sa2 > 0 and

k = a1

(
y1 − (

y1
a2

− 1)a2

)
+ a2

(
y2 + (

y1
a2

− 1)a1

)
.

What is left is to show:
y2 + (

y1
a2

− 1)a1 > 0, / · a2

a2y2 + (
y1
a2

− 1)a2a1 > 0,

a2y2 + (
y1
a2

− 1)a2a1 = a2y2 + a1y1 − a1a2 = k − a1a2 > 0.
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The proof for m = 2 is finished.

For m > 2

Assumption of induction: Each natural number k′ greater than a1 · . . . · am−1 being multiplicity of
gcd{a1, . . . , am−1} (i.e. k = r · gcd{a1, . . . , am−1}) can be written as

k′ = x1a1 + x2a2 + . . .+ xm−1am−1. (3.10)

And we want to show that any number k > gcd{a1, . . . , am} and k = s · gcd{a1, . . . , am} can be written
as

k = x1a1 + x2a2 + . . .+ xmam.

Denote d = gcd{a1, . . . , am−1}, so that k = s · gcd{d, am}. Because of Lemma 3.1.3 there exist x′m, y
′ ∈

N \ {0} such that
amx

′
m − dy′ = k. (3.11)

Dividing both sides by dam we obtain

x′m
d

− y′

am
=

k

amd
>
a1a2 · · · am−1

d
∈ Z.

Denote h := a1a2···am−1

d . From above inequality there exist h consecutive integer numbers t, t+1, . . . , t+
h− 1 such that

y′

am
< t < t+ 1 < . . . < t+ h− 1 <

x′m
d
.

Thus we have

y′ < tam < (t+ h− 1)am,
(t+ h− 1)d < x′m.

Take:

xm := x′m − (t+ h− 1)d,
y := (t+ h− 1)an − y′.

We have xm > 0, y > 0 and

amxm + dy = am [x′m − (t+ h− 1)d] + d [(t+ h− 1)am − y′] = amx
′
m − dy′ = k.

Thus it is now enough to find natural positive numbers x1, x2, . . . , xm−1 such that

a1x1 + a2x2 + . . .+ am−1xm−1 = dy, (3.12)

because combining this with amxm + dy = k would finish the proof:

amxm + dy = a1x1 + a2x2 + . . .+ am−1xm−1 + amxm = k.

To prove (3.12) we will use induction assumption (3.10). We have k′ = dy = y · gcd{a1, a2, . . . , am−1}
so it is a multiplicity of this gcd, what is left to show is that k′ > a1a2 · · · am−1.

dy = d [(t+ h− 1)am − y′] = d(tam + ham − am − y′) > d(y′ + ham − am − y′) = dham − dam

= a1a2 · · ·am − dam ≥ a1a2 · · · am−1 = am (a1a2 · · · am−1 − d) > a1a2 · · ·am−1 − d > a1a2 · · · am−1,

because am ≥ 2.

Conclusion 3.1.5. Let a1, . . . , am be any natural numbers ≥ 2 such that ai 6= aj for i 6= j and
gcd{a1, . . . , am} = 1. Then any natural number k > a1 · · · am can be written in the following repre-
sentation:

k = a1x1 + + . . .+ amxm,

where xi are integer and positive.
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3.2 Renewal equation

The following theorem gives the limit of so-called renewal equation.

Theorem 3.2.1 (Feller [19]). Let a sequence of {fn}n≥0 such that f0 = 0, fn ≥ 0,
∑

n≥0

fn = 1 and

gcd{n : fn > 0} = 1 be given. Define renewal sequence:

u0 = 1, un =

n∑

k=1

fkun−k = f1un−1 + f2un−2 + . . .+ fnu0 (3.13)

and set µ =
∑

n≥1

nfn. Then

un −→
n→∞

1∑

n≥1

nfn
=

1

µ
,

moreover, if
∑

n≥1

nfn = ∞ then un −→
n→∞

0.

Define generating function: F (s) =

∞∑

n=0

fns
n, U(s) =

∞∑

n=0

uns
n = 1 +

∞∑

n=1

fns
n. Note that

1 + F (s)U(s) = 1 +

( ∞∑

n=1

fns
n

)( ∞∑

k=1

uks
k

)
= 1 +

∞∑

n=1

sn

(
n∑

k=1

fkun−k

)
= 1 +

∞∑

n=1

uns
n = U(s),

i.e. U(s) = 1
1−F (s) . Then coefficients of the generating function U(s) at sn (i.e. un) converge to 1

µ with
n→ ∞.

Proof. Define

rn = fn+1 + fn+2 + . . . =

∞∑

i=n+1

fi, (3.14)

so that:

∞∑

n=0

nfn = f1 + 2 · f2 + 3 · f3 + . . . = (f1 + f2 + f3 + . . .) + (f2 + f3 + . . .) + (f3 + . . .) + . . .

i.e.

µ =

∞∑

n=0

rn. (3.15)

We have: fn = rn−1 − rn. Putting it to (3.13) we have (r0 = 1):

un = (r0 − r1)un−1 + (r1 − r2)un−2 + . . .+ (rn−1 − rn)u0

= r0un + r1un−1 + r2un−2 + . . .+ rnu0 = r0un−1 + r1un−2 + . . .+ rn−1u0.

If we denote left hand side by An then the right hand side is An−1 and we have:

An = An−1 = An−2 = . . . = A0 = r0u0 = 1.

For each n we have:
r0un + r1un−1 + . . .+ rnu0 = 1. (3.16)

We also have un ≤ 1 (by induction: u0 = 1 ≤ 1, assume that un−1 ≤ 1 then un = f1un−1 + f2un−2 +
. . .+ fnu0 ≤ f1 · 1 + f2 · 1 + . . .+ fn · 1 ≤ f1 + . . .+ fn ≤ 1) and un is bounded, so the limit

λ = lim sup
n

un

9



exists such that for each ε > 0 and n large enough, all elements are less or equal to λ+ ε i.e.: un < λ+ ε
and there exists convergent subsequence unv → λ, as n→ ∞.
Let j be such that fj > 0. We will prove that then unv−j → λ. Assume contradiction. Then we could
find n as big as we want that simultaneously the following conditions would hold:

un > λ− ε, un−j < λ′ < λ. (3.17)

Let N be such that rN < ε. uk ≤ 1 so for all n > N we have:

un = f0un + f1un−1 + . . .+ fNun−N + fN+1un−N−1 + . . .+ fnu0

≤ f0un + f1un−1 + . . .+ fNun−N + fN+1 · 1 + fN+2 · 1 + . . .+ fn · 1,

i.e.
un ≤ f0un + f1un−1 + . . .+ fNun−N + ε. (3.18)

For n big enough each un−k on the right hand side is smaller than λ + ε and from our assumption
un−j < λ′, so we have:

un ≤ f0un + f1un−1 + . . . fj−1un−(j−1) + fjun−1 + fj+1un−(j+1)+

. . .+ fNun−N + ε < (f0 + . . .+ fj−1 + fj+1 + . . .+ fN )(λ+ ε) + fjλ
′ + ε ≤

(1 − fj)(λ+ ε) + fjλ
′ + ε < λ+ 2ε− fj(λ− λ′). (3.19)

Take ε such that 3ε < fj(λ− λ′), then un < λ+ 2ε− 3ε = λ− ε, so un < λ− ε, what is a contradiction
with the assumption that un > λ − ε ( (3.17)), so the assumption that λ′ < λ was false. So we proved
that if unv → λ then also unv−j → λ. Iterating this reasoning: if fj > 0 and unv → λ = lim supn un
then

unv−j → λ, unv−2j → λ, unv−3j → λ, . . .

Consider two cases::

Case: f1 > 0.
We can take j = 1 and then unv−k → λ for each fixed k. Put n := nv to the (3.16) :

r0unv + r1unv−1 + . . .+ rnvu0 ≤ r0unv + r1unv−1 + . . .+ rNunv−N ≤ 1. (3.20)

For fixed N all above unv−k → λ, so λ(r0+r1+. . .+rN ) ≤ 1. N was chosen arbitrary, so λ(r0+r1+. . .) ≤
1, i.e. λ ≤ 1

µ = 1P
nfn

. If µ =
∑
nfn = ∞ the proof is finished, because un → 0.

Let µ =
∑
nfn < ∞ and let γ = lim inf un, then for large enough n we have un > γ − ε. The same

reasoning shows that if unv → γ then also unv−k → γ: if opposite was true we would find so large n
that simultaneously following two conditions would hold:

un < γ + ε, un−1 > γ′ > γ. (3.21)

Let again N be such that rN < ε:

un = f1un−1 + . . .+ fNun−N + . . .+ fnu0 ≥ f1un−1 + . . .+ fNun−N >

(f1 + . . .+ fj−1 + fj+1 + . . .+ fN )(γ − ε) + fjγ
′ =

(f1 + . . .+ fj + . . .+ fN )(γ − ε) − fj(γ − ε) + fjγ
′ =

(1 − rN )(γ − ε) − fj(γ − ε) + fjγ
′ ≥ (1 − ε)(γ − ε) − fj(γ − ε) + fjγ

′ ≥
γ + fj(γ

′ − γ) − ε− γε ≥ γ + fj(γ
′ − γ) − 2ε.

If we take ε such that fj(γ
′ − γ) > 3ε then we obtain:

un > γ + 3ε− 2ε = γ + ε,
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which contradicts the first inequality in (3.21). Thus un−j → γ′.
Now further: from (3.16):

r0unv + r1unv−1 + . . .+ rNunv−N + ε ≥ 1. (3.22)

All above unv−k → λ so that (r0 + . . . + rN )γ + ε ≥ 1, thus µγ ≥ 1, but we had µλ ≤ 1 and from
definition γ ≤ λ so γ = λ = 1P

nfn
.

Case f1 = 0.
Consider set of numbers j for which fj > 0. From this set we can chose finite subset a1, a2, . . . am such
that gcd{a1, . . . , am} = 1 and ai ≥ 2, i = 1, . . . ,m. We know that if unv → λ then also unv−x1·a1 →
λ, unv−x2·a2 → λ etc. - for each fixed x1 > 0, x2 > 0, . . . , xm > 0 we also have

unv−x1·a1−x2·a2−...−xm·am → λ.

In another way: if k is of form: k = x1a1 + . . . xmam (xi > 0) then unv−k → λ. From Conclusion 3.1.5
any number larger than product a1a2 . . . am can be written in this representation. It means that for
k > a1a2 . . . am we have unv−k → λ. Use (3.16) with n = nv + a1a2 . . . am to obtain (3.20).

3.3 Ergodic theorem for enumerable state space

We will utilize Theorem 3.2.1 for ergodicity of Markov chains. Consider a Markov chain X = {Xn, n ≥ 0}
with enumerable state space E = {e1, e2, . . .}. We focus on a fixed state ei ∈ E and will examine

asymptotic behaviour of Pn(i, i) as n → ∞. Denote u
(i)
n = Pn(i, i) for any n ≥ 0, ei ∈ E (setting

P0(i, i) ≡ 1), i.e. the probability of being in state ei after n steps if we started also in ei, and for any

n ≥ 1, let f
(i)
n denote the probability that Markov chain X returns from state ei to ei, for the first time

exactly after n steps. Let us also denote d(i) = gcd{n : u
(i)
n > 0}. Of course series u

(i)
n is a renewal

sequence as defined in (3.13), i.e:

u
(i)
0 = 1, u(i)

n =

n∑

k=1

f
(i)
k u

(i)
n−k.

Definition 3.3.1. We call state ei aperiodic if d(i) = 1 and we call Markov chain X aperiodic if all
states are aperiodic.

Before proceeding with the main theorem, we will need the following

Lemma 3.3.2. d(i) = gcd{n : u
(i)
n > 0} = gcd{n : f

(i)
n > 0}.

Proof. Let s be the smallest integer number such that f
(i)
s > 0. Then it is also the smallest integer

number such that Ps(i, i) > 0 (because it can return for first time after s steps). Denote:

d
(i)′

N = gcd{n : s ≤ n ≤ N : f
(i)
n > 0},

d
(i)′′

N = gcd{n : s ≤ n ≤ N : Pn(i, i) > 0}.
Note that d

(i)′

s = d
(i)′′

s , because Ps(i, i) = f
(i)
s . We will show by induction that: d

(i)′

N = d
(i)′′

N . Assume

that d
(i)′

N = d
(i)′′

N . We will show that d
(i)′

N+1 = d
(i)′′

N+1:

• fN+1 > 0 → PN+1(i, i) > 0 ⇒ d
(i)′

N+1 = d
(i)′′

N+1,

• fN+1 = 0 = PN+1(i, i) ⇒ d
(i)′

N+1 = d
(i)′′

N+1,

• fN+1 = 0, PN+1(i, i) > 0, then ∃1≤v≤N : fvpN+1−v > 0 (because v can be either 1 or N)

⇒ d
(i)′

N divides v, d
(i)′′

N divides N + 1− v and both numbers divide N + 1 (because of d
(i)′

N = d
(i)′′

N ).

Thus d
(i)′

N+1 = d
(i)′

N = d
(i)′′

N = d
(i)′′

N+1.
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Definition 3.3.3. The state ei ∈ E is called recurrent if and only if

∞∑

n=1

f (i)
n = 1.

Markov chain is called recurrent, if all its states are recurrent.

Theorem 3.3.4 (Feller [19]). Let ei be a recurrent state.

a) If d(i) = 1 then

lim
n→∞

Pn(i, i) =
1∑

n≥1

nf (i)
n

=
1

µ(i)
.

b) For general:

lim
n→∞

Pnd(i, i) =
d∑

n≥1

nf (i)
n

=
d

µ(i)
,

where µ(i) =
∑

n≥1

nf (i)
n .

Proof.

a) Taking un = u
(i)
n and un = u

(i)
n in the Theorem 3.2.1 we have:

un = Pn(i, i) → 1∑
nfn

=
1

µ
.

b) From Lemma 3.3.2, d(i) = gcd{n : f
(i)
n > 0}, so F (i)(s) =

∑
f

(i)
n sn has non zero’s coefficients

only at powers (sd)0, (sd)1, (sd)2, . . .. Thus F (i)(s) =
∑
f

(i)
n sn =

∑
f

(i)
nd s

nd and F (i)(s
1
d ) =

∑
f

(i)
nd s

n.

Let F
(i)
1 (s) = F (i)(s

1
d ). F

(i)
1 (s) is a power series with positive coefficients and F

(i)
1 (1) = 1, so the

assumptions of Theorem 3.2.1 are fulfilled. This implies that coefficients of U
(i)
1 (s) = 1

1−F (i)
1 (s)

converge

to 1

µ
(i)
1

. Keeping in mind that µ(i) =
∑

n≥1

nf (i)
n = F (i)′(1), we have:

µ
(i)
1 = F

(i)′

1 (1) =
1

d(i)
F (i)′(1) =

µ(i)

d(i)
.

We have shown that u
(i)
nd → d(i)

µ(i) = d(i)∑

n≥1

nf (i)
n

, because U (i)(s) = U
(i)
1 (sd).

Definition 3.3.5. Markov chain is called irreducible if for any ei, ej ∈ E, i 6= j there exists finite
Ni,j such that PNi,j (i, j) > 0. In other words: for any ei, ej ∈ E, ei 6= ej there is positive probability
that at some time in the future the chain will be in state j given it is was i.

Definition 3.3.6. We call Markov chain ergodic if it is both: irreducible and aperiodic.

Lemma 3.3.7. If Markov chain with transition matrix P is ergodic, then

∀(ek, ej ∈ E) lim
n→∞

Pn(k, j) = lim
n→∞

Pn(j, j) =
1

µ(j)
.
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Proof. Let us denote f
(i,j)
n - the probability of getting from i to j for the first time exactly after n steps.

We have

∞∑

k=1

f
(i,j)
k = 1 and

Pn(i, j) =
n∑

k=1

f
(i,j)
k Pn−k(j, j).

Taking lim
n→∞

and using theorem 3.3.4 we have

lim
n→∞

Pn(i, j) =

∞∑

k=1

f
(i,j)
k · lim

n→∞
Pn−k(j, j) = 1 · lim

n→∞
Pn−k(j, j) =

1

µ(j)
.

3.4 Geometric ergodicity for finite state space

The next theorem provides us with information about speed of convergence. The presented proof follows
ideas of Fisz [21], but is modified to stress a role of total variation distance in it.

Theorem 3.4.1 (Fisz [21]). Let P = [P(i, j)] be a transition matrix of a Markov chain X = {Xn, n ≥ 0}
with finite state space E : |E| = N .
If there exists r0 such that:

#{j : min
1≤i≤N

Pr0(i, j) = δ > 0} = sr0 ≥ 1 (3.23)

then the following equalities hold:

lim
n→∞

Pn(i, j) = π(j) (j = 1, . . . , N), (3.24)

where π(j) ≥ δ for those j for which (3.23) holds. Moreover
∑N

j=1 π(j) = 1 and

|Pn(i, j) − π(j)| ≤ (1 − sr0δ)
n/r0−1. (3.25)

Proof. Denote min and max in j−th column after v steps:

bvj = min
1≤i≤N

Pv(i, j), Bvj = max
1≤i≤N

Pv(i, j).

We have:

bv+1
j = min

1≤i≤N
Pv+1(i, j) = min

1≤i≤N

N∑

k=1

P(i, k)Pv(k, j) ≥ min
1≤i≤N

N∑

k=1

P(i, k)bvj ≥ bvj ,

i.e.:
bv+1
j ≥ bvj .

Similarly
Bv+1
j ≤ Bvj ,

therefore
b1j ≤ b2j ≤ . . . . . . ≤ B2

j ≤ B1
j . (3.26)

Let pr0i· denote the i-th row of matrix Pr0 . Note that it is a probability distribution. Denote maximal
total variation distance between two rows in matrix P by

d∗(P) = max
1≤i,m≤N

d(pi·, pm·).

Let n > r0. Consider difference:
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Bnj −bnj = max
1≤i≤N

Pn(i, j)− min
1≤m≤N

Pn(m, j) = max
1≤i≤N

N∑

k=1

Pr0(i, k)Pn−r0(k, j)− min
1≤m≤N

N∑

k=1

Pr0(m, k)Pn−r0(k, j)

= max
1≤i,m≤N

N∑

k=1

(Pr0(i, k) − Pr0(m, k))Pn−r0(k, j)

= max
1≤i,m≤N

(
∑

k:Pr0 (i,k)≥Pr0 (m,k)

(Pr0(i, k) − Pr0(m, k))Pn−r0(k, j)+

∑

k:Pr0 (i,k)>Pr0 (m,k)

(Pr0(i, k) − Pr0(m, k))Pn−r0(k, j)

)

≤ max
1≤i,m≤N




∑

k:Pr0 (i,k)≥Pr0 (m,k)

(Pr0(i, k) − Pr0(m, k))Bn−r0j −
∑

k:Pr0 (i,k)<Pr0 (m,k)

(Pr0(m, k) − Pr0(i, k))bn−r0j



 .

From (2.5) we have
= max

1≤i,m≤N

(
d(pr0i· , p

r0
m·)B

n−r0
j − d(pr0i· , p

r0
m·)b

n−r0
j

)
.

= (Bn−r0j − bn−r0j ) max
1≤i,m≤N

d(pr0i· , p
r0
m·) = (Bn−r0j − bn−r0j )d∗(Pr0)

So for n > r0 we have
Bnj − bnj ≤ (Bn−r0j − bn−r0j )d∗(Pr0). (3.27)

We need yet to estimate d∗(Pr0):

d∗(Pr0) = max
1≤i,m≤N

d(pr0i· , p
r0
m·) = max

1≤i,m≤N

∑

k

(Pr0(i, k)−Pr0(m, k))+ ≤ max
1≤i≤N

{
∑

k

Pr0(i, k)

}
−sr0δ = 1−sr0δ.

(estimation in ≤ : replace sr0 expressions −Pr0(m, k) with δ (minimum of these expressions, the rest
set to 0).
Finally:

d∗(Pr0) ≤ 1 − sr0δ. (3.28)

From (3.27) and (3.28) we have the inequality:

Bnj − bnj ≤ (1 − sr0δ)(B
n−r0
j − bn−r0j ).

Similarly (with n > 2r0)

Bnj − bnj ≤ (1 − sr0δ)(B
n−r0
j − bn−r0j ) ≤ (1 − sr0δ)(1 − sr0δ)(B

n−2r0
j − bn−2r0

j )

= (1 − sr0δ)
2(Bn−2r0

j − bn−2r0
j ).

Iterating it [ nr0 ] times we get:

Bnj − bnj ≤ (1 − sr0δ)
[n/r0](B

n−[ n
r0

]r0

j − b
n−[ n

r0
]r0

j ). (3.29)

From the fact that Pr0 is stochastic it follows that 0 < sr0δ ≤ 1, i.e.

0 ≤ 1 − s1δ < 1.
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From formula (3.26) we conclude existence of limits of series {bnj } and {Bnj }, and from (3.29) we conclude
that they have a common limit. So:

lim
n→∞

max
1≤i≤N

Pn(i, j) = lim
n→∞

min
1≤i≤N

Pn(i, j) = π(j), (3.30)

and we have proved (3.24).

From (3.26) and (3.29) we have:

|pnij − π(j)| ≤ Bnj − bnj ≤ (1 − sr0δ)
n/r0−1.

Using the above inequalities we can bound the total variation distance between δeiP
n and π:

d(δeiP
n, π) =

1

2

N∑

j=1

|Pn(i, j) − π(j)| ≤ 1

2

N∑

j=1

(1 − sr0δ)
n/r0−1 =

1

2
N(1 − sr0δ)

n/r0−1.

3.5 Eigenvectors and eigenvalues

Another classical approach to ergodic theorems for Markov chains goes via spectral theory. We recall
basic facts.
Consider n × n matrix A. Recall that eigenvalues are the solutions to the characteristic equation
det(A− λI) = 0. There are n solutions: λ1, λ2 . . . , λn. and some of them can be complex not real.
Assume they are labelled in such a way that |λ1| ≥ |λ2| ≥ . . . ≥ |λn|.

If f1 is an eigenvector which corresponds to eigenvalue λ1 then f1 is linearly independent of all eigen-
vectors which correspond to eigenvalues different than λ1. So if all λ1, . . . , λn are different, then cor-
responding eigenvectors f1, . . . , fn create linearly independent set. Then there exists inverse matrix
to N = [f1, . . . , fn] i.e. N−1. For one f1 we have Af1 = λ1f1 - and for all f1, . . . , fn we can write:
AN = ND - where D - diagonal matrix with values λ1, . . . , λn on the diagonal. So we have:

A = NDN−1. (3.31)

In the other direction assume there exist: D - diagonal and invertible matrix N such that A = NDN−1.
Then all numbers on the diagonal of D are eigenvalues A, j-th column of N is a right eigenvector
corresponding to λj in D, and i-th row in N−1 is the i-th left eigenvector corresponding to λi (because
AN = ND)
If a matrix can be written in the form (3.31) it is said to be diagonalizable.
So, if all eigenvalues of matrix A are different, then the matrix is diagonalizable. But the condition that
all eigenvalues are distinct is not a necessary for A to be diagonalizable (all is needed is that there exists
m linearly independent eigenvectors for eigenvalues of multiplicity m).
Representation (3.31) is useful while calculating powers of A,
if A = NDN−1, then A2 = NDN−1NDN−1 = ND2N−1 and by induction:

Ak = NDkN−1, k = 0, 1, . . . . (3.32)

In order to calculate eigenvalues it is not necessary to calculate determinants (can be computationally
hard). The following equality is useful:

tr(Ak) =

n∑

i=1

λki , k = 0, 1, . . . . (3.33)

Note that tr(AB) = tr(BA), indeed

tr(AB) =
∑

i

(AB)(i, i) =
∑

i

∑

j

A(i, j)B(j, i) =
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∑

j

∑

i

B(j, i)A(i, j) =
∑

j

(BA)(j, j) = tr(BA).

Thus: tr(Ak) = tr(N(DkN−1)) = tr(DkN−1N) = tr(Dk) =
∑n
i=1 λ

k
i .

3.6 Spectral representation

We limit ourselves to diagonalizable matrices. Assume that A can be written A = NDN−1, where D

is diagonal. Denote:

N =



f1(1) . . . fn(1)

... . . .
...

f1(n) . . . fn(n)


 , D =



λ1 0

. . .

0 λn


 , (3.34)

N−1 =



π1(1) . . . π1(n)

... . . .
...

πn(1) . . . πn(n)


 .

N−1N = I so we have

πjfk =

(
∑

i

πj(i)fk(i)

)
=





0 if j 6= k,

1 if j = k.
(3.35)

Let Bk - be a matrix received from multiplying vector fk and πk, i.e.

Bk =



fk(1)

...
fk(n)


 [πk(1), . . . , πk(n)] =



fk(1)πk(1) . . . fk(1)πk(n)

...
...

fk(n)πk(1) . . . fk(n)πk(n)


 . (3.36)

From (3.35) it follows that:

BjBk = fjπjfkπk =






0 if j 6= k,

Bj if j = k.
(3.37)

Finally:

A = NDN−1 = . . . =




∑n
i=1 λifi(1)πi(1) . . .

∑n
i=1 λifi(1)πi(n)

...
...∑n

i=1 λifi(n)πi(1) . . .
∑n
i=1 λifi(n)πi(n)


 .

In other words:
A = λ1B1 + . . .+ λnBn. (3.38)

The above representation is called spectral representation.

From (3.37) we have:
Ak = (λ1B1 + . . .+ λnBn)k = λk1B1 + . . .+ λknBn. (3.39)

Example: Let

P =

[
0.8 0.2
0.3 0.7

]

λ1 = 1 is an eigenvalue corresponding to eigenvector:

f1 =
(

1
1

)
, because P1 = 1.

From (3.33) tr(P) = 0.8 + 0.7 = 1.5 = λ1 + λ2 = 1 + λ2 - thus λ2 = 0.5. π1 = (0.6, 0.4) is a left
eigenvector, because π1P = 1π1 corresponding to λ1 = 1, so B1 = f1π1 thus:
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B1 =

[
0.6 0.4
0.6 0.4

]
.

B2 we will compute using (3.39) for k = 0 i.e. P0 = I = B1 + B2, and from here::

B2 =

[
0.4 −0.4

−0.6 0.6

]
.

So the spectral representation for Pk is following:

Pk =

[
0.6 0.4
0.6 0.4

]
+

(
1

2

)k [
0.4 −0.4

−0.6 0.6

]
.

(
1
2

)k → 0, when k → ∞, thus we have:

P∞ = lim
k

Pk =

[
0.6 0.4
0.6 0.4

]
.

Look at the difference:

|P∞ − Pk| =

∣∣∣∣∣

[
0.6 0.4
0.6 0.4

]
+

(
1

2

)k [
0.4 −0.4

−0.6 0.6

]
−
[

0.6 0.4
0.6 0.4

] ∣∣∣∣∣ =

=

∣∣∣∣∣

[
0.6(1

2 )k −0.4(1
2 )k

−0.6(1
2 )k 0.4(1

2 )k

] ∣∣∣∣∣ ≤
[

0.6(1
2 )k 0.4(1

2 )k

0.6(1
2 )k 0.4(1

2 )k

]
.

Each element of last matrix can be bounded by (0.6)(1
2 )k so we have exact speed of convergence:

|Pk(i, j) − P∞(i, j)| ≤ (0.6)

(
1

2

)k
, k = 0, 1, . . . .

3.7 Geometric ergodicity via spectral gap

Definition 3.7.1. A square matrix P is called regular if for some integer k0 all entries of Pk0 are
strictly positive.

The proof of the following classical theorem can be found in [9]. Recall that P(i, j) stands for P(ei, ej).

Theorem 3.7.2 (Perron - Frobenius). If n× n matrix P is regular then:

• |λ1| > |λi|, i = 2, . . . , n

• λ1 ∈ R, λ1 > 0

• eigenvector f1 corresponding to λ1 has all components strictly positive ( > 0 ) and is designated
uniquely up to multiplying constant

We will limit ourselves to the case when Markov chain X is irreducible and aperiodic.

Theorem 3.7.3 (Cinlar [9]). Let P be irreducible and aperiodic transition matrix of Markov chain X.
Then:

∀(ei, ej ∈ E) lim
k→∞

Pk(i, j) = π(j) > 0. (3.40)

Vector π is the only solution to the:

πP = π,
∑

i

π(j) = 1. (3.41)

Moreover, speed of convergence in (3.40) is geometric.: There exists constant α > 0 such that:

|Pk(i, j) − π(j)| ≤ α|λ2|k, k = 1, 2, . . . (3.42)
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Proof. We will only proof the case when P is diagonalizable. The largest eigenvalue of P is λ1 = 1,
its right eigenvector is f1 = [1, . . . , 1]T , and its left eigenvector is the one fulfilling (3.41). We have in
spectral representation (3.38):

λ1 = 1, B1 = f1π1 = π1, thus B1(i, j) = π1(j). (3.43)

So we have:
Pk = B1 + λk2B2 + . . .+ λknBn, k = 0, 1, . . . (3.44)

Matrix P is aperiodic - thus from Perron-Frobienius Theorem ( (3.7.2)) eigenvalues |λ2|, . . . , |λn| are all
strictly less than 1, what finishes the proof of (3.40), because we have:

lim
k

Pk = B1.

Look at the difference:

|Pk(i, j) − π(j)| = |λk2B2(i, j) + . . .+ λknBn(i, j)| ≤

|λ2|k|B2(i, j)| + . . .+ |λn|k|Bn(i, j)|
We had eigenvalues labelled: |λ1| ≥ |λ2| ≥ . . . ≥ |λn|, thus we have

|Pk(i, j) − π(j)| ≤ |λ2|k(|B2(i, j)| + . . .+ |Bn(i, j)|)

Finally taking α = supi,j{|B2(i, j)| + . . .+ |Bn(i, j)|} we have

|Pk(i, j) − π(j)| ≤ α|λ2|k.

As the conclusion from previous Theorem we have:

Lemma 3.7.4. Let P be a strictly substochastic (i.e. there is at least one row which sums up to number
< 1), irreducible and symmetric. Then

Pk(i, j) ≤ α|λ1|k,

where α is as in (3.42).

Proof. Goes exactly like proof of Theorem 3.7.3 but involves fact that all eigenvalues (including λ1) are
strictly less than 1.

Remark: −L = I − P is called discrete Laplacian of P. If P has eigenvalues λ1, . . . , λN (assume they
are ordered as earlier: in absolute values), then −L has eigenvalues s1 = (1−λ1), s2 = (1−λ2), . . . , sN =
(1 − λN ). We call s2 the spectral gap. When it is positive, we say that spectral gap exists, what is
equivalent to |λ2| < 1 and implies, as seen in this section, geometric rate of convergence.

3.8 Bounding second largest eigenvalue: Cheeger’s and Poincare’ constants

for reversible Markov chains

In this section we consider finite state space |E| = N <∞. We start with

Definition 3.8.1. We say that Markov chain with transition matrix P and stationary distribution π is
reversible if ∀ei, ej ∈ E we have π(i)P(i, j) = π(j)P(j, i).

In this section we consider only reversible Markov chains (comprehensive source on such chains is Aldous
and Fill [4]).

Denote the eigenvalues of P by λ’s ordered: 1 = |λ1| ≥ |λ2| ≥ . . . ≥ |λN | ≥ −1.

As we have seen in Theorem 3.7.3, having λ2 we have a bound of convergence rate in L1 i.e. |Pn(i, j)−
π(j)| ≤ α|λ2|n, n = 1, 2, . . . . In that Theorem α is hard to calculate. The exact bound on the total
variation distance is given in the following corollary from Theorem 3.9.2 which will be given later.
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Corrolary 3.8.2. Let P be a transition matrix of a reversible Markov chain with finite state space.
Then

d(δeP
n, π) ≤ 1

2

1√
π(e)

|λ2|n.

Unfortunately, in most cases calculating λ2 is rather difficult. But it is enough to have upper bounds on
this eigenvalue.

Often, eigenvalues of Laplacian I − P are considered. We have the following minimax characterization
of the second largest eigenvalue which is defined for enumerable state space (see e.g. Horn & Johnson
[25]):

|β2| = 1 − |λ2| = inf

{ E(φ, φ)

V ar(φ)
: φ is non-constant

}
, (3.45)

where for Λ(i, j) = π(i)P(i, j) and φ(ej) ≡ φ(j)

E(φ, φ) = 1
2

∑

ei,ej∈E
(φ(j) − φ(i))2π(i)P(i, j) = 1

2

∑

ei,ej∈E
(φ(j) − φ(i))2Λ(i, j),

V ar(φ, φ) = 1
2

∑

ei,ej∈E
(φ(j) − φ(i))2π(i)π(j).

In case of finite state space λ2 coincides with 1 − β2 and we have βi := 1 − λi for i = 1, . . . , N .
Define Cheeger’s constant by

k = min
A:π(A)≤1/2

Λ(A×AC)

π(A)
= min

S:π(A)≤1/2

∑

ei∈A

∑

ej∈AC
π(i)P(i, j)

π(A)
.

Often (as it will be done in section 6.2 (Markov Jump Process)) there is used another version of Cheeger’s
constant:

k′ = min
A:π(A)∈(0,1)

Λ(A×AC)

π(Ac)π(A)
= min
A:π(S)∈(0,1)

∑

ei∈A

∑

ej∈AC
π(i)P(i, j)

π(Ac)π(A)
.

We have then:
k′

2
≤ k ≤ k′. (3.46)

Next theorem gives bounds (lower and upper) on |λ2| using Cheeger’s constant k. Since this result is
useful to show the existence of spectral gap in a class of Markov processes we give it with a proof.

Theorem 3.8.3 (Diaconis & Stroock [16]). Let λ2 : |λ2| = 1− |β2| be the second largest eigenvalue of a
reversible, ergodic Markov chain X. Then

1 − 2k ≤ |λ2| ≤ 1 − 1

2
k2.

The above inequality is often called Cheeger’s inequality.

Proof.
First, we will show: 1 − 2k ≤ |λ2|.
To prove it take for a function φ in (3.45), φA(i) ≡ φA(ei) := IA(ei) (indicator function) with a fixed A
such that π(A) ≤ 1/2. Then we have

E(φA, φA) =
1

2

∑

ei∈E

∑

ej∈E
(φA(j) − φA(i))2Λ(i, j)
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=
1

2

( ∑

ei∈A

∑

ej∈E
(1 − 1)2Λ(i, j) +

∑

ei∈A

∑

ej∈AC
(1 − 0)2Λ(i, j) +

∑

ei∈AC

∑

ej∈A
(0 − 1)2Λ(i, j)+

∑

ei∈AC

∑

ej∈AC
(0 − 0)2Λ(i, j)

)

(and because Λ(i, j) = Λ(j, i))

=
∑

ei∈A

∑

ej∈AC
Λ(i, j) = Λ(A×AC).

And similarly

V ar(φA) =
∑

ei∈A

∑

ej∈AC
π(i)π(j) = π(A)π(AC ),

and using π(A)π(AC ) ≥ 1
2π(A) we obtain

1 − |λ2| = |β2| ≤
E(φA, φA)

V ar(φA)
=

Λ(A×AC)

π(A)π(AC )
≤ 2

Λ(A×AC)

π(A)
.

Thus

|λ2| ≥ 1 − 2
Λ(A×AC)

π(A)
.

Above is true for any A so especially:
|λ2| ≥ 1 − 2k.

Now we prove the second part:

|λ2| ≤ 1 − 1

2
k2.

Recall we have Lψ(i) =
∑
j L(i, j)ψ(j), −L = I− P.

Define inner product

(φ, ψ)π =
∑

e∈E
φ(e)ψ(e)π(e).

We have:
Lψ(i) =

∑

ei

L(i, j)ψ(j) =
∑

ej

(I − P)ψ(j) =
∑

ej

I(i, j)ψ(j) −
∑

ej

P(i, j)ψ(j)

= ψ(i) −
∑

ej

P (i, j)ψ(j)

and
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(φ, Lψ)π =
∑

ei

π(i)φ(i)
∑

ej

L(i, j)ψ(j)

=
∑

ei

π(i)φ(i)[ψ(i) −
∑

ej

P(i, j)ψ(j)]

=
∑

ei

π(i)φ(i)ψ(i) −
∑

ei,ej

π(i)P(i, j)φ(i)ψ(j)

=
∑

ei

π(i)φ(i)ψ(i) −
∑

ei,ej

Λ(i, j)φ(i)ψ(j)

(
∑

ej
P(i, j) = 1) =

∑

ei

π(i)φ(i)ψ(i)
∑

ej

P(i, j) −
∑

ei,j

Λ(i, j)φ(i)ψ(j)

=
∑

ei,ej

φ(i)ψ(i)π(i)P(i, j) −
∑

ei,ej

Λ(i, j)φ(i)ψ(j)

=
∑

ei,ej

(
φ(i)ψ(i) − φ(i)ψ(j)

)
Λ(i, j)

(revers.) = 1
2

∑

ei,ej

(
φ(i)ψ(i) − φ(i)ψ(j) − φ(j)ψ(i) + φ(j)ψ(j)

)
Λ(i, j)

= 1
2

∑

ei,ej

(φ(j) − φ(i))(ψ(j) − ψ(i))Λ(i, j) = E(φ, ψ).

(3.47)

Fix ψ ∈ L2(π), denote by ψ+ a positive part of ψ, set S(ψ) = {ei ∈ E : ψ(i) > 0}.
First observation: For any ψ ∈ L2(π) such that S(ψ) 6= ∅ and β ∈ [0,∞) we have

β||ψ+||2π ≥ E(ψ+, ψ+) if Lψ ≤ βψ on S(ψ). (3.48)

For βψ(i) ≥ Lψ(i) for any ei ∈ S(ψ) we have

β||ψ+||2π = β(ψ+, ψ+)π = β
∑

ei∈E
ψ+(i)2π(i) = β

∑

ei∈S
ψ(i)2π(i) + β

∑

ei∈SC
02π(i)

=
∑

ei∈S
βπ(i)ψ(i)ψ(i) ≥

∑

ei∈S
π(i)Lψ(i)ψ(i) =

∑

ei∈S
π(i)Lψ(i)ψ(i) +

∑

e)i∈SC
π(i)Lψ(i) · 0

=
∑

ei∈E
π(i)Lψ(i)ψ+(i) =

∑

ei∈S
π(i)Lψ(i)ψ+(i) = (ψ+, Lψ)π

and using (3.47) we get
β||ψ+||2π ≥ (ψ+, Lψ)π = E(ψ+, ψ).

Note that

E(ψ+, ψ) =
1

2

∑

ei,ej

(ψ+(j) − ψ+(i))(ψ(j) − ψ(i))Λ(i, j)

≥ 1

2

∑

ei,ej

(ψ+(j) − ψ+(i))2Λ(i, j) = E(ψ+, ψ+),

where we used
(ψ+(j) − ψ+(i))(ψ(j) − ψ(i)) ≥ (ψ+(j) − ψ+(i))2.

Thus we proved β||ψ+||2π ≥ E(ψ+, ψ+) i.e. (3.48).

Second observation: For any ψ ∈ L2(π) with S(ψ) 6= ∅ we have

E(ψ+, ψ+) ≥ k(ψ)2||ψ+||2π
2

, where k(ψ) ≡ inf

{
Λ(S × SC)

π(S)
: ∅ 6= S ⊆ S(ψ)

}
. (3.49)

We will use Cauchy-Schwartz inequality:

(
∑

e1,e2

f(e1, e2)g(e1, e2)

)2

≤
∑

e1,e2

f2(e1, e2) ·
∑

e1,e2

g2(e1, e2).
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Taking: f(ei, ej) = |ψ(i) − ψ(j)|
√

Λ(i, j) and g(i, j) = |ψ(i) + ψ(j)|
√

Λ(i, j) we obtain



∑

ei,ej

f(i, j)g(i, j)




2

=



∑

ei,ej

|ψ2(i) − ψ2(j)|Λ(i, j)




2

≤ 2 · 1

2

∑

ei,ej

(ψ(i) − ψ(j))2Λ(i, j) ·
∑

ei,ej

(ψ(i) + ψ(j))
2

Λ(i, j)

= 2E(ψ, ψ)
∑

ei,ej

(ψ(i) + ψ(j))
2

Λ(i, j).

Thus

∑

ei,ej

|ψ2(i) − ψ2(j)|Λ(i, j) ≤
√

2
√
E(ψ, ψ)




∑

ei,ej

(ψ(i) + ψ(j))2Λ(i, j)




1/2

≤
√

2
√
E(ψ, ψ)


2 ·

∑

ei,ej

(ψ2(i) + ψ2(j))Λ(i, j)




1/2

=
√

2
√
E(ψ, ψ)


2 · 2 ·

∑

ei,ej

ψ2(i)π(i)P(i, j)




1/2

= 23/2
√
E(ψ, ψ)




∑

ei

ψ2(i)π(i)
∑

ej

P(i, j)

︸ ︷︷ ︸
=1




1/2

= 23/2
√
E(ψ, ψ) ||ψ||π .

At the same time left hand side can be rewritten as
∑

ei,ej

|ψ2(i) − ψ2(j)|Λ(i, j) = 2 ·
∑

ei,ej :

ψ(j)>ψ(i)

(ψ2(j) − ψ2(i))Λ(i, j)

= 4 ·
∑

ei,ej :

ψ(j)>ψ(i)

(∫ ψ(j)

ψ(i)

tdt

)
Λ(i, j) =

∫ ∞

0

t




∑

ei,ej :

ψ(i)≤t<ψ(j)

Λ(i, j)


 dt.

And using ∑

ei,ej :

ψ(i)≤t<ψ(j)

Λ(i, j) = Λ(S × SC) with S ≡ {i : ψ(i) > t} ⊆ S(ψ),

we have
∫ ∞

0

t




∑

ei,ej :

ψ(i)≤t<ψ(j)

Λ(i, j)


 dt =

∫ ∞

0

tΛ(S × SC)dt =

∫ ∞

0

tπ(S)
Λ(S × SC)

π(S)

≥ k(ψ)

∫ ∞

0

tπ({i : ψ(i) > t})dt =
k(ψ)||ψ||2π

2
.

Combining (3.48) and (3.49) we obtain:

β||ψ+||2π ≥ E(ψ+, ψ+) ≥ k(ψ)2||ψ+||2π
2

if Lψ ≤ βψ on S(ψ).

Thus

k(ψ)2

2
≤ β (3.50)

for any β ∈ [0,∞) and any ψ ∈ L2(π) on S(ψ) 6= ∅. To get lower bound take β = |β2| = 1 − |λ2| and ψ
as normalized eigenfunction for β2. Because ψ must have π-mean-value 0, we can always arrange that
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0 < π(S(ψ)) ≤ 1
2 and therefore k(ψ) ≥ k. Hence, the desired lower bound follows directly from (3.50)

with this choice of β and ψ.

Define a graph G = (V,E) with vertex set E and edges V = {{ei, ej} : Λ(i, j) > 0}. For given vertices
ei and ej we deterministically choose path (without loops and repeated edges) and refer to it as the
canonical path Γ(ei, ej) from ei to ej . Define length of the path

|Γ(ei, ej)| :=
∑

ẽ∈Γ(ei,ej)

1,

where the sum is over oriented edges ẽ in the path. Define Λ(ẽ) = Λ(i, j) = π(i)P(i, j) if ẽ = (ei, ej).
Define Poincare’s constant

K := max
ẽ





1

Λ(ẽ)




∑

(ei,ej):ẽ∈Γ(ei,ej)

|Γ(ei, ej)|π(i)π(j)









if P is irreducible and K := ∞ otherwise. So for fixed edge ẽ we have to sum up over all possible paths
from e1 to e2 containing ẽ and calculate the above constant.

Next theorem gives an upper bound for β1 using K.

Theorem 3.8.4 (Diaconis & Stroock [16]). The second largest eigenvalue β2 of a finite state, reversible
Markov chain P with respect to everywhere positive stationary distribution π satisfies

|λ2| ≤ 1 − 1

K
.

The above inequality is called Poincare’s inequality.

Proof. For an edge ẽ = (ei, ej) denote ẽ+ ≡ ei, ẽ
− ≡ ej and Λ(ẽ) = π(i)P(i, j). Define φ(ẽ) =

φ(ẽ+) − φ(ẽ−).

V ar(φ) =
1

2

∑

ei,ej∈E
(φ(i) − φ(j))2π(i)π(j) =

1

2

∑

ei,ej∈E




∑

ẽ∈Γ(ei,ej)

φ(ẽ)




2

π(i)π(j) =

=
1

2

∑

ei,ej∈E




∑

ẽ∈Γ(ei,ej)

1√
Λ(ẽ)

√
Λ(ẽ)φ(ẽ)




2

π(i)π(j)

≤ 1

2

∑

ei,ej∈E




∑

e∈Γ(ei,ej)

1

Λ(ẽ)








∑

ẽ∈Γ(ei,ej)

Λ(ẽ)φ2(ẽ)



π(i)π(j) ≤

max
ẽ





1

Λ(ẽ)

∑

ei,ej :ẽ∈Γ(ei,ej)

|Γ(ei, ej)|π(i)π(j)|




 · 1

2

∑

ẽ

Λ(ẽ)φ2(ẽ) = K · 1

2

∑

ẽ

Λ(ẽ)φ2(ẽ)

= K · 1

2

∑

ei,ej∈E
(φ(i) − φ(j))2π(i)P(i, j) = K · E(φ, φ)

i.e.
1

K
≤ E(φ, φ)

V ar(φ)

for any φ so especially for φ which realizes infimum in (3.45), thus

1

K
≤ 1 − |λ2| ⇒ |λ2| ≤ 1 − 1

K
.
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Next lemma gives us information how many steps should be done in order to make d(δeP
k, π) less or

equal to ε.

Lemma 3.8.5. For a finite state, reversible, aperiodic and irreducible, Markov chain on finite state
space E with transition matrix P with finite state space we have

d(δe0P
nk(ε), π) ≤ ε, for nk(ε) =

2

k2
log

(
1

2ε
√
π(e0)

)

and

d(δe0P
nK(ε), π) ≤ ε, for nK(ε) = K log

(
1

2ε
√
π(e0)

)
,

where h is the Cheeger’s constant and K is the Poincare’s constant.

Proof. :

In (∗) we will use fact that 1 − x < e−x for x ∈ R \ {0}.
Using Corrolary 3.8.2 and Theorem 3.8.3 we have

d(δe0P
nk(ε), π) ≤ 1

2

1√
π(e0)

|λ2|nk(ε) ≤
1

2

1√
π(e0)

(
1 − 1

2
k2

)nk(ε)
=

1

2

1√
π(e0)

(
1 − 1

2
k2

) 2
k2

log

„
1

2ε
√
π(e0)

«

(∗)
≤ 1

2

1√
π(e0)

[
e−

1
2 k

2
] 2
k2

log

„
1

2ε
√
π(e0)

«

=
1

2

1√
π(e0)

e
− log

„
1

2ε
√
π(e0)

«

=
1

2

1√
π(e0)

2ε
√
π(e0) = ε.

Using Corrolary 3.8.2 and Theorem 3.8.4 we have

d(δe0P
nK(ε), π) ≤ 1

2

1√
π(e0)

|λ2|nK(ε) ≤ 1

2

1√
π(e0)

(
1 − 1

K

)nK(ε)

=
1

2

1√
π(e0)

(
1 − 1

K

)K log

„
1

2ε
√
π(e0)

«

(∗)
≤ 1

2

1√
π(e0)

[
e−

1
K

]K log

„
1

2ε
√
π(e0)

«

=
1

2

1√
π(e0)

e
− log

„
1

2ε
√
π(e0)

«

=
1

2

1√
π(e0)

2ε
√
π(e0) = ε.

Remark: A number n(ε) for which d(δe0P
n(ε), π) ≤ ε is called mixing time and usually denoted by

τe0 (ε).

3.8.1 Poincare bound for symmetric random walk on d-dimensional cube

In order to illustrate Poincare’s technique we present this example.
Take the state space E = {0, 1}d. Let x ∈ E. Transition probabilities of symmetric random walk on
cube are defined as follows:

δxP(x+ si) = 1
d+1 for xi = 0,

δxP(x− si) = 1
d+1 for xi = 1,

δxP(x) = 1
d+1 ,

(3.51)

where si = (0, . . . , 0, 1, 0, . . . , 0) with 1 at position i. It means that when random walk is in the state
x = (x1, . . . , xd), xi ∈ {0, 1} then it changes i-th coordinate from xi to 1 − xi with probability 1/(d+ 1)
or with the same probability it stays at the same position. The stationary distribution is uniform :
π(x) = 1

2d
.

We will compute Poincare’s constant for deterministic canonical paths.

24



Let x = (x1, . . . , xd), y = (y1, . . . , yn) ∈ E and define canonical path Γ(x, y) in such a way: change consec-
utively coordinates in x to get y from left to right. For example for d = 8 and x = (1, 1, 0, 1, 1, 1, 0, 1), y =
(1, 0, 0, 0, 0, 0, 0, 0) the canonical path is:

x = (1, 1, 0, 1, 1, 1, 0, 1) → (1, 0, 0, 1, 1, 1, 0, 1) → (1, 0, 0, 0, 1, 1, 0, 1) → (1, 0, 0, 0, 0, 1, 0, 1)
→ (1, 0, 0, 0, 0, 0, 0, 1) → (1, 0, 0, 0, 0, 0, 0, 0) = y

We want to calculate

K := max
ẽ





1

Λ(ẽ)




∑

(x,y):e∈Γ(x,y)

|Γ(x, y)|π(x)π(y)







 .

Fix ẽ = (a, b), where a = (a1, . . . , ad) and b = (u1, . . . , ui−1, 1 − ui, ui+1, . . . ud). We have: Λ(ẽ) =
π(a)P(a, b) = 1

2d · 1
d+1 , π(x) = π(y) = 1

2d .
Thus

K := max
ẽ





1

Λ(ẽ)
E




∑

(x,y):ẽ∈Γ(x,y)

|Γ(x, y)|π(x)π(y)







 = 2d(d+ 1) · 1

2d
· 1

2d

∑

(x,y):ẽ∈Γ(x,y)

|Γ(x, y)|.

We have to calculate how many states x and y there are such that ẽ ∈ Γ(x, y). Look at previous example
once more (say a = (1, 0, 0, 0, 1, 1, 0, 1), b′ = (1, 0, 0, 0, 0, 1, 0, 1), thus i = 5)

x = (1, 1, 0, 1, 1 , 1, 0, 1︸ ︷︷ ︸
xi+1,...,xd

) → (1, 0, 0, 1, 1 , 1, 0, 1) → (1, 0, 0, 0, 1 , 1, 0, 1)
︸ ︷︷ ︸

a

→ (1, 0, 0, 0, 0 , 1, 0, 1)
︸ ︷︷ ︸

b

→ (1, 0, 0, 0, 0 , 0, 0, 1) → (1, 0, 0, 0︸ ︷︷ ︸
y1,...,yi−1

, 0 , 0, 0, 0) = y

Thus we see that x and y must fulfill the following conditions:

xi+1, . . . , xd = ui+1, . . . , ud,
xi = ui,
yi = 1 − ui,

y1, . . . , yi−1 = u1, . . . , ui−1.

So only x1, . . . , xi−1 and yi+1, . . . , yd are not determined. Thus the number of possible x and y such
that ẽ = (u, v) ∈ Γ(x, y) is 2i−1 · 2d−i = 2d−1. The length |Γ(x, y)| is at most d, so we have:

K := 2d(d+ 1) · 1

2d
· 1

2d

∑

(x,y):ẽ∈Γ(x,y)

|Γ(x, y)| ≤ (d+ 1)

2d

∑

(x,y):ẽ∈Γ(x,y)

d =
d(d+ 1)

2d
· 2d−1 =

d(d+ 1)

2
.

Let us calculate nK(ε) from Lemma 3.8.5 for some fixed state x0 ∈ E:

nK(ε) := K log

(
1

2ε
√
π(x0)

)
≤ d(d + 1)

2
log


 1

2ε
√

1
2d


 =

d(d+ 1)

2
log

(
2
d
2 · 1

2ε

)
=

d(d+ 1)

2

(
d

2
+ log

(
1

2ε

))
≈ d3

4
+
d2

2
log

(
1

2ε

)
.

This tells us that mixing takes about d3/4 steps (i.e. after so many steps we have d(δx0P
nK , π) ≤ ε). It

is of order ≈ d3.

Later we will see better bounds (via coupling or strong uniform times) and correct answer: mixing takes
in this example about d log d steps.

For another example where both, Poincare’s and Cheeger’s constants are calculated see subsection 3.9.2,
where problem of non-reversible Markov chain is reduced to calculating these constants for modified
reversible chain.
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3.9 Bounding second largest eigenvalue: non-reversible Markov chains

3.9.1 Symmetrization

The results of subsection 3.8 had not been applicable to non-reversible Markov chains till 1991 when J.
Fill developed bounds for these chains in [20]. Some of results are interesting in their own.

For any transition matrix R define:

Rφ(ei) :=
∑

ej∈E
R(ei, ej)φ(ej).

Given functions φ and ψ define the Dirichlet form

ER(φ, ψ) :=
1

2

∑

ei,ej∈E
(φ(ei) − φ(ej))(ψ(ei) − ψ(ej))π(ei)R(ei, ej)

based on a given reversible R with stationary distribution π.
For P define P̃ to be time-reversal of P, i.e.:

P̃(ei, ej) :=
π(ej)P(ej , ei)

π(ei)
,

and define multiplicative reversiblization M(P) :

M(P) := PP̃.

It has the same stationary distribution as P and is time-reversible, i.e. π(ei)M(P)(ei, ej) = π(ej)M(P)(ej , ei).

Theorem 3.9.1 (Mihail’s identity). Let P be an ergodic transition matrix on a finite state space E with
stationary distribution π. Then for any function φ we have

V ar(φ) = V ar(P̃φ) + EM(P)(φ, φ). (3.52)

Proof. Without loss of generality we can assume that φ has 0 mean under π, i.e. (φ,111)π = 0. Note that
for reversible R we have:

(φ, (I − R)φ)π =
∑

e

φ(e)(I − R)φ(e)π(e) =
∑

e

φ(e)π(e) −
∑

e1,e2

π(e1)P(ei, ej)φ(ei)φ(ej) =

1

2

∑

ei,ej

(φ(ei) − φ(ej))
2
π(ei)P(ei, ej) = ER(φ, φ),

thus

EM(P)(φ, φ) = (φ, (I −M(P))φ)π = V ar(φ) − (φ,PP̃φ) = V ar(φ) − (P̃φ, P̃φ)π = V ar(φ) − V ar(P̃φ),

where we have used fact that P̃ is the adjoint of P on L2(π).

Define chi-square distance from stationarity for a non-reversible Markov chain:

χ2
n :=

∑

e

(µPn(e) − π(e))
2

π(e)
.

Theorem 3.9.2 (Fill [20]). Let P be an ergodic transition matrix on a finite state space E with stationary
distribution π. Let λ2(M) denotes the second largest eigenvalue of M(P). Then

d(µPn, π) ≤ 1

2
χn ≤ 1

2
|λ2(M)|n/2χ0.

In particular, for µ := δe we have

d(δeP
n, π) ≤ 1

2
|λ2(M)|n/2

√
1

π(e)
− 1 ≤ 1

2

1√
π(e)

|λ2(M)|n/2.
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Proof. Take function ρn(e) = µPn(e)
π(e) . Its mean value is

∑
e

µPn(e)
π(e) π(e) = 1. Calculate its variance:

V ar(ρn) =
∑

e

(
µPn(e)

π(e)
− 1

)2

π(e) =
∑

e

(
µPn(e) − π(e)

π(e)

)2

π(e) =
∑

e

(µPn(e) − π(e))2

π(e)
= χ2

n.

Calculate also

(P̃ρn)(e) =
∑

e2

P̃(e, e2)
µPn(e2)

π(e2)
=
∑

e2

µPn(e2)P(e2, e)

π(e)
= ρn+1(e).

Thus from Mihail’s identity (3.52) we have

χ2
n = χ2

n+1 + EM(P)(ρn, ρn).

By the minimax characterization (3.45) for β1(M) we have that

EM(P)(ρn, ρn) ≥ (1 − |λ2(M)|)V ar(ρn) = (1 − |λ2(M)|)χ2
n.

Thus
χ2
n = χ2

n+1 + EM(P)(ρn, ρn) ≥ χ2
n + (1 − |λ2(M)|)χ2

n.

From above we obtain
χ2
n+1 ≤ |λ2(M)|χ2

n.

Iterating it:
χ2
n ≤ |λ2(M)|nχ2

0.

Now from Cauchy-Schwarz inequality:

d(µPn, π) =
1

2

(
∑

e

|µPn(e) − π(e)|
)

=
1

2



(
∑

e

√
π(e) · |µP

n(e) − π(e)|√
π(e)

)2



1/2

≤

=
1

2

((
∑

e

π(e)

)
·
(
∑

e

|µPn(e) − π(e)|2
π(e)

))1/2

=
1

2

(
χ2
n

)1/2
=

1

2
χn ≤ 1

2
(β1(M))n/2χ0.

For µ := δe0 we have

χ2
0 =

∑

e

|δe0P
0(e) − π(e)|2
π(e)

=
|1 − π(e0)|2

π(e0)
+
∑

e6=e0

|0 − π(e)|2
π(e)

=
1

π(e0)
−2+π(e0)+1−π(e0) =

1

π(e0)
−1

Remark: When P is time-reversible then P = P̃ and |λ2(M)| = |λ2|2 and we have d(µPn, π) ≤
1
2 |λ2|nχ0.

We have the extension of Lemma 3.8.5 for non-reversible Markov chains:

Lemma 3.9.3. For a non-reversible, aperiodic and irreducible, Markov chain on finite state space E
with transition matrix P of size n× n we have

d(δe0P
n′
k(ε), π) ≤ ε, for n′

k(ε) =
4

k2
log

(
1

2ε
√
π(e0)

)

and

d(δe0P
n′
K(ε), π) ≤ ε, for n′

K(ε) = 2K log

(
1

2ε
√
π(e0)

)
,

where k is a Cheeger’s constant and K is Poincare’s constant of M(P).
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Proof. In (∗) we will use fact that 1 − x < e−x for x ∈ R \ {0}.
Using Theorems 3.8.3 and 3.9.2 we have

d(δe0P
n′
k(ε), π) ≤ 1

2

1√
π(e0)

|λ2(M)|n′
k(ε)/2 ≤ 1

2

1√
π(e0)

(
1 − 1

2
k2

)n′
k(ε)/2

=
1

2

1√
π(e0)

(
1 − 1

2
k2

) 2
k2

log

„
1

2ε
√
π(e0)

«

(∗)
≤ 1

2

1√
π(e0)

[
e−

1
2k

2
] 2
k2

log

„
1

2ε
√
π(e0)

«

=
1

2

1√
π(e0)

e
− log

„
1

2ε
√
π(e0)

«

=
1

2

1√
π(e0)

2ε
√
π(e0) = ε

Using Theorems 3.8.4 and 3.9.2 we have

d(δe0P
n′
K(ε), π) ≤ 1

2

1√
π(e0)

|λ2(M)|n′
K(ε)/2 ≤ 1

2

1√
π(e0)

(
1 − 1

K

)n′
K(ε)/2

=
1

2

1√
π(e0)

(
1 − 1

K

)K log

„
1

2ε
√
π(e0)

«

(∗)
≤ 1

2

1√
π(e0)

[
e−

1
K

]K log

„
1

2ε
√
π(e0)

«

=
1

2

1√
π(e0)

e
− log

„
1

2ε
√
π(e0)

«

=
1

2

1√
π(e0)

2ε
√
π(e0) = ε.

3.9.2 Example: Clockwise random walk on Zn

To illustrate above techniques for non-reversible Markov chain X = {Xn, n ≥ 0} we give an example,
originally described by Fill [20]. We will give full details here, calculating both, Poincare’s and Cheeger’s
constants.
For p ∈ (0, 1) we have matrix pj,j = 1−p and pj,j+1 = p, where j+1 is modulo n. Thus we have random
walk on circle {0, 1, . . . , n− 1} with uniform stationary distribution, i.e. π(j) = 1

n , j = 1, . . . , n, which is
non-reversible.

P =




1 − p p 0 0 0 . . . 0 0
0 1 − p p 0 0 . . . 0 0
0 1 − p p 0 . . . 0 0
...

...
p 0 0 0 . . . 0 1 − p



, P̃ =




1 − p 0 0 0 0 . . . 0 p
p 1 − p 0 0 0 . . . 0 0
0 p 1 − p 0 0 . . . 0 0
...

...
0 0 0 0 . . . p 1 − p



,

M(P) =




p2 + q2 pq 0 0 0 . . . 0 pq
pq p2 + q2 pq 0 0 . . . 0 0
0 pq p2 + q2 pq 0 . . . 0 0
...

...
pq 0 0 0 . . . pq p2 + q2



.

CHEEGER

Calculating Cheeger’s constant for M(P) we obtain:

k = min
S:π(S)≤1/2

∑
x∈S

∑
y∈SC π(x)M(P)(x, y)

π(S)
= min

S:π(S)≤1/2

1
n

∑
x∈S

∑
y∈SC M(P)(x, y)

|S|
n

= min
S:π(S)≤1/2

∑
x∈S

∑
y∈SC pq

|S| =
2pq
n
2

=
4pq

n
,

because min is achieved for for S = {a, a+ 1, . . . , a+ n
2 }.

POINCARE
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Let us calculate Poincare constant for our M(P). Because of symmetry, for each ẽ value of Λ(ẽ) is the
same. We can choose ẽ = (0, 1) and Λ(ẽ) = π(ẽ)M(P)(0, 1) = 1

npq, and of course π(x) = π(y) = 1
n for

any x, y. Thus

K := max
e





1

Λ(e)




∑

(x,y):e∈Γ(x,y)

|Γ(x, y)|π(x)π(y)






 =

1
1
npq

1

n

1

n

∑

(x,y):e∈Γ(x,y)

|Γ(x, y)|

We will choose paths deterministically, taking the shortest one from x to y. We have to calculate how
many possible path with e on it there is, and calculate their lengths. Let [a, b] denote path {a, a+ 1, a+
2, . . . , b}. For definiteness let n be odd (otherwise for x = 0 and y = n/2 we would not have the shortest
path).

Of course there is one path of length 1 containing ẽ, simply [0, 1]. There are two paths of length 2
containing ẽ : [0, 2] and [n − 1, 1]. Generally: there are i paths of length i, namely: [n− i + 1, 1], [n−
i+ 2, 2], . . . , [0, i] and the longest is of length n−1

2 . Thus, using
∑m

i=1 = m(m+1)(2m+1)
6 we have

=
1

pq

1

n

∑

(x,y):ẽ∈Γ(x,y)

|Γ(x, y)| =
1

pq

1

n

n−1
2∑

i=1

i2 =
1

pq

1

n

(
n−1

2

) (
n−1

2 + 1
) (

2 · n−1
2 + 1

)

6
=

1

pq

1

n

(
n−1

2

) (
n+1

2

)
n

6

=
1

24pq
(n2 − 1).

Comparing cheeger and poincare

To compare it take n to be odd. Then Cheeger’s constant is slightly different then calculated earlier,
namely k = 4pq

n−1 (because now |S| = n−1
2 ). And we can compare (using Theorems 3.8.3 and 3.8.4))

Poincare |λ2(M(P))| ≤ 1 − 1
K = 1 − 24pq

n2−1 ,

Cheeger |λ2(M(P))| ≤ 1 − 1
2k

2 = 1 − 8(pq)2

(n−1)2 .

Which is better? It depends on p and n. Cheeger’s is better when

1 − 8(pq)2

(n− 1)2
≤ 1 − 24pq

n2 − 1
⇐⇒ pq ≤ 1

3(n+ 1)

To see if there is significant difference in order of steps calculate n′
k(ε) and n′

K(ε):

n′
k(ε) =

4

h2
log

(
1

2ε
√
π(x)

)
=

n2

(2pq)2
log

(√
n

2ε

)
=

1

(2pq)2
n2

(
log
(√
n
)

+ log

(
1

2ε

))
,

n′
K(ε) = 2K log

(
1

2ε
√
π(x)

)
=
n2 − 1

12pq
log

(√
n

2ε

)
=
n2 − 1

12pq

(
log
(√
n
)

+ log

(
1

2ε

))
.

We see that in both cases number of steps of order ≈ n2 log(
√
n) is enough to make total variation

distance small. But in this case we have:

n′
K ≤ n′

k ⇐⇒ 3

pq
≥ 1 − 1

n2
,

and 3
pq ≥ 12 for p ∈ [0, 1],thus estimation by Poincare’s constant is better, regardless of value of n and

p.
Remark: Note that in both cases minimum (as one could expected) is achieved for p = 1

2 , then

n′
k(ε) = 4n2

(
log (

√
n) + log

(
1
2ε

))
and (much better) n′

K(ε) = n2−1
3

(
log (

√
n) + log

(
1
2ε

))
.

Some examples where exact rates of convergence for non-reversible Markov chains are calculted can be
found in Wilmer [48].
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3.10 Geometric ergodicity via coupling for enumerable state space

Theorem 3.10.1 (Liggett [32]). Let P = [P(i, j)] be a transition matrix of Markov chain X = {Xn, n ≥
0} with enumerable state space E, which initial distribution is µ. If matrix P is regular (see Def. 3.7.1)
then limit

Pµ(Xk = ej) =
∑

ei∈E
µ(ei)P

k(i, j) → π(j) (3.53)

exists for any ej ∈ E. The limit is independent from the initial distribution µ and the following equality
is fulfilled: ∑

ei∈E
π(i)P(i, j) = π(j). (3.54)

Moreover
d(µPn, π) ≤ (1 − δ)n/r0−1, (3.55)

where k0 is from Def. 3.7.1 and δ = min
ei,ej

Pk0(i, j) > 0.

Proof. The idea of coupling is to take independent chain Y = {Yn, n ≥ 0} with the same transition
matrix as X (i.e. P) but with the initial distribution π (stationary for P) and observe process X till
first time they meet, later on taking Y process.
Let Y = {Yn, n ≥ 0} be a Markov chain independent from X with transition matrix P and initial
distribution π (this is so called stationary version of {Xn, n ≥ 0} process).
Define:

Zn =

{
Xn if n < T,
Yn if n ≥ T,

(3.56)

where
T = min

k
{k : Xk = Yk}

is so called coupling time. We state that:

i) {Xn, n ≥ 0} and {Zn, n ≥ 0} have the same distribution,

ii) The following inequality holds:

∀(n > 0, B ⊂ E) |Pµ(Zn ∈ B) − Pπ(Yn ∈ B)| ≤ Pµ(T > n),

iii) Pµ(T <∞) = 1.

Proving i), ii), iii) finishes the proof of (3.53) because

|Pµ(Xn = ej) − π(ej)|
i)
= |Pµ(Zn = ej) − Pπ(Yn = ej)|

ii)

≤ Pµ(T > n)
iii)−→ 0.

Proof: i)
For k > n we have

P (Z0 = x0, . . . , Zn = xn, T = k) = P (X0 = x0, . . . , Xn = xn, T = k),

and for k ≤ n (using the independence of Xn and Yn and Markov’s property)

P (Z0 = x0, . . . , Zn = xn, T = k) = P (X0 = x0, . . . , Xk = xk, Yk = xk, . . . , Yn = xn, T = k)

= P (X0 = x0, . . . , Xk = xk, T = k)pxk,xk+1
· · · pxn−1,xn

= P (X0 = x0, . . . , Xn = xn, T = k).

Proof: ii)
|Pµ(Zn ∈ B) − Pπ(Yn ∈ B)| =
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= |Pµ(Zn ∈ B, T ≤ n) + Pµ(Zn ∈ B, T > n) − Pπ(Yn ∈ B, T ≤ n) − Pπ(Yn ∈ B, T > n)| =

(∗)
= |Pµ(Zn ∈ B, T > n) − Pπ(Yn ∈ B, T > n)|

(∗∗)
≤ Pµ(T > n).

In (∗) first and third expressions where equal in absolute values, whereas in (∗∗) we were subtracting
two non-negative numbers, both less than Pµ(T > n).

Proof: iii)

Pµ(T ≤ k0) ≥
∑

k∈E
µPk0(k)πPk0 (k) =

∑

ek∈E

(
∑

ei∈E
µ(ei)P

k0(i, k)

)
π(ek) ≥

∑

ek∈E

(
∑

ei∈E
µ(ei)δ

)
π(ek) = δ·1·1 = δ.

So we have
Pµ(T > k0) ≤ (1 − δ) and Pµ(T > m · k0) ≤ (1 − δ)m.

For any n we have

Pµ(T > n) = Pµ(T >
n

k0
· k0) ≤ Pµ(T >

[
n

k0

]
· k0) ≤ (1 − δ)

[ n
k0

]
.

And because our assumption was δ > 0 so we have

lim
n→∞

Pµ(T > n) = 0, i.e. Pµ(T <∞) = 1.

Assertion (3.55) we obtain from i), ii) and iii)

d(µPn, π) = sup
B⊂E

|Pµ(Xn ∈ B) − π(B)| ≤ Pµ(T > n) ≤ (1 − δ)[
n
k0

].

Remark: For coupling defined in (3.56) statements i) and ii) do always hold. The problem is thus to
determine whether Pµ(T < ∞) = 1 or not. In the above theorem assumption min

ei,ej∈E
P k0(i, j) = δ > 0

assured it.

One of the inequalities obtained while proving last theorem is quite important, so we state it separately.

Lemma 3.10.2. For coupling defined in (3.56) so called coupling inequality holds:

d(µPn, π) ≤ Pµ(T > n).

Proof. See proof of Theorem 3.10.1.

3.10.1 Symmetric random walk on d-dimensional cube

We revisit the cube example in order to compare Poincare and coupling technique.
Consider again random walk with state space E = {0, 1}d and transition probabilities given in (3.51).
The random walk is in state x = (x1, . . . , xd), xi ∈ {0, 1} then it changes i-th coordinate from xi to 1−xi
with probability 1/(d + 1) or with the same probability it stays at the same position. The stationary
distribution is uniform : π(x) = 1

2d
.

Define coupling like in (3.56) taking independent processes: {Xn, n ≥ 0}, with initial distribution µ, and
{Yn, n ≥ 0} with initial distribution π being stationary for this chain. Now let these chains evolve in
the following way: we choose random variables {Un} which are independent and uniformly distributed
on {1, 2, . . . , d, d+ 1, . . . 2d} and set:

Xn(k) = Yn(k) =






1 if Un = 2k − 1,

0 if Un = 2k.
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It means, that if Un = 2k− 1 then we set kth coordinate of both Xn and Yn to 1; if Un = 2k then we set
kth coordinate of both processes to 0 leaving other coordinates unchanged. Of course these processes
are independent and both governed by the (3.51). Now let Tµ = min{n : Xn = Yn}. An upper bound
for this coupling time is the time until all coordinates will be chosen at least once. It is equivalent to the
following scheme. We have 2d urns; what is the probability that after n steps there exists at least one
urn not chosen so far? It is exactly well known Coupons Collector Problem. Define V to be the number
of drawings till the time when each ball is drawn at least once. For each ball i define

Ai =






1 ball i was not drawn in the first m experiments,

0 otherwise.
(3.57)

Set n = d log d+ cd.

P (V > n) = P (

d⋃

i=1

Ai) ≤
d∑

i=1

P (Ai) = d

(
1 − 1

d

)m
≤ de−

n
d = e−c.

Thus, using Lemma 3.10.2 (coupling inequality) we have

d(µPn, π) ≤ P (Tµ > n) ≤ P (V > n) ≤ e−c, for n = d log d+ cd.

Remark: In subsection 3.8.1 we have shown (calculating Poincare’s constant). that after d3 steps
process is well mixed, whereas via coupling we obtained much better result, that it takes about d log d
steps. However, in practice, finding good coupling is harder then calculating Poincare’s (or Cheeger’s)
constant.

3.11 Maintaining Communication Between an Explorer and a Base Station

Eigenvalue aproach presented in subsecion 3.5 was used in [17] to show the speed of convergence of some
Markov chain in the field of robotic intelligence. We present here the main part of the paper.

We consider a (robotic) explorer starting an exploration of an unknown terrain from its base station. As
the explorer has only limited communication radius, it is necessary to maintain a line of robotic relay
stations following the explorer, so that consecutive stations are within the communication radius of each
other.
We construct a graph modeling the base station, the explorer and the relay stations with vertices. The
vertices are always logically organized in a path (v1, v2, . . . , vn−1, vn), where v1 corresponds to the base
station, vn to the explorer and v2, . . . , vn−1 to the relay stations. To represent the path we introduce
undirected edges (vi, vi+1) for every i ∈ {1, . . . , n − 1}. The communication is routed along this path
from v1 to vn or in the other direction. The graph is embedded on a plane, thus we will use the notion
of a position p(v) of a vertex v. Distances between vertices are given by the L2 norm and described by
|(vi, vi+1)|.
The goal of a strategy minimizing the distance between the relay stations is to arrange the relay stations
on the line between v1 and vn in equal distances from each other, or, in other words, to bring the relay
stations as near to this optimal positions as possible.
We require every edge on the path v1, . . . , vn to have at most length d, so that the maximum transmission
distance of d is not exceeded and communication links between partners on the communication path can
be hold up. We assume that the terrain is without obstacles.

The following Go-To-The-Middle strategy is executed repeatedly by every relay station. Relay station
i observes the positions p(vi−1) and p(vi+1) of its communication partners and moves itself into the middle
of the interval from vi−1 to vi+1.
For simplification of the analysis we will assume that the strategy is invoked in discrete time steps. Each
time step is subdivided into two shorter substeps. In the first one, all relay stations check the positions
of their neighbors. In the second substep all relay stations move to the middle of the observed positions
of its neighbors as described above.
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vi

vi−1

vi+1

Figure 2: Node vi executes Go-To-The-Middle strategy by moving into the middle of the interval
between vi−1 and vi+1.

Since the explorer moves, it may be necessary to extend the path of relay stations. We perform this
at the end of the path, between the last relay station and the explorer. This happens every time the
distance between vn−1 and vn increases to more than d. We rename the vector v appropriately, so that
vn+1 describes the explorer and vn the new relay station. The new relay station is inserted in the middle
of the interval connecting the last relay station and the explorer.
Assume that the explorer can carry a sufficiently large pool of relay stations. Then this strategy is easily
executed, since new relay stations are available at the explorer’s position.
It is easy to proove that with this strategy the path in each step is valid, i.e. the maximum transmission
distance d is not exceeded.

We analyze the convergence rate of the Go-To-The-Middle with additional assumption: the explorer
does not move. There are n stations, the positions of v1 and vn are fixed. For a node vi we define
dk(vi) to be the distance of node vi to the straight line crossing nodes v1 and vn before k−th step of the
execution of Go-To-The-Middle

Distance of a point to a line is defined in the usual geometrical way, as depicted in Fig. 3.

base station worker robot

ǫ {

v2 v3

v4
v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

d
t(v12)

Figure 3: Relay stations and the area of diameter ε around the straight line

We assume that at the beginning all nodes (relay stations) are on one side of the line connecting the
explorer and the base station. If not, the nodes can be divided into distinct segments, and the analysis
can be applied in each segment separately. The case, when all nodes are on one side yields the worst
case.
We will need one more

Lemma 3.11.1. Let L be n× n matrix defined as follows: L(i, j) = 1
2 for all i, j such that |i− j| = 1.

For all other i, j we have L(i, j) = 0 (it is shown later in (3.62))
The eigenvalues of the matrix L are

λj = cos

(
jπ

n+ 1

)
, j = 1, . . . n .

The corresponding eigenvectors are

xj(i) = sin

(
πji

n+ 1

)
, i = 1, . . . , n, j = 1, . . . , n .
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Proof:

We will show that the specified eigenvalues and eigenvectors actually correspond to the matrix L. Thus
for each pair of eigenvalue λj and eigenvector xj it must hold

LxTj = λjx
T
j . (3.58)

Let us fix some j and prove Eq. (3.58) for this pair λj , xj . Recall that we claim that

λj = cos

(
jπ

n+ 1

)
,

xj =

[
sin

(
jπ

n+ 1

)
, sin

(
2jπ

n+ 1

)
, sin

(
3π

n+ 1

)
, . . . , sin

(
njπ

n+ 1

)]
.

From Eq. (3.58) the following system of equalities must hold

1

2
sin

(
2jπ

n+ 1

)
= cos

(
jπ

n+ 1

)
sin

(
jπ

n+ 1

)
, (3.59)

1

2
sin

(
(i− 1)jπ

n+ 1

)
+

1

2
sin

(
(i + 1)jπ

n+ 1

)
= cos

(
jπ

n+ 1

)
sin

(
ijπ

n+ 1

)
, (3.60)

1

2
sin

(
(n− 1)jπ

n+ 1

)
= cos

(
jπ

n+ 1

)
sin

(
njπ

n+ 1

)
, (3.61)

where Eq. (3.60) must hold for all i = 2, . . . , n− 1.
Observe that one of the basic trigonometric identities is sin(2α) = 2 sinα cosα. With its help Eq. (3.59)
follows easily. Similarly we have

sinα+ sinβ = 2 sin

(
α+ β

2

)
cos

(
α− β

2

)
,

which can be used to prove Eq. (3.60) for each i = 2, . . . , n− 1.
For Eq. (3.61) we first note that sin(ajπ) = sin((1 − a)jπ) for any j ∈ N and 0 ≤ a < 1. From this we
have

sin

(
(n− 1)jπ

n+ 1

)
= sin

(
2jπ

n+ 1

)
,

and

sin

(
njπ

n+ 1

)
= sin

(
jπ

n+ 1

)
.

This reduces Eq. (3.61) to Eq. (3.60) which has already been shown.

Now we may proceed with the main theorem of the example.

Theorem 3.11.2. Consider a valid communication path with n− 2 relay stations. Then after at most
9n2 log 1

εn steps for every i it holds d(vi) ≤ ε for any ε > 0.

Proof:

Obviously it holds dk(v1) = dk(vn) = 0 for all k ≥ 1. We define Ak := [dk(v2) . . . , dk(vn−1)] to be the
vector of distances of relay stations to the straight line. A0 describes the start configuration.
Then after one step of Go-To-The-Middle the distance

dk(vi) =
dk−1(vi−1) + dk−1(vi+1)

2
,

for all 1 < i < n, which effectively means that dk(v2) = dk−1(v3)/2 and dk(vn−1) = dk(vn−2)/2 since
dk(v1) = dk(vn) = 0.
We can describe the changes of the vector Ak by multiplying it with an appropriate transition matrix L
so that Ak = Ak−1L = A0Lk. This n× n matrix is defined as follows: L(i, j) = 1

2 for all i, j such that
|i− j| = 1. For all other i, j we have L(i, j) = 0.
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(3.62)

Matrix L is symmetric, substochastic and irreducible. By Lemma 3.11.1 all eigenvalues of L are different
and thus L is diagonalizable. From Lemma 3.7.4 we have that after k steps we have Lk(i, j) ≤ αβk for
any i, j, sticking to the definitions of α and β from that lemma. As all entries of L are not larger than
1 we have α ≤ n · 1. The value of | cos jπ

n+1 | is the largest for j/(n+ 1) approaching 0 or 1. Without loss
of generality we set j = 1. Then we have β = cos π

n+1 .

Now assuming that the communication distance between nodes is d, we know that A0 can contain an
entry as big as dn. On the other hand we know that entries of Lk are always non-negative. Recall
that Ak = A0Lk. Then to have dk(vi) ≤ ε we must have each element of Lk smaller than ε

dn2 since
d0(vi) ≤ dn.
We thus have to find a k such that Lk(i, j) ≤ ε

dn2 for all i, j. Using Lemma 3.7.4 we should then have
n · 1 ·βk ≤ ε

dn2 and accordingly βk ≤ ε
dn3 . We still have to find an upper bound on β. As argued before,

β is largest, when π/(n+1) approaches 0. Thus let us expand cosx around x = 0 from the Taylor series.

We obtain cosx ≤ 1 − x2

2 + x4

24 , and set x = π/(n+ 1). Since π2/2 ≥ 1 and π4/24 ≤ 5 we obtain

cos
π

n+ 1
≤ 1 − π2

2(n+ 1)2
+

π4

24(n+ 1)4

≤ 1 − 1

(n+ 1)2
+ 5

1

(n+ 1)4
.

Since 5
(n+1)4 ≤ 1

2(n+1)2 for a sufficiently large n we have cos π
n+1 ≤ 1 − 1

2(n+1)2 . This lets us conclude

that for k = 2(n+ 1)2 we obtain βk ≤ 1/e and for k = 2(n+ 1)2 · ln 1
εdn

3 we get βk ≤ ε
dn3 . Assuming

that d is constant and upper bounding 2(n+ 1) with 3n we have that βk ≤ ε
dn3 for k = 9n2 ln 1

εn. This
proves that after k = 9n2 ln 1

εn steps we have dk(vi) ≤ ε.
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4 Strong Stationary Time

4.1 Introduction

Definition 4.1.1. Random variable T is a stopping time for chain X = {Xn, n ≥ 0} if it is a function:

T : X → N ∪ {∞},

such that T (X) is independent of XT (X)+1, XT (X)+2, . . .

We can think of stopping time as of an algorithm which observes Markov chain X and according to some
stopping rule it stops it at some moment. This rule can be a very complicated function of the past,
but it cannot depend on the future. The above definition of T we can rewrite as a running time of the
following algorithm:

Algorithm 4.1.2 (stopping time).

• At time k, (X0, X1, . . . , Xk) was observed

• Calculate fk(X0, X1, . . . , Xk), where fk : (X0, X1, . . . , Xk) → {0, 1}

• If fk(X0, X1, . . . , Xk) = 1 then Stop

• Observe next step and return to the beginning

We call randomized stopping time the running time of the following:

Algorithm 4.1.3 (randomized stopping time).

• At time k, (X0, X1, . . . , Xk) was observed

• Calculate fk(X), where fk : (X0, X1, . . . , Xk) → [0, 1]

• Flip a coin with probability of getting Head equal to p = fk(X0, X1, . . . , Xk)

• If we got Head then Stop

• Observe next step and return to the beginning

The difference is that randomized algorithm can at each step decide whether to stop or not using
independent randomization, for example flipping a coin.
Note that when in the Algorithm 4.1.3 the functions fk return only 0 or 1 then it is equivalent to the
Algorithm 4.1.2. From now on we will identify stopping time with randomized stopping time.

Introduce the following

Definition 4.1.4. Random variable Tµ is Strong Stationary Time for a Markov chain X = {Xn, n ≥
0} with transition matrix P and initial distribution µ, when it is a stopping time and the following equality
holds:

∀(e ∈ E) Pµ(Xk = e|Tµ = k) = π(e).

When the stationary distribution is uniform, this random variable is called Strong Uniform Time.

We have the following very useful

Lemma 4.1.5 (Aldous, Diaconis [3]). If Tµ is a Strong Stationary Time for X = {Xn, n ≥ 0} then

s(µPn, π) ≤ P (Tµ > n). (4.63)
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Proof.

P (Xk = ei) ≥

P (Xk = ei, Tµ ≤ k) =

k∑

j=0

P (Xk = ei, Tµ = j)

=

k∑

j=0

∑

es∈E
P (Xk = ei, Tµ = j,Xj = es)

=

k∑

j=0

∑

es

P (Xk = ei|Tµ = j,Xj = es) · P (Tµ = j,Xj = es)

=
k∑

j=0

∑

es

P (Xk = ei|Tµ = j,Xj = es) · P (Xj = es|Tµ = j) · P (Tµ = j)

=

k∑

j=0

∑

es

P (Xk = ei|Tµ = j,Xj = es) · π(es) · P (Tµ = j)

(4.64)
=

k∑

j=0

∑

es

P (Xk = ei|Xj = es) · π(es) · P (Tµ = j)

=

k∑

j=0

∑

es

π(es)δesP
k−j(ei)

︸ ︷︷ ︸
=π(ei) (πP=π)

·P (Tµ = j)

= π(ei)

k∑

j=0

·P (Tµ = j) = π(ei)P (Tµ ≤ k) = π(ei)[1 − P (Tµ > k)].

Thus:

1 − P (Xk = ei)

π(ei)
≤ P (Tµ > k).

The above is true for any ei, so it is for maximum:

max
ei

(
1 − P (Xk = ei)

π(ei)

)
= s(µPk, π) ≤ P (Tµ > k).

What is left is to prove:

P (Xk = ei|Tµ = j,Xj = es) = P (Xk = ei|Xj = es). (4.64)

In order to do this we will use following two equalities: (k ≥ j)

P (Xj = es, T = j) =
∑

r

P (Xj = es, Xj−1 = xrj−1, . . . X0 = xr0), (4.65)

P (Xk = ei|Xj = es, Xj−1 = xj−1, . . . , X0 = x0) = P (Xk = ei|Xj = es). (4.66)

Equality (4.65) follows from fact, that Tµ is a stopping time, thus the event {Tµ = j} depends only on
X0, X1, . . . , Xj, and (4.66) is the Markov property.
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Thus:

P (Xk = ei|Xj = es, Tµ = j)

=
P (Xk = ei, Xj = es, Tµ = j)

P (Xj = es, Tµ = j)

(4.65)
=

∑
r P (Xk = ei, Xj = es, Xj−1 = xrj−1, . . . , X0 = xr0)
∑

r P (Xj = es, Xj−1 = xrj−1, . . . X0 = xr0)

=

∑
r P (Xk = ei|Xj = es, Xj−1 = xrj−1, . . . , X0 = xr0) · P (Xj = es, Xj−1 = xrj−1, . . . , X0 = xr0)

∑
r P (Xj = es, Xj−1 = xrj−1, . . . , X0 = xr0)

(4.66)
=

P (Xk = ei|Xj = es)
∑

r P (Xj = es, Xj−1 = xrj−1, . . . , X0 = xr0)
∑

r P (Xj = es, Xj−1 = xrj−1, . . . , X0 = xr0)

= P (Xk = ei|Xj = es).

Lemma 4.1.5 together with equality (2.8) gives useful bound on total variation distance:

d(µPn, π) ≤ s(µPn, π) ≤ P (Tµ > n).

We will need the following

Lemma 4.1.6. For an ergodic Markov chain X = {Xn, n ≥ 0} and any initial distribution µ, separation
distance s(µPn, π) is a decreasing function of n.

Proof. We will use equivalent definition of separation distance (equality (2.7), i.e. s(µPn, π) is the
smallest number sn such µPn = (1 − sn)π + snVn, where Vn is some distribution). So we have:

µPn+1(e) = (1 − sn+1)π(e) + sn+1Vn+1(e),
µPn(es) = (1 − sn)π(es) + snVn(es).

We can calculate:

µPn+1(e) =
∑

es∈E
µPn(es)δesP(e) =

∑

es∈E
[(1 − sn)π(es) + snVn(es)] δesP(e)

= (1 − sn)
∑

es∈E
π(es)δesP(e) + sn

∑

es∈E
Vn(es)δesP

n(e) = (1 − sn)π(e) + sn
∑

es∈E
Vn(es)δesP

n(e),

thus
sn+1 = s(µPn+1(e), π) ≤ sn.

Definition 4.1.7. Random variable Tµ is called Minimal Strong Stationary Time (shortly MSST)
for Markov chain X = {Xn, n ≥ 0} if it is Strong Stationary Time for which equality in (4.63) holds,
i.e. for which:

s(µPn, π) = P (Tµ > n).

Again, when stationary distribution is uniform, Tµ is called Minimal Strong Uniform Time.

Does there always exist such a Strong Stationary Time? Does there exist a Minimal Strong Uniform
Time for given chain? The answer is given by D. Aldous and P. Diaconis in [3] in form of the following
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Lemma 4.1.8 (Aldous, Diaconis [3]). Let X = {Xn, n ≥ 0} be ergodic Markov chain with state space
E. Then, for any initial distribution µ, there exists Minimal Strong Stationary Time Tµ for this chain.

Proof. We will construct the desired random variable Tµ. Define αn = min
e

µPn(e)

π(e)
(set α0 = min

e

1

π(e)
).

Tµ is defined as follows: at time n, given that random walk X is in state e flip a coin with probability
of heads

pn(e) =
αn − αn−1

µPn(e)
π(e) − αn−1

.

If heads comes up, stop, otherwise flip again with probability pk+1(e) and so on. Denote the first time
when head occurs by Tµ, i.e. P (Tµ = n|Xn = e, T > n − 1) = pn(e). Notice that pn(e) ≥ 0 for all
e ∈ E, n ≥ 0. Let k be the smallest integer such that αk > 0, of course then we have ps(e) = 0 for s < k
and

pk(e) =
αk

µPk(e)
=
P (Tµ = k,Xk = e)

P (Xk = e)
= P (Tµ = k|Xk = e).

We also have

P (Tµ = k) =
∑

e

P (Tµ = k,Xk = e) =
∑

e

P (Tµ = k|Xk = e)P (Xk = e)

=
∑

e

αkπ(e)

P (Xk = e)
P (Xk = e) = αk,

thus

P (Xk = e|Tµ = k) =
P (Xk = e, Tµ = k)

P (Tµ = e)
=
P (Tµ = n|Xk = e)P (Xk = e)

P (Tµ = k)
=

αkπ(e)
P (Xk=e)P (Xk = e)

αk
= π(e).

By induction we will show that

P (Xn = e, Tµ = n) = π(e)(αn − αn−1), n ≥ k, e ∈ E. (4.67)

It is equivalent to

P (Xn = e|Tµ = n)P (Tµ = n) = π(e)(αn − αn−1), n ≥ k, e ∈ E.

For n > k

P (Xn = e, Tµ = n) = P (Tµ = n|Xn = e, Tµ > n− 1)P (Xn = e, Tµ > n− 1) =

=
αn − αn−1(

µPn(e)
π(e) − αn−1

) · [P (Xn = e) − P (Xn = e, Tµ ≤ n− 1)] . (4.68)
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We yet need to calculate

P (Xn = e, Tµ ≤ n− 1) =
n−1∑

j=1

P (Xn = e, Tµ = j) =
n−1∑

j=1

∑

es∈E
P (Xn = e, Tµ = j,Xj = es)

=

n−1∑

j=1

∑

es∈E
P (Xn = e|Tµ = j,Xj = es)P (Tµ = j,Xj = es)

(4.67)
=

n−1∑

j=1

∑

es∈E
P (Xn = e|Tµ = j,Xj = es)π(es)(αj − αj−1)

(4.64)
=

n−1∑

j=1

∑

es∈E
P (Xn = e|Xj = es)π(es)(αj − αj−1)

=

n−1∑

j=1

∑

es

π(es)δesP
k−j(e)

︸ ︷︷ ︸
=π(e) (πP=π)

·(αj − αj−1)

=
n−1∑

j=1

π(e)(αj − αj−1) = π(e)αn−1.

Using this in (4.68) we obtain (P (Xn = e) ≡ µPn(e))

P (Xn = e, Tµ = e) =
αn − αn−1(

µPn(e)
π(e) − αn−1

) · [µPn(e) − π(e)αn−1]

=
αn − αn−1(

µPn(e)
π(e) − αn−1

) ·
[
π(e)

(
µPn(e)

π(e)
− αn−1

)]
= π(e)(αn−1 − αn). (4.69)

So we have

P (Tµ = n) =
∑

e

P (T = n,Xn = e) =
∑

e

π(e)(αn − αn−1) = αn − αn−1, (4.70)

thus

P (Xn = e|Tµ = n) =
P (Xn = e, Tµ = n)

P (Tµ = n)

(4.69)
=

π(e)(αn − αn−1)

P (Tµ = n)

(4.70)
=

π(e)(αn − αn−1)

αn − αn−1
= π(e),

what finishes the proof.

4.2 Example: Random walk on Z4

0

1

2

3

Figure 4: Z4

Random walk starts at 0 (X0 = 0), E = {1, 2, 3, 4}. Later the chain stays at the same state with
probability 1

2 or goes left or right with probability 1
4 . This can be written as:

Xk = Xk−1 + θk mod 4,
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where θ1, θ2, . . . are iid random variables with distribution: P (θi = 1) = P (θi = −1) = 1
4 , P (θi = 0) = 1

2 .
Here is an algorithm which running time is Strong Uniform Time for above random walk:

Algorithm 4.2.1 (for Z4).

• Observe X = (X0, X1, . . . , Xm) till first time when Xm ∈ {1, 3}

• Do one step more

• Stop

Of course the running time of above algorithm is a stopping time. To prove that it is Strong Uniform
Time, let us assume that T = k. Because of symmetry in step k − 1 random walk wast either in 4 or in
1 with the same probability, i.e.:

P (Xk−1 = 1|T = k) = P (Xk−1 = 3|T = k) = 1
2 ,

Thus for any i = 0, 1, 2, 3 we have

P (Xk = i|T = k) =
1

2
P (Xk−1 = i|T = k)

+
1

4
[P (Xk−1 = i+ 1|T = k) + P (Xk−1 = i− 1|T = k)] = 1

4 = 1
|E| .

In order to have a bound on d(µPn, π) and to use lemma 4.1.5 we have to calculate:

P (T > k) =
∞∑

i=k+1

(
1

2

)i−2

· 1

2
= 2

∞∑

k+1

(
1

2

)i
= 2 ·

(
1
2

)k+1

1 − 1
2

= 2 ·
(

1

2

)k
.

Thus:

d(µPk, π) ≤ s(µPk, π) ≤ 2 ·
(

1

2

)k
.

4.3 Example: Random walk on Zn

The example is similar to the example of Diaconis and Fill [15].
Assume n = 2m. For n = 16 it is a random walk on n-points circle:

0
1

2

3

4

5

6
7

8

15
14

13

12

11

10
9

Figure 5: Z16

Similarly as in previous example we can write:

Xk = Xk−1 + θk mod n,

where θ1, θ2, . . . are iid with distribution: P (θi = 1) = P (θi = −1) = 1
4 , P (θi = 0) = 1

2 .
Here is an algorithm which running time is Strong Uniform Time for above walk:
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Algorithm 4.3.1 (for Zn).

• Observe X = (X0, X1, . . . , Xm) till first time (T1) when Xm ∈ {2m−2, 3 · 2m−2}
• Observe random walk till first time after T1 when it gets to state which is in distance of 2m−3 from
XT1 (call this moment T2)

• Observe random walk till first time after T2 when it gets to state which is in distance of 2m−4 from
XT2 (call this moment T3)

...

• Observe random walk till first time after Tm−2 when it gets to state which is in distance of 1 from
XTm−2 (call this moment Tm−1 - at this time random walk is in state which is an odd number)

• Observe one step more (T = Tm)

• Stop

Of course running time of this algorithm is a stopping time. Assume that T1 = k1, then, because of
symmetry, Xk1 is in one of the states from {2m−2, 3·2m−2} with equal probability (all paths i1, i2, . . . , ik1
such that at time k−1 are first time in state 2m−2 or 3 ·2m−2 are equally likely). The same is at moment
T2, and because of symmetry XT2 has uniform distribution on {2m−2 + 2m−3, 2m−2 − 2m−3, 3 · 2m−2 +
2m−3, ·2m−2 − 2m−3}.
So, because of symmetry, at time Tm−1 the distribution of XTm−1 is uniform on all possible odd numbers,
i.e.

P (Xk = 2i+ 1|Tm−1 = k) =
1

2m−1
.

To calculate P (Xk = i|T = k) consider separately cases when i is odd and even. If i is odd, then the
step earlier it had to be in the same state and had to stay in it. If i is even, then a step earlier it had
to be in some neighbouring odd states and in one step it had to get to i. So we can calculate:

P (Xk = 2i+ 1|T = k) =
1

2
P (Xk−1 = 2i+ 1|Tm−1 = k) =

1

2
· 1

2m−1
=

1

2m
.

P (Xk = 2i|T = k) =
1

4
P (Xk−1 = 2i− 1|Tm−1 = k) +

1

4
P (Xk−1 = 2i+ 1|Tm−1 = k)

=
1

4
· 1

2m−1
+

1

4
· 1

2m−1
=

1

2m
.

Thus T is a Strong Uniform Time. To estimate P (T > k) we will use Markov’s inequality (for Y ≥
0, P (Y > k) ≤ EY

k ) and the following lemma:

Lemma 4.3.2 (Feller [19]). For random walk on integers starting from 0 and moving +1 or −1 with

probability θ
2 , and staying in the same state with probability 1 − θ, expected time of getting to ±b is b2

θ .

�

In random walk on Zn we first have to get to state in distance ±2m−2, later to state in distance ±2m−3

etc., last time to state in distance 1 and to make one step more. Here θ := 1
2 so:

ET = 2
(
2m−2

)2
+ 2

(
2m−3

)2
+ . . .+ 2

(
2m−(m−1)

)2

+ 2
(
2m−m)2 + 1

= 2(4m−3 + 4m−3 + . . .+ 1) + 1 = 2 · 4m−1 − 1

4 − 1
=

2

3

(
1

4
n2 − 1

)
+ 1 =

1

6
n2 +

1

3
.

Let k = cn2, c ∈ {1, 2, ...}. Then

d(µPk, π) ≤ s(µPk, π) ≤ P (T > k) ≤ ET

k
=

1
6n

2 + 1
3

cn2
≤ 1

5c
.

So the speed of convergence is of order n2, we have to make c · n2 steps to be near to the uniform
distribution.
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4.4 Example: Shuffling cards : top-to-random

This example is from Aldous and Diaconis [2], calculations can be found in Diaconis [13].

We have n cards (underlines denote n gaps between cards)

k1, , k2, , k3, , . . . , , kn−1, , kn,

Shuffling cards top-to-random is a procedure which takes first card from the top (at the beginning: k1)
and puts it randomly (i.e. with uniform distribution) in gaps. So the probability it gets into fixed
position is 1

n , in particular this is the probability of card getting under kn or staying in the same (first)
position.
The state space here is a set of all permutations of these cards: E = {e1, e2, . . . , eN}, where N = n!.
The stationary distribution is a uniform one. How many steps are required to be ”near” stationary
(uniform) distribution (to mix cards well)?

Algorithm 4.4.1 (for shuffling cards top-to-random).

• Observe X = (X0, X1, . . . , Xm) till first card get under kn (denote this moment by T1)

• Observe random walk till second card get under kn (denote this moment by T2)

...

• Observe random walk till there will be n−1 cards under kn (i.e. card kn is on the top, denote this
moment by Tn−1)

• Do one step more

• Stop

Of course T is a stopping time. The proof that it is a Strong Uniform Time is by induction. At each
moment, conditioned on cards which are under kn, every permutation of them is equally likely.
Not formally: Let us look at the moment when second card (kj) goes under kn (at moment T2). Assume,
that now there are two cards ki and kj . Two arrangements are possible: (ki, kj) or (kj , ki). Card kj
could get under or over ki with the same probability ( 1

n ), so both arrangements are equally likely.
Formally, the position can be described in the following way:

{M, {ki1 , . . . , kiM },ΠM},

where: M - number of cards under kn,
ki1 , . . . kiM - cards under kn,

ΠM : {1, . . . ,M} → {ki1 , . . . , kiM } - permutation.

Lemma 4.4.2. At each moment, conditioned on M, {ki1 , . . . , kiM } the permutation ΠM is uniform.

Proof. By induction:
Of course it is true when M = 0 or M = 1.
Assume it is true for M = r, it remains true till next card kir+1 gets under kn:

ki1 , , ki2 , , ki3 , , . . . , , kir−1 , , kir ,

Because of assumption before this new card gets under kn the distribution over r cards is uniform. New
card has the same chance to get into every gap between cards ki1 , . . . , kir , so each of new arrangements
are equally likely, i.e. the probability of each permutation ΠM+1 has the same probability.

�

Lemma 4.4.3. In the above model let k = n logn+ cn. Then

d(µPk, U) ≤ e−c for c ≥ 0, n ≥ 2.
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Proof.

Notice that T can be rewritten as (defining T0=0)

T = Tn − Tn−1︸ ︷︷ ︸
Xn

+Tn−1 − Tn−2︸ ︷︷ ︸
Xn−1

+ . . .+ T1 − T0︸ ︷︷ ︸
X1

. (4.71)

Random variable X1 has geometric distribution with parameter 1
n (what we will denote: X1 ∼ Geo( 1

n )),

it is waiting time for first success which is when first card gets under kn. In general: Xi ∼ Geo( in ).

At first we proof weaker result using Chebyshev’s inequality ( P (|T − ET | ≥ cσ) ≤ 1
c2 ).

To do that calculate ET and V arT .

ET = n+
n

2
+
n

3
+ . . .+

n

n
= n

n∑

i=1

1

i
≈ n logn

V arT =

n∑

i=1

V arXi =

n∑

i=1

1 − 1
n

( in )2
=

n∑

i=1

(
1 − i

n

)(n
i

)2

=

= n2
n∑

i=1

1

i2
− n

n∑

i=1

1

i
≈ π2

6
n2 − n logn ≈ n2

For k = n logn+ cn from Chebyshev’s inequality we obtain:

d(µPk, π) ≤ s(µPk, π) ≤ P (T > k) =

= P (T > n logn+ cn) ≈ P (T > ET + c
√
V arT ) ≤ 1

c2 .

To finish the proof consider drawing balls from urn with replacement. There are n different balls. Let
V denotes number of drawings till time each ball is drawn at least once. For each ball i we introduce

Ai =






1 ball i was not drawn in first m experiments,

0 otherwise.
(4.72)

Set m = n logn+ cn.

P (V > m) = P (

n⋃

i=1

Ai) ≤
n∑

i=1

P (Ai) = n

(
1 − 1

n

)m
≤ ne−

m
n = e−c

V can be rewritten as

V = (V − Vn−1) + (Vn−1 − Vn−2) + . . .+ (V2 − V1) + V1,

where Vj is the number of experiments till j different balls are chosen at least once. After j different
balls are drawn the chance that new drawing will give new ball is n−i

n so Vi+1 − Vi has a geometric

distribution with parameter 1 − i
n . It follows that T and V have the same distributions, thus

P (T > n logn+ cn) ≤ e−c.

�
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4.5 Example: Symmetric walk on d−demensional cube

This example can be found in Aldous and Diaconis [3]. We give no prove here.

State space: E = {0, 1}d. Denote s = (s1, . . . , sd), s
′ = (s′1, . . . , s

′
d) ∈ E, where si, s

′
i ∈ {0, 1}. Probabil-

ity transition matrix P in this case is of form:

P(s, s′) =





1
d+1 if

∑d
i=1 |si − s′i| = 0 or 1,

0 otherwise.

(4.73)

I.e. in one step from state s only states which differs on one coordinate can be reached, each with
probability 1

d+1 or with the same probability chain can stay in the same state.
The state space for case d = 3 and possible movements (arrows) from state (0, 0, 0) are shown in Figure
6.

1
4

1
4

1
4

1
4

Figure 6: Example: Random Walk on 3D cube

It turns out that in this case the speed of convergence is exactly the same as in shuffling cards top-in-
random. Here the Strong Uniform Time T as in (4.71) can be written in the following way:

T = Td − Td−1︸ ︷︷ ︸
Xd

+Td−1 − Td−2︸ ︷︷ ︸
Xd−1

+ . . .+ T1 − T0︸ ︷︷ ︸
X1

,

where Xi are iid with distribution Geo( id ). So after k = d log d+ cd steps we have:

d(µPk, π) ≤ s(µPk, π) ≤ e−c.

�
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4.6 Example: matching in graph

We start with the following

Definition 4.6.1 (Matching in graph). The set of edges having no common vertex, such that each vertex
belongs to some edge from this set (graph with odd number of vertices can have one vertex not belonging
to matching).

Here are all 3 possible matchings for 4 vertices:

b

b

b

b

1 2

4 3
b

b

b

b

1 2

4 3
b

b

b

b

1 2

4 3

Figure 7: Possible matchings for 4 vertices

We will be looking for random matching in given complete graph with even number of vertices. In such a
graph if we label vertices from 1 to 2n matching can be defined as division of set {1, 2, . . . , 2n} into n 2-
elements subsets. So matchings from Figure 7 can be represented as: {1, 2}{3, 4}; {1, 3}{2, 4}; {1, 4}{2, 3}
Number of matchings can be counted in following way: we put all 2n numbers one next to another and
take consecutive pairs as matching’s elements; we can arrange 2n numbers in (2n)! ways, this we have
to devide by 2n (the order in pairs does not count) and devide it by n! (order of pairs does not count

either). So we have N = (2n)!
2nn! matchings in graph with 2n vertices.

We consider Markov chain with state space E = {set of matchings} which evolves in the following way:
from state s1 ∈ E in one step it can go to state s2 which differs only this, that in only two pairs vertices
were exchanged, or it stays in the same state.
More precise: Being in state s1 = {i1, i2}, . . . , {i2n−1, i2n} we chose 2 pairs uniformly at random. If the
same pairs are chosen we do nothing, otherwise we flip a coin: assume that pairs {i1, i2} and {j1, j2}
were chosen: if Head then we exchange vertices in these pairs to get {i1, j1} and {j1, i2}; if Tail then we
exchange vertices to get {i1, j2} and {j1, i2}.
So the probability transition matrix P = [P(si, sj)](i,j=1...N) is following:

P = P(si, sj) =





1
n if si = sj ,

1
n2 if si i sj differs by exchange,

0 otherwise.

(4.74)

First notice that indeed it is a probability matrix.
From any state we can get to one of

(
n
2

)
· 2 other states (there are

(
n
2

)
ways of choosing a pair and in

each pair we can exchange vertices in two ways), so

∀(s ∈ E)
∑

i

P(s, si) = 1 · 1

n
+

(
n

2

)
· 2 · 1

n2
=

1

n
+

1

n2
· n(n− 1)

2
· 2 =

n2

n2
= 1.

Matrix P is symmetric, so the stationary distribution is uniform.

The movement in k−th step can be described as {Lk, Rk, θk} where Lk is a pair chosen with left hand,
Rk is a pair chosen with right one, θk ∈ {Tail,Head} is the result of independently flipped coin. The
idea in finding a Strong Uniform Time is to observe random walk and marking some vertices in such
way, that all the time distribution of matchings on already marked vertices is uniform. Here we have
the algorithm which running time is a desired Strong Uniform Time:
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Algorithm 4.6.2 (for matching).

• If Lk = Rk and chooses pair is unmarked - mark it

• If Lk 6= Rk and one of pairs Lk, Rk is marked - marked the other

• If all pairs are marked then Stop

• Observe next step and return to the beginning

Let T1, T2, . . . , T := Tn denote succeeding moments when first, second, . . . , n−th pair is marked.

Lemma 4.6.3. At each step, conditioned on marked pairs and vertices in these pairs, distribution on
them is uniform. So T is the Strong Uniform Time.

Proof.
Induction by number of marked pairs will be used. When there is 0 or 1 pair marked of course the
lemma is true.

Assume that at time T1 a pair {i1, i2} was marked - notice that before moment T2 this pair surely was
not changed - random walk could only chose another pairs and make exchanges there (otherwise another
pair would be marked, but it is impossible before T2) or it could also happen that Lk = Rk = {i1, i2},
but then nothing was exchanged. Assume that in moment T2 a pair {j1, j2} is marked. There are 3
possible matchings on marked elements:

{i1, i2} {j1, j2} ; {i1, j2} {j1, i2} ; {i1, j1} {i2, j2}
Calculate probability each of them:

Pr({i1, i2} {j1, j2}) = 1
n2

it had to be Lk = Rk = {j1, j2}

Pr({i1, j2} {j1, i2}) = 1
n · 1

n · 1
2 + 1

n · 1
n · 1

2 = 1
n2

or : Lk = {i1, i2}, Rk = {j1, j2}, θk = Tail
or : Lk = {j1, j2}, Rk = {i1, i2}, θk = Tail

Pr({i1, j1} {i2, j2}) = 1
n · 1

n · 1
2 + 1

n · 1
n · 1

2 = 1
n2

or : Lk = {j1, j2}, Rk = {i1, i2}, θk = Head
or : Lk = {i1, i2}, Rk = {j1, j2}, θk = Head

So conditioning on event that in time T1 a pair {i1, i2} was chosen and in time T2 a pair {j1, j2} was
chosen, all three mathcings are equally likely, so the distribution on these pairs is uniform.

The reasoning with M pairs marked is similar. Assume that at time k there are M pairs marked:
{i11, i12}, {i21, i22}, . . . , {iM1 , iM2 } In next steps till new card is chosen the distribution on them is uniform
(from induction assumption) Assume that later a new pair {j1, j2} is marked. Such situations are
possible: either these two vertices will be together in pair: {j1, j2} either vertices in newly chosen pair
and in some other already marked will be exchanged: new pairs are then {is1, j1}, {is2, j2}. Calculate
probabilities of these all situations:

Pr({i11, i12}, . . . , {iM1 , iM2 }, {j1, j2}) = 1
n2

it had to be Lk = Rk = {j1, j2}

Pr({i11, i12}, . . . , {is1, j1}, . . . , {iM1 , iM2 }, {is2, j2}) = 1
n · 1

n · 1
2 + 1

n · 1
n · 1

2 = 1
n2

or : Lk = {i1, i2}, Rk = {j1, j2}, θk = Tail
or : Lk = {j1, j2}, Rk = {i1, i2}, θk = Tail
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So all of these 2M + 1 situations are equally likely, thus in every moment the distribution on marked
vertices is uniform. It follows that random variable T (the running time of algorithm 4.6.2) is a Strong
Uniform Time.

�

The speed of convergence is given in the following lemma:

Lemma 4.6.4. For c > 0 after k = 2n logn+ cn steps total variation distance between Pk (the distri-
bution of matchings in k−th step) and uniform distribution is less or equal to 1

c2 .

Proof.

To estimate P (T > k) notice that intervals between moment when some pair is chose are iid random
variables with geometric distribution. We can write (defining T0 = 0):

T = Tn − Tn−1︸ ︷︷ ︸
Xn

+Tn−1 − Tn−2︸ ︷︷ ︸
Xn−1

+ . . .+ T1 − T0︸ ︷︷ ︸
X1

,

where X1 is waiting time for first moment in which Lk = Rk, so it has distribution Geo( 1
n ).

X2 is a first moment after X1 in which new pair is marked, what can happen in two ways: whether
Lk = Rk and this pair was not marked earlier or exactly one of pairs Lk and Rk is unmarked. Calculate:

P (X2 = 1) =
1

n2
· (n− 1) +

1

n2
· (n− 1) =

2(n− 1)

n2
.

So X2 has distribution Geo( 2
n ).

In general: Xi ∼ Geo
(

(n−i)(i+1)
n2

)
. So we can calculate ET and V arT :

ET =
n−1∑

i=0

n2

(i+ 1)(n− i)
= n2

n∑

i=1

1

i(n+ 1 − i)
= n2

n∑

i=1

1

(n+ 1)

(
1

i
+

1

n+ 1 − i

)

=
n2

n+ 1
· 2

n∑

i=1

1

k
≈ 2n logn,

V arT =

n−1∑

i=0

1 − (i+1)(n−i)
n2

(
(i+1)(n−i)

n2

)2 =

n∑

i=1

n2 − i(n+ 1 − i)

n2
· (n2)2

(i(n+ 1 − i))
2

= n2
n∑

i=1

n2 − i(n+ 1 − i)

i2(n+ 1 − i)2
=

[
n4

n∑

i=1

1

i2(n+ 1 − i)2
− n2

n∑

i=1

1

i(n+ 1 − i)

]
.

Notice that second term is already calculated before, it is ET , so n2
∑n
i=1

1
i(n+1−i) ≈ 2n logn.

First term we can estimate in the following way:

1

i2(n+ 1 − i)2
=

1

(n+ 1 − i)2 + i2

(
1

i2
+

1

(n+ 1 − i)2

)
≤ 1

n2

(
1

i2
+

1

(n+ 1 − i)2

)
.

Thus:

n4
n∑

i=1

1

i2(n+ 1 − i)2
≤ n4

n∑

i=1

1

n2

(
1

i2
+

1

(n+ 1 − i)2

)
= n2

(
n∑

i=1

1

i2
+

n∑

i=1

1

i2

)

≤ 2n2
∞∑

i=1

1

i2
= 2n2π

2

6
=
π2

3
n2.

So we have:
V arT ≈ n2.
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From Chebyshev’s inequality we obtain

P (T − ET > c ·
√
V arT ) = P (T > 2n logn+ cn) ≤ 1

c2 .

Using Lemma 4.1.5 with k = 2n logn+ cn finishes the proof:

d(µPk, π) ≤ (µPk, π) ≤ P (T > k) ≤ 1
c2 .

�
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5 Factorization of passage time distributions

5.1 Factorization in discrete time

Let τe(B) = inf{n : Xn ∈ B,X0 = e} and τµ(B) =
∑

e∈E
τe(B)µ(e).

We are interested in the total variation distance between distributions: µPn and π.
As shown in section 3 we have a bound

d(µPn, π) ≤ s(µPn, π) = max
k

(
1 − µPn(ek)

π(ek)

)
.

So if only µPn(ei)
π(ei)

achieves minimum at ẽ we have a bound on the total variation distance. Another

issue is whether we are able to compute µPn(ẽ)
π(ẽ) or not. Some examples will be given.

Definition 5.1.1. For a chain X = {Xn, n ≥ 0} with initial distribution µ a state ẽ is ratio minimal

for µ,X

if ∀(e ∈ E, n ≥ 0)
µPn(ẽ)

π(ẽ)
≤ µPn(e)

π(e)
.

For a chain X = {Xn, n ≥ 0} a state ẽ is s-uniform for µ,X if

∀ (n ≥ 1) s(µPn, π) = 1 − µPn(ẽ)

π(ẽ)
.

Lemma 5.1.2. ẽ is ratio minimal for µ,X ⇐⇒ ẽ is s-uniform for µ,X.

Proof.

⇒ Assume ẽ is ratio minimal for µ,X. Then

s(µPn, π) = max
e

(
1 − µPn(e)

π(e)

)
= 1 − min

e

µPn(e)

π(e)
= 1 − µPn(ẽ)

π(ẽ)
.

⇐ Assume ẽ is s-uniform for µ,X. Then ∀(n ≥ 1, e ∈ E)

s(µPn, π) = 1 − µPn(ẽ)

π(ẽ)
= max

e

(
1 − µPn(e)

π(e)

)
≥
(

1 − µPn(e)

π(e)

)

i.e.
µPn(ẽ)

π(ẽ)
≤ µPn(e)

π(e)

Lemma 5.1.3. Let X = {Xn, n ≥ 0} be a Markov chain with initial distribution µ. If state ẽ is ratio
minimal for X, µ then

µPn1(ẽ) ≤ µPn2(ẽ) for any n1 < n2

i.e. µPn(ẽ) is non-decreasing in n.
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Proof.

µPn1(ẽ) =
µPn1(ẽ)

π(ẽ)
π(ẽ)

∗
=
µPn1(ẽ)

π(ẽ)

∑

i

π(ei)δeiP
n2−n1(ẽ) =

∑

i

µPn1(ẽ)

π(ẽ)
π(ei)δeiP

n2−n1(ẽ)

∗∗
≤
∑

i

µPn1(ei)

π(ei)
π(ei)δeiP

n2−n1(ẽ) =
∑

i

µPn1(ei)δeiP
n2−n1(ẽ) = µPn2(ẽ),

where

∗∑i π(ei)δeiP
n2−n1(ẽ) : start with stationary distribution π, then probability of getting to ẽ after time

n2 − n1 is (further stationary) = π(ẽ),

∗∗ - from assumption.

Thus
µPn1(ẽ) ≤ µPn2(ẽ) for n1 < n2.

We will need the following

Lemma 5.1.4. Let Y be non-negative random variable. Then:

φY (s) = (1 − e−s)
∑∞
n=0 e

−snP (Y ≤ n)

Proof.

(1 − e−s)
∞∑

n=0

e−snP (Y ≤ n) = (1 − e−s)
∞∑

n=0

e−sn (P (Y = 0) + P (Y = 1) + . . .+ P (Y = n)) =

(1 − e−s)
[
e−s0P (Y = 0) + e−s·1(P (Y = 0) + P (Y = 1))e−s·2(P (Y = 0) + P (Y = 1) + P (Y = 2))

+ . . .+ e−s·k(P (Y = 0) + . . .+ P (Y = k)) + . . .
]

=

= (1−e−s)
[
P (Y = 0)(e−s·0+e−s·1+. . .)+P (Y = 1)(e−s·1+e−s·2+. . .)+. . .+P (Y = k)(e−s·k+e−s·(k+1)+. . .)]

= (1 − e−s)
[
P (Y = 0)

(
e−s·0

1 − e−s

)
+ P (Y = 1)

(
e−s·1

1 − e−s

)
+ . . .+ P (Y = k)

(
e−s·k

1 − e−s

)
+ . . . =

= e−s·0P (Y = 0) + e−s·1P (Y = 1) + . . .+ e−s·kP (Y = k) + . . . = φY (s)

The next lemma states, that in the case of µPn(e) being increasing in n, the passage time to e ∈
E starting with a distribution µ can be decomposed into first passage time to stationarity, i.e. to
distribution π starting from µ plus passage time to e starting from distribution π. We can interpret it

as if τµ(e) had the same distribution as the sum of Ye and τπ(e), i.e.: τµ(e)
d
= Ye + τπ(e), where Ye is

a random variable with distribution function FYe
(n) = P (Ye ≤ n) = µPn(e)

π(e) (or equivalently, density of

Ye is given by fYe
(n) = µPn(e)−µPn−1(e)

π(e) ).

Lemma 5.1.5 (Brown [5]). Let X = {Xn, n ≥ 0} be ergodic Markov chain with enumerable state space
E = {e1, e2, . . .} and invariant measure π. If for initial distribution µ and e ∈ E we have that µPn(e)
is non-decreasing in n then

ψτµ(e) = ψYe
· ψτπ(e),

where Ye is independent of X with distribution function FYe
(n) = P (Ye ≤ n) = µPn(e)

π(e) or, equivalently,

with density fYe
(n) = µPn(e)−µPn−1(e)

π(e) .
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Proof. We have:

π(e) = Pπ(Xn = e) =

n∑

x=0

δeP
n−x(e)P (τπ(e) = x). (5.75)

Multiplying both sides by e−sn and summing up over all n we have (left side is independent of n):

π(e)

1 − e−s
= π(e)

∞∑

n=0

e−sn =

∞∑

n=0

e−sn
n∑

x=0

δeP
n−x(e)P (τπ(e) = x)

∞∑

x=0

∞∑

n=x

e−snδeP
n−x(e)P (τπ(e) = x) =

∞∑

x=0

e−sxP (τπ(e) = x)

∞∑

n=0

e−snδeP
n(e) = ψδePn(e)(s)ψτπ(e)(s).

Thus:

ψδePn(e)(s) =
π(e)

(1 − e−s)ψτπ(e)(s)
. (5.76)

The assumption is that µPn(e) is non-decreasing in n and of course µPn(e) → π(e) as n → ∞, so
µPn(e)
π(e) is a distribution function of some random variable Ye. We can calculate its Laplace transform

using Lemma 5.1.4:

ψYe
(s) = (1 − e−s)

∞∑

n=0

e−snP (Ye ≤ n) = (1 − e−s)
∞∑

n=0

e−sn
µPn(e)

π(e)
=

(1 − e−s)

π(e)
ψµPn(e)(s).

Thus:

ψµPn(e)(s) =
π(e)

(1 − e−s)
ψYe

(s). (5.77)

Similarly to (5.75) expanding µPn(e) we obtain:

µPn(e) = Pµ(Xn = e) =

n∑

x=0

δeP
n−x(e)P (τµ(e) = x)

and thus:

ψµPn(e)(s) = ψδePn(e)(s)ψτµ(e)(s). (5.78)

Finally from (5.76), (5.77) and (5.78) we have:

ψτµ(e)(s) =
ψµPn(e)(s)

ψδePn(e)(s)
=

π(e)

(1 − e−s)
ψYe

(s) · (1 − e−s)

π(e)
ψτπ(e)(s) = ψYe

(s) · ψτπ(e)(s).

Next theorem is the extension of Theorem 5.1.5 in case when stationary distribution π is uniform. Then
we can have factorization not only for a single state, but for set of states.

Let U denotes uniform distribution and U|B uniform distribution narrowed to B ⊂ E.

Lemma 5.1.6. Let X = {Xn, n ≥ 0} be ergodic Markov chain with finite state space E = {e1, e2, . . .}
and uniform stationary distribution U . If for initial distribution µ and B ⊂ E we have that µPn(B) is
non-decreasing in n then

ψτµ(B) = ψYB · ψτU (B),

where YB is independent of X with distribution function FYB (n) = P (YB ≤ n) = µPn(B)
U(B) or, equivalently,

with density fYB (n) = µPn(B)−µPn−1(B)
U(B) .
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Proof. We have:

U(B) = PU (Xn ∈ B) =

n∑

x=0

U|BPn−x(B)P (τU (B) = x) (5.79)

Multiplying both sides by e−sn and summing up over all n we have (left side is independent of n):

U(B)

1 − e−s
= U(B)

∞∑

n=0

e−sn =

∞∑

n=0

e−sn
n∑

x=0

U|BPn−x(B)P (τU (B) = x)

∞∑

x=0

∞∑

n=x

e−snU|BPn−x(e)P (τU (e) = x) =

∞∑

x=0

e−sxP (τU (B) = x)

∞∑

n=0

e−snU|BPn(B) = ψU|BPn(B)(s)ψτU (B)(s).

Thus:

ψU|BPn(B)(s) =
π(B)

(1 − e−s)ψτU (B)(s)
. (5.80)

Calculate Laplace transform of YB using Lemma 5.1.4:

ψYB (s) = (1 − e−s)
∞∑

n=0

e−snP (YB ≤ n) = (1 − e−s)
∞∑

n=0

e−sn
µPn(B)

U(e)
=

(1 − e−s)

U(B)
ψµPn(B)(s).

Thus:

ψµPn(B)(s) =
U(B)

(1 − e−s)
ψYB (s). (5.81)

Similarly to (5.79) expanding µPnB) we obtain:

µPn(B) = Pµ(Xn ∈ B) =

n∑

x=0

U|BPn−x(B)P (τµ(B) = x)

and thus:

ψµPn(B)(s) = ψU|BP
n(B)(s)ψτµ(B)(s). (5.82)

Finally from (5.80), (5.81) and (5.82) we have:

ψτµ(B)(s) =
ψµPn(B)(s)

ψU|BPn(B)(s)
=

U(B)

(1 − e−s)
ψYB (s) · (1 − e−s)

U(B)
ψτU (B)(s) = ψYB (s) · ψτU (B)(s).

Theorem 5.1.7. Let X = {Xn, n ≥ 0} be a Markov chain with stationary distribution π. If ẽ is ratio
minimal for µ,X then

(i) ψτµ(ẽ) = ψYẽ
· ψτπ(ẽ) (τµ(ẽ)

d
= Yẽ + τπ(ẽ)),

(ii) there exists Minimal Strong Stationary Time Tµ such that

s(µPn, π) = 1 − µPn(ẽ)

π(ẽ)
= P (Tµ > n) ∀(n ≥ 0).

where Yẽ is as in Lemma 5.1.5.

Proof.

(i) From Lemma 5.1.3 we have that µPn(ẽ) is non-increasing in n and this is the assumption of Lemma
5.1.5 which implies ψτµ(ẽ) = ψYẽ

· ψτπ(ẽ).
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(ii) In Lemma 4.1.8 we had that there always existed µ−Minimal Strong Stationary Time. In the

proof we had: αn = min
e

µPn(e)

π(e)
. Because ẽ is ratio minimal, thus we have αn =

µPn(ẽ)

π(ẽ)
. It was

constructed in such way that

P (Tµ = n) = αn − αn−1.

Since it is µ−Minimal Strong Stationary Time, we have P (Tµ > n) = s(µPn, π) = 1 − µPn(ẽ)
π(ẽ) .

Next lemma says us something about the structure of a chain in case of δeP
n(e) being non-increasing

in n. Then the first passage time to e starting with stationary distribution π is a geometric compound:

τπ(e)
d
=

N∑

i=1

We,i, where N has geometric distribution: P (N = k) = (1 − π(e))kπ(e), k = 0, 1, . . . and

We,i, i = 1, 2, . . . are i.i.d. random variables with the same distribution as We: P (We ≤ n) = 1−δePn(e)
1−π(e)

or equivalently with density function P (We = n) = δeP
n−1(e)−δePn(e)

1−π(e) .

Lemma 5.1.8 (Brown [5]). Let X = {Xn, n ≥ 0} be ergodic Markov chain with enumerable state space
E = {e1, e2, . . .} and invariant measure π. If for a state e we have that δeP

n(e) is non-increasing in n
then

ψτπ(e) =
π(e)

1 − (1 − π(e))ψWe

,

where We is independent of X and P (We > n) = δeP
n(e)−π(e)
1−π(e) .

Proof. Using Lemma 5.1.4 (We is a non-negative random variable):

ψWe
(s) = (1 − e−s)

∞∑

n=0

e−snP (We ≤ n) = (1 − e−s)
∞∑

n=0

e−sn(1 − P (We > n)) =

(1 − e−s)
1

1 − e−s
− (1 − e−s)

∞∑

n=0

e−snP (We > n) = 1 − (1 − e−s)
∞∑

n=0

e−snP (We > n). (5.83)

We have

∞∑

n=0

e−snP (WB > n) =

∞∑

n=0

e−sn
δBPn(e) − π(e)

1 − π(e)
=

1

1 − π(e)

∞∑

n=0

e−snδBPn(e) − π(e)

1 − π(e)

∞∑

n=0

e−sn =

1

1 − π(B)
· ψδBPn(e)(s) −

π(e)

1 − π(e)
· 1

1 − e−s
.

Putting it again to (5.83) we obtain

ψWe
(s) = 1 − (1 − e−s)

(
1

1 − π(B)
· ψδBPn(e)(s) −

π(e)

1 − π(e)
· 1

1 − e−s

)
,

and from here:

ψδePn(e)(s) =
1 − ψWe

(1 − π(e))

1 − e−s
.

Putting it to (5.76)
(
ψτπ(B)(s) = π(e)

(1−e−s)ψδBPn(e)(s)

)
we have

ψτπ(e)(s) =
π(e)

1 − (1 − π(e))ψWe
(s)

.

54



5.1.1 Special cases

The clue is to find out when ẽ ratio minimality holds.
Notice that it has nothing to do with the ordering of the space. Nevertheless, in some cases when we
define a partial ordering on E it is possible to find µ and ẽ such that we have ẽ ratio minimality for
µ,X. Introduce the following assumptions :

A0: Markov chain X = {Xn, n ≥ 0} is ergodic, E = {e1, . . . , eM} is finite and partially ordered with
ordering ≺

A1: there exists maximal state eM such that ∀(ei ∈ E) ei ≺ eM

A2:
µ(ej)
π(ej)

ցj (relative to ≺)
(
i.e. ei ≺ ej =⇒ µ(ei)

π(ei)
≥ µ(ej)

π(ej)

)

A1 says that there always exists maximal state comparable to all the others, and A2 that µ is smaller
then π in some stochastic sense (likelihood ratio ordering).

• Stochastic monotonicity of time-reversed process X̃

Recall the definition of stochastically monotone Markov chain.

Set A is an upper set (denoted by A ↑), if (x ∈ A and x ≺ y) ⇒ y ∈ A. Markov chain with transition
matrix P is stochastically monotone if

∀(A ↑)∀(e1 ≺ e2) δe1P(A) =
∑

e∈A
δe1P (e) ≤ δe2P(A). (5.84)

Time-reversed process {X̃} is the one with transition probabilities δe2P̃(e1) = π(e1)
π(e2)

δe1P(e2) (and

process is time-reversible if P̃ = P).

Fact 5.1.9 (Stoyan & Mueller [44]). Let h be decreasing relative to ≺ and P stochastically monotone.
Then

∀(n ≥ 0) ∀(ei ≺ ej) Eeih(Xn) ≥ Eejh(Xn).

�

Theorem 5.1.10 (Brown [5]). Assume that A0 −A2 are fulfilled, and in addition that

• Time-reversed process X̃ = {X̃n, n ≥ 0} is stochastically monotone.

Then
(i) eM is ratio minimal for µ,X,

(ii) ψτµ(eM ) = ψYeM
· ψτπ(eM ) (τµ(eM )

d
= YeM + τπ(eM )),

(iii) there exists Minimal Strong Stationary Time Tµ such that

s(µPn, π) = 1 − µPn(eM )

π(eM )
= P (Tµ > n) ∀(n ≥ 0).

where YeM is random variable independent of chain X with distribution P (YeM ≤ n) = µPn(eM )
π(eM ) .

Proof. Define h(e) = µ(e)
π(e) . For all ei ≺ ej using fact 5.1.9 we have

µPn(ej)

π(ej)
=
∑

ei∈E

µ(ei)

π(ej)
δeiP

n(ej) =
∑

ei∈E

µ(ei)

π(ej)
· π(ej)

π(ei)
δej P̃

n(ei)

=
∑

ei∈E

µ(ei)

π(ei)
δej P̃

n(ei) = Eejh(X̃) ≤ Eeih(X̃) =
µPn(ei)

π(ei)

and especially for all ei we have ei ≺ eM , thus

µPn(eM )

π(eM )
≤ µPn(ei)

π(ei)
,

i.e. eM is ratio minimal for µ,X. This (by Theorem 5.1.7) implies (ii) and (iii).
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Remark 5.1.11.

Define distance dist(ex, ey) = minn δexP
n(ey) > 0. If µ = δex (we start from {ex}) than necessary

condition on eM to be ratio minimal for µ,X is: dist(ex, ey) ≤ dist(ex, eM ) for each ey ∈ E. It is this
way, because if eM is ratio minimal and δexP

n(eM ) > 0 then:

1 > s(δexP
n, π) = 1 − δexP

k(eM )

π(eM )
≥ 1 − δexP

k(ey)

π(ey)
,

thus δexP
k(ey) > 0.

In applications there usually exists one potential state, which can be ratio minimal. The problem then

reduces to producing a partial ordering ≺ under which eM is the unique maximal state, ex is a minimal
state, and X̃ is stochastically monotone.

• Failure Rate Monotonicity

Notice that under assumptions A0-A2 we have that µPn(ei)
π(ei)

is non-increasing in ei what is stronger than

our needs - in Theorem 5.1.7 only fact that µPn(ei)
π(ei)

has minimum in eM is needed.

In this subsection we shall find weaker assumptions on transition probability matrix under which there
exists some ratio minimal state.

Let assumptions A0 − A2 will still be fulfilled, but in this subsection we additionally assume that
state space is totally ordered, i.e E = {1, 2, . . . ,M}. Define Aj to be an upper set of form Aj =
{j, j + 1, . . . ,M}. Of course Aj ⊂ Ai if i < j.

Define P to be Failure Rate Monotone (denoted by P ∈ FRM) for the transition probability matrix
of Markov chain with linear ordering if

For
i1 < i2
j1 < j2

: δi1P(Aj1 )δi2P(Aj2 ) ≥ δi1P(Aj2)δi2P(Aj1) ≡ δi1P(Aj2 )

δi1P(Aj1 )
≤ δi2P(Aj2 )

δi2P(Aj1 )
.

Theorem 5.1.12 (Brown [5]). Let assumptions A0 −A2 will be fulfilled, and in addition

• P ∈ FRM

Then
(i) eM is ratio minimal for µ,X,

(ii) ψτµ(eM ) = ψYeM
· ψτπ(eM ) (τµ(eM )

d
= YeM + τπ(eM )),

(iii) there exists Minimal Strong Stationary Time Tµ such that

s(µPn, π) = 1 − µPn(eM )

π(eM )
= P (Tµ > n), ∀(n ≥ 0).

where YeM is random variable independent of chain X with distribution P (YeM ≤ n) = µPn(eM )
π(eM ) .

It is enough to prove (i) which implies (by Theorem 5.1.7) (ii) and (iii). The proof can be found in
Brown [5].

�

• Non-negative spectrum of P
Lemma 5.1.8 gives us some nice factorization in case when δeP

n(e) is non-increasing in n. We find some conditions
which guarantee it.

Lemma 5.1.13. Let {Xn, n ≥ 0} be a Markov chain on a finite state space |E| = N with all eigenvalues real
and non-negative. Then

∀(e ∈ E),∀(n1 < n2) δeP
n1(e) ≥ δeP

n2(e)

i.e. δeP
n(e) is non-increasing in n for every e ∈ E.
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Proof. From spectral representation (3.39) we have

δeP
n(e) =

NX

i=1

λni Bi(e,e) =
NX

i=1

λni (π(e))2 .

From our assumptions for all i = 1, . . . , N , we have λi ∈ [0, 1], thus δeP
n(e) in non-increasing in n.

• Markov chain {X2n, n ≥ 0} governed by P2, for reversible P.

Lemma 5.1.14. Let {Xn} be a Markov chain on finite state space |E| = N with transition matrix P. Assume
it is time-reversible. Let {Yn} be a Markov chain with transition matrix R = P2 (i.e. we observe every second
step of {Xn}). Then

∀(e ∈ E),∀(n1 < n2) δeR
n1(e) ≤ δeR

n2(e)

i.e. δeR
n(e) is non-increasing in n for every e ∈ E.

Proof. It is known that for time-reversible Markov chain all eigenvalues are real and λi ∈ [−1, 1] for i = 1, . . . , N .
We have

δeR
n(e) = P (Yn = e|Y0 = e) = P (X2n = e|Y0 = e)

∗
=

NX

i=1

λ2n
i (π(e))2 ,

where ∗ is from representation (3.39). We see that all eigenvalues of matrix R are non-negative, thus assumption
of Lemma 5.1.13 is fulfilled.

Remark In continuous time we always have that δePt(e) is non-decreasing in t, see for example Keilson [27].

5.2 Continuous time Markov chains

A stochastic process X = (Xt, t ≥ 0) is called Markov Process if for any t, s ≥ 0 and e ∈ E we have
P (Xt+s = e | Xu;u ≤ t) = P (Xt+s = e | Xt). Denote its state space by E and its stationary distribution by π.
We assume E is finite or enumerable and its elements will be denoted E = {e1, e2, . . .}, and in the case when we
have linear ordering: E = {1, 2, . . .}.
For fixed e,e′ function t→ δePt(e

′) is called a transition function. Also transition function is called the whole
family of matrices Pt, t ≥ 0.
We use the following notation similarly to discrete case

δePt(B) = Pe(Xt ∈ B) = P (Xt ∈ B|X0 = e) − Probability of hitting B at time t starting from
X0 = e

τe(B) = inf{t : Xt ∈ B,X0 = e} − First passage time to B starting from X0 = e

τµ(B) =
R
E
τe(B)dµ(e) − First passage time to B starting with X0 ∼ µ

µPt(B) = Pµ(Xt ∈ B) − First passage time to B starting with X0 ∼ µ

If set B will be one state set, i.e. B = {e}, it will be shortly written B := e.

We we denote the Laplace transform of continuous, real-valued random variable Y by

ψY (s) =

Z

E

e−stdFY (t).

We assume that for every e 6= e′ there exist limits

q(e, e′) = lim
t→0

δePt(e
′)

t
.

We define q(e, e) = −P
e′ 6=e

q(e, e′). Matrix Q = [q(e1, e2)]e1,e2∈E is called intensity matrix (it can be

written Q = limt→0
Pt−I

t
) We also assume, that it is conservative, i.e. −q(e,e) < ∞ ∀(e ∈ E). From

Chapman-Kolmogorov equations we have:

d

dt
Pt = PtQ = QPt.
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Assuming that P0 = I (i.e. limt→0 δePt(e
′) = 1 if e = e′2 and 0 otherwise) the above equation has solution:

Pt = eQt,

where eA means matrix exponential: eA =
P∞
k=0

Ak

k!
.

We define separation distance as follows:

s(µ, ν) = max
e∈E

„
1 − µ(e)

ν(e)

«
.

We will be interested in s(µPt, π). Similarly as for discrete time, s is an upper bound for total variation distance:

d(µPt, π) ≤ s(µPt, π).

Markov process X = {Xt, t ≥ 0}t≥0 with finite or enumerable state space E is stochastically monotone if

∀(t) ∀(µ ≺st ν) µPt ≺st νPt

“
≡ ∀(f increasing) Ptf jest increasing

”
. (5.85)

5.2.1 Uniformization

Let X = (Xt, t ≥ 0) be a Markov chain with enumerable state space E with intensity matrix Q = [q(e, e′)]
(q(e, e) = −P

e′ 6=e
q(e, e′)). Denote qe = −q(e,e).

The process evolves in the following way: with some initial distribution µ starting state e is chosen, later the
process stays in this state for random time T1 - exponentially distributed Exp(q(e)), after that it jumps to state

e′ with probability q(e,e′)
q(e)

, where it stays exponential time Exp(q(e′)), and so on.

If all q(e) are bounded, i.e. q(e) ≤ c <∞ ∀e ∈ E, then the process is called uniformizable. (Process is always
uniformizable in the case of finite state space (|E| <∞)).

We assume as former that there exist d
dt
δePt(e

′)
˛̨
˛
t=0+

= q(e, e′) and recall that for matrix A we defined:

eA =
P∞
k=0

Ak

k!
.

From Chapman-Kolmogorov we have:

µPt+h(e) =
X

e′∈E
µPt(e

′)δe′Ph(e),

µPt+h(e) − µPt(e) =
X

e′∈E
µPt(e

′)δe′Ph(e) − µPt(e).

Dividing both sides by h and making h→ 0

d

dt
µPt(e) =

X

e′∈E
µPt(e

′)q(e′, e) = −q(e)µPt(e) +
X

e′ 6=e

µPt(e
′)q(e′, e). (5.86)

Let us define matrix Ac:

Ac =

8
<
:

ac(e, e′) = qmn
c

for e 6= e′,

ac(e,e) = 1 − q(e)
c
.

(5.87)

Then equality (5.86) can be rewritten as:

d

dt
µPt(e) = −cµPt(e) + c

X

e′∈E
µPt(e

′)ac(e′, e). (5.88)

For vector ( Pt = (Pt(0),Pt(1), . . .) ) we can write:

d

dt
µPt = −c µPt [I −Ac], (5.89)

what has the only solution: Pt = P0e
−ct[I−Ac]. Having Pt we construct matrix Q and later Ac and we can

again recover Pt:

Pt = e−ct[I−Ac] = etQ =
∞X

k=0

e−ct
(ct)k

k!
(Ac)k , (5.90)
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i.e.

δePt(e
′) =

∞X

k=0

e−ct
(ct)k

k!

`
ac(e,e′)

´k
. (5.91)

Let us assume we have continuous time process X = (Xt, t ≥ 0) with intensity matrix QX and initial distribution
µ (denote it by Xt ∼ [µ,QX ]). Define discrete time process Xc

n ∼ [µ,Ac], where Ac is defined in (5.87), c ≥
supe∈E q

X(e) (where qX(e) = −qX(e, e)) and let Nc(t) be a Poisson process with intensity c. Let Y = (Yt, t ≥ 0),
where we define

Yt = Xc
Nc(t). (5.92)

Then processes (Yt, t ≥ 0) and (Xt, t ≥ 0) have the same finite dimensional distributions (these are the same
processes). Let us calculate intensity matrix QY of process Y. We have to calculate differential at zero of
δePt(e

′). From equality (5.91) for e 6= e′ we have ((a(e,e′)0 = δe(e′)):

d

dt
δePt(e

′) =
d

dt

 ∞X

k=0

e−ct
(ct)k

k!

`
ac(e,e′)

´k
!

=
d

dt

„
e−ct

`
ac(e,e′)

´0
+ e−ctct

`
ac(e,e′)

´
+ e−ct

(ct)2

2

`
ac(e,e′)c

´2
+ . . .

«

=

„
−ce−ctct q(e,e

′)

c
+ e−ctc

qX(e, e′)

c
+ t(. . .+ . . .)

«

and for t = 0:
qY (e,e′) = qX(e, e′).

The same in the case e = e′, we have qY (e) = qX(e).

We can have influence on process Nc(t) setting any c ≥ supe∈E q
X(e) what means we can set arbitrary big

intensity of jumps, but than the terms on diagonal of matrix Ac increase making probability of staying in the
same state higher. As a result in given state the process stays ”the same amount of time” as process Xt what is
shown on picture 8.

In process X time of staying in e is a random variable with distribution Exp(q(e)). The same is in Y, the
intervals between jumps (ones which really change the state) are mixture of: staying in state e (Poisson process
with parameter c, so intervals - let us call their distribution by M - are exponentially distributed Exp(c)) and
geometrical distribution (with probability ac(e,e) we stay in state e, and with probability
1 − ac(e, e) we leave it) - denote this random variable by N (geometric distribution with success parameter

p = 1 − ac(e, e) = 1 − (1 − q(e)
c

) = q(e)
c

). Then we have moment generating function of N :

ψN (t) =
pet

1 − (1 − p)et

and moment generating function of random variable M , which has distribution Exp(c):

ψM (t) =
c

c− t
.

We are interested in distribution of S =
PN

k=1Mi (Mi s i.i.d. ∼M):

ψS(t) = ψN (log(ψM (t)) =
p c
c−t

1 − (1 − p) c
c−t

=
p c
c−t
pc−t
c−t

=
pc

c− t
· c− t

pc− t
=

pc

pc− t
,

thus S has exponential distribution with parameter pc = c q(e)
c

= q(e), the same as process X.

For finite state space E : |E| = N we can always make continuous time process out of discrete by making transition
matrix P = Ac = I− 1

c
Q like as in (5.87). Analogically, one can make Q out of P taking Q = c(I−P). Matrices

Q and P have the same eigenvectors and eigenvalues of Q equal to c(1−λi), where λi is eigenvalue of P, because
if Pf = λf then Qf = c(I− P)f = cf − cλf = c(1 − λ)f .
Again, denote right eigenvectors of P by f1, . . . , fN and left ones by π1, . . . , πN and eigenvalues λ1 = 1, λ2, . . . , λN .
Matrix Q has the same eigenvectors and the eigenvalues are: s1 = c(1−λ1) = 0, s2 = c(1−λ2), . . . , sN = c(1−λN ).
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Figure 8: Exemplary ”the same” realizations of processes X and Y

Spectral representation (3.39) gives us Pk =
PN

j=1 λ
k
jBj where Bj = fTj πj as defined in (3.36). Because λ1 = 1

and eigenvector corresponding to this eigenvalue is f1 = (1, 1, . . . , 1) thus we have

Pk = π +
NX

j=2

λkj fjπj .

If we look at probability of getting from state e to e′ after k steps we have

δeP
k(e′) = π(e′) +

NX

j=2

λkj fj(e)πj(e
′). (5.93)

Putting Pk(= Ac) =
PN

j=1 λ
k
jBj into (5.90) we obtain:

Pt =
∞X

k=0

e−ct
(ct)k

k!
(Ac)k =

∞X

k=0

e−ct
(ct)k

k!

NX

j=1

λkjBj =
NX

j=1

e−ctBj

∞X

k=0

(ctλj)
k

k!
=

NX

j=1

e−ctBje
ctλj =

NX

j=1

e−ct(1−λj)Bj =

NX

j=1

e−sjtBj .

Thus again looking at probability of getting from e to e′ after time t we have

δePt(e
′) =

NX

j=1

e−sjtBj(e,e
′). (5.94)

In particular
“
Bj(e,e) = πj(e) · πj(e)

”
we have

δePt(e) =

NX

j=1

e−sjt(πj(e))2, (5.95)

what is a mixture of exponentials (because si ≥ 0) and thus is completely monotone.
We can rewrite (5.94) putting s1 = 0 :

δePt(e
′) = π(e′) +

NX

j=2

e−sjtfj(e)πj(e
′). (5.96)

5.3 Factorization in continuous time

Similarly as in section 5.1 we are interested in total variation distance between µPt and π.

Definition 5.3.1. For a chain X = (Xt, t ≥ 0) with initial distribution µ a state ẽ is ratio minimal for µ,X

if ∀(e ∈ E, t ≥ 0)
µPt(ẽ)

π(ẽ)
≤ µPt(e)

π(e)
.
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For a chain X = (Xt, t ≥ 0) a state ẽ is s-uniform for µ,X if

∀ (t ≥ 0) s(µPt, π) = 1 − µPt(ẽ)

π(ẽ)
.

Lemma 5.3.2. ẽ is ratio minimal for µ,X ⇐⇒ ẽ is s-uniform µ,X.

Proof.

⇒ Assume ẽ is ratio minimal for µ,X. Then

s(µPt, π) = max
e

„
1 − µPt(e)

π(e)

«
= 1 − min

e

µPt(e)

π(e)
= 1 − µPt(ẽ)

π(ẽ)
.

⇐ Assume ẽ is s-uniform for µ,X. Then ∀(n ≥ 1, e ∈ E)

s(µPt, π) = 1 − µPt(ẽ)

π(ẽ)
= max

e

„
1 − µPt(e)

π(e)

«
≥
„

1 − µPt(e)

π(e)

«

i.e.
µPt(ẽ)

π(ẽ)
≤ µPt(e)

π(e)
.

Lemma 5.3.3. Let X = (Xt, t ≥ 0) be a Markov chain with initial distribution µ. If state ẽ is ratio minimal
for X, µ then

µPt1(ẽ) ≤ µPt2(ẽ) for any t1 < t2

i.e. µPt(ẽ) is non-decreasing in t.

Proof. Similar to discrete-time case

µPt1(ẽ) =
µPt1(ẽ)

π(ẽ)
π(ẽ)

∗
=
µPt1(ẽ)

π(ẽ)

X

i

π(ei)δeiPt2−t1(ẽ) =
X

i

µPt1(ẽ)

π(ẽ)
π(ei)δeiPt2−t1(ẽ)

∗∗
≤
X

i

µPt1(ei)

π(ei)
π(ei)δeiPt2−t1(ẽ) =

X

i

µPt1(ei)δeiPt2−t1(ẽ) = µPt2(ẽ),

where

∗ Pi π(ei)δeiPt2−t1(ẽ) : start with stationary distribution π, then probability of getting to ẽ after time t2 − t1
is (further stationary) = π(ẽ),

∗∗ - from assumption.

Thus
µPt1(ẽ) ≤ µPt2(ẽ) for t1 < t2.

Lemma 5.3.4. Let X be non-negative random variable. Then:

ψX(s) = s
R∞
0
e−stP (X ≤ t)dt

Proof:

s

Z ∞

0

e−stP (X ≤ t)dt = s

Z ∞

0

„
e−st

−s

«′
P (X ≤ t)dt = s

„
e−st

−s

« ˛̨
˛
∞

0
+

Z ∞

0

e−stdF (t) = ψX(s)

�

Next lemma states that in case of µPt(e) being non-decreasing in t for fixed e we have the following factorization:

τµ(e)
d
= Ye + τπ(e), where Ye has distribution funcion FYe (t) = P (Ye ≤ t) = (µPt)(e)

π(e)
. It is as if getting to state e

from initial distribution µ would be done through getting to stationarity first. Then Ye is responsible for speed
of convergence to mentioned stationarity.
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Lemma 5.3.5 (Brown [5]). Let X = (Xt, t ≥ 0) be ergodic Markov chain with enumerable state space E =
{e1, e2, . . .} and invariant measure π. If for initial distribution µ and e ∈ E we have that µPt(e) is non-
decreasing in t then

ψτµ(e) = ψYe · ψτπ(e),

where Ye is independent of X with distribution function FYe(t) = P (Ye ≤ t) = (µPt)(e)
π(e)

.

Proof.

π(e) = Pπ(Xt = e) =

Z t

0

δePt−x(e)dFτπ(e)(x) (5.97)

(If we start from stationary distribution π then the distribution in any next moment does not depend on present
- that is why the right hand side of the expression is independent of t)
Multiply both sides by e−st and integrate it on t

π(e)

s
=

Z ∞

0

e−stπ(e)dt =

Z ∞

0

e−st
Z t

0

δePt−x(e)dFτπ(e)(x)dt

=

Z ∞

0

Z t

0

e−stδePt−x(e)dFτπ(e)(x)dt =

Z ∞

0

Z ∞

x

e−stδePt−x(e)dtdFτπ(e)(x) =

Z ∞

0

Z ∞

0

e−s(t+x)δePt(e)dtdFτπ(e)(x) =

Z ∞

0

e−sxdFτπ(e)(x) ·
Z ∞

0

e−stδePt(e)dt = ψδePt(e)(s) · ψτπ(e)(s).

Thus

ψτπ(e)(s) =
π(e)

sψδePt(e)(s)
. (5.98)

The assumption was µPt(e) non-decreasing in t and of course limt→∞ µPt(e) = π(e) and µPt(e) ≤ π(e) for all

t, thus (µPt)(e)
π(e)

is a distribution function of some random variable Ye. From Lemma 5.3.4 :

ψYe(s) = s

Z ∞

0

e−stP (Ye ≤ t)dt = s

Z ∞

0

e−st
µPt(e)

π(e)
dt =

s

π(e)
ψµPt(e)(s) (5.99)

Similarly as in (5.97) we can write for µPt(e)

µPt(e) = Pµ(Xt = e) =

Z t

0

δePt−x(e)dFτµ(e)(x) (5.100)

Again: multiplying both sides by e−st and integrating it we have

ψµPt(e)(s) = ψδePt(e)(s)ψτµ(e)(s) (5.101)

From (5.98) and (5.99) we obtain

ψδePt(e)(s) =
π(e)

sψτπ(e)

ψµPt(e)(s) =
π(e)

s
ψYe(s)

what together with 5.101 gives

ψτµ(e)(s) =
ψµPt(e)(s)

ψδePt(e)(s)
=

π(e)
s
ψYe(s)
π

sψτπ(e)

= ψYe (s) · ψτµ(e).

Similar as in discrete case, we have the extension of Lemma 5.3.6 if stationary distribution is uniform.

Lemma 5.3.6. Let X = (Xt, t ≥ 0) be ergodic Markov chain with finite state space E and uniform stationary
distribution U . If for initial distribution µ and B ⊂ E we have that µPt(B) is non-decreasing in t then

ψτµ(B) = ψYB · ψτU (B),

where YB is independent of X with distribution function FYB (t) = P (YB ≤ t) = (µPt)(B)
U(e)

.
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Proof.

U(B) = PU (Xt ∈ B) =

Z t

0

U|BPt−x(B)dFτU (B)(x). (5.102)

Multiply both sides by e−st and integrate it on t

U(B)

s
=

Z ∞

0

e−stπ(B)dt =

Z ∞

0

e−st
Z t

0

U|BPt−x(B)dFτU (B)(x)dt

=

Z ∞

0

Z t

0

e−stU|BPt−x(B)dFτU (B)(x)dt =

Z ∞

0

Z ∞

x

e−stU|BPt−x(B)dtdFτU (B)(x) =

Z ∞

0

Z ∞

0

e−s(t+x)U|BPt(B)dtdFτU (B)(x) =

Z ∞

0

e−sxdFτU (B)(x)·
Z ∞

0

e−stU|BPt(B)dt = ψU|BPt(B)(s)·ψτU (B)(s).

Thus:

ψτU (B)(s) =
U(B)

sψU|BPt(B)(s)
. (5.103)

From Lemma 5.3.4:

ψYB (s) = s

Z ∞

0

e−stP (YB ≤ t)dt = s

Z ∞

0

e−st
µPt(B)

U(B)
dt =

s

U(B)
ψµPt(B)(s). (5.104)

Similarly as in (5.102) we can write for µPt(B)

µPt(B) = Pµ(Xt ∈ B) =

Z t

0

U|BPt−x(B)dFτµ(B)(x). (5.105)

Again: multiplying both sides by e−st and integrating it we have

ψµPt(B)(s) = ψU|BPt(B)(s)ψτµ(B)(s). (5.106)

From (5.103) and (5.104) we obtain

ψU|BPt(B)(s) =
U(B)

sψτU (B)
ψµPt(B)(s) =

U(B)

s
ψYB (s),

what together with 5.106 gives

ψτµ(B)(s) =
ψµPt(B)(s)

ψU|BPt(B)(s)
=

U(B)
s
ψYe(s)

U(B)
sψτU (B)

= ψYB (s) · ψτµ(B).

Theorem 5.3.7. Let X = (Xt : t ≥ 0) be a Markov chain with stationary distribution π. If ẽ is ratio minimal
for µ,X then

(i) ψτµ(ẽ) = ψYẽ · ψτπ(ẽ) (τµ(ẽ)
d
= Yẽ + τπ(ẽ)),

(ii) there exists Minimal Strong Stationary Time Tµ such that

s(µPt, π) = 1 − µPt(ẽ)

π(ẽ)
= P (Tµ > t) ∀(t > 0).

Proof.

(i) From lemma 5.3.3 we have that µPn(ẽ) and this is the assumption of Lemma 5.1.5 which implies ψτµ(ẽ) =
ψYẽ · ψτπ(ẽ).

(ii) In Lemma 4.1.8 it was proven (by Aldous & Diaconis) that there always existed µ−Minimal Strong Sta-

tionary Time for discrete time. In proof we had: αn = min
e

µPn(e)

π(e)
. Because ẽ is ratio minimal, thus we

have αn =
µPn(ẽ)

π(ẽ)
. It was constructed such way that

P (Tµ = n) = αn − αn−1.
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Using uniformization (see section 5.2.1), by choosing c = 2 maxi
P
k 6=i qik we obtain discrete time skeleton

P = I+ 1
c
Q which satisfies the above conditions. Denote the embedded Markov chain by Y = {Yn, n ≥ 0}.

We can represent X = (Xt, t ≥ 0) by {Xt = YNt}, where N = (Nt, t ≥ 0) is a Poisson process with rate c
(independent of Y). Denote epochs from the Poisson process as {Sn} and define Z = SZ′ , where Z′ is a
µ-Minimal Strong Stationary Time for Y. Of course Z is a Strong Stationary Time for continuous time
and:

P (Z > t) =
∞X

n=0

(ct)ne−ct

n!
P (Z′ > n) =

∞X

n=0

(ct)ne−ct

n!

„
1 − µPn(ẽ)

π(ẽ)

«
= 1 − µPt(ẽ)

π(ẽ)
= s(µPt, π).

Next lemma says us about the structure of a chain in the case of δePt(e) being non-increasing in t. Then

first passage time to e starting with π is a geometric compound: τπ(e)
d
=

NX

i=1

We,i, where N has geometric

distribution: P (N = k) = (1− π(e))kπ(e), k = 0, 1, . . . and We,i, i = 1, 2, . . . are i.i.d. random variables with the

same distribution as We: P (We ≤ t) = 1−δePt(e)
1−π(e)

.

Theorem 5.3.8 (Brown [5]). Let X = (Xt, t ≥ 0) be ergodic Markov chain with enumerable state space E =
{e1, e2, . . .} and invariant measure π. If for a state e we have that δePt(e) is non-increasing in t then

ψτπ(e) =
π(e)

1 − (1 − π(e))ψWe

,

where We is independent of X and P (We > t) = δePt(e)−π(e)
1−π(e)

.

Proof: Using lemma 5.3.4 :

ψWe
= s

Z ∞

0

e−stP (We ≤ t)dt = 1 − s

Z ∞

0

e−stP (We > t)dt = 1 − s

Z ∞

0

e−st
δePt(e) − π(e)

1 − π(e)
dt

= 1 − s

1 − π(e)

Z ∞

0

e−stδePt(e)dt+
sπ(e)

1 − π(e)

Z ∞

0

e−st = 1 − s

1 − π(e)
ψδePt(e)(s) +

sπ(e)

1 − π(e)

1

s

= 1 − s

1 − π(e)
ψδePt(e)(s) +

π(e)

1 − π(e)

Thus:
sψδePt(e)(s) = 1 + (1 − π(e))ψWe

(s)

Putting it to (5.98)
“
ψτπ(e)(s) = π(e)

sψδePt(e)
(s)

”
one gets:

ψτπ(e)(s) =
π(e)

1 + (1 − π(e))ψWe
(s)

.

�

5.3.1 Special cases

The clue is to find out when ẽ ratio minimality holds. Let us adapt assumptions A0 - A2 from section 5.1.1
(Factorization for discrete time).

• Stochastic monotonicity of time-reversed process X̃

We need a definition of stochastic monotonicity in continuous time.

Set A is an upper set (denoted by A ↑), if (x ∈ A and x ≺ y) ⇒ y ∈ A. Set B is a lower set (denoted by B ↓), if
(x ∈ B and y ≺ x) ⇒ y ∈ B.

Markov chain with intensity matrix Q is stochastically monotone if both beneath conditions hold:

∀(A ↑: e2 /∈ A)∀(e1 ≺ e2) Q(e1, A) =
X

e∈A
Q(e1, e) ≤ Q(e2, A)

and

∀(A ↑: e2 /∈ A)∀(e1 ≺ e2) Q(e1, A) =
X

e∈A
Q(e1, e) ≤ Q(e2, A).

(5.107)
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Lemma 5.3.9 (Brown [5]). Let X = (Xt, t ≥ 0) be a continuous time Markov chain with intensity matrix Q

which is stochastically monotone. Let c ≥ 2 max
e

X

e′ 6=e

Q(e, e′) and define P = I + 1
c
Q. Then P is stochastically

monotone in sense of definition 5.84.

Proof. Consider three cases:

1) If e1 ≺ e2 and A is an upper set such that e2 /∈ A then

δe1P(A) =
1

c
Q(e1, A) ≤ 1

c
Q(e2, A) = δe2P(A).

2) If e1 ≺ e2 and A is an upper set with e1 ∈ A then

δe1P(A) = 1 − 1

c
Q(e1, A

c) ≤ 1 − 1

c
Q(e2, A

c) = δe2P(A)

(Ac is a compliment of A and a lower set).

3) If e1 ≺ e2 and A is an upper set such that e1 /∈ A and e2 ∈ A then

δe1P(A) =
1

c
Q(e1, A)

δe2P(A) = 1 − 1

c
Q(e2, A

c),

thus

δe1P(A) − δe2P(A) = 1 − 1

c
[Q(e1, A) + Q(e2, A

c)] ≥ 1 − Q(e1, A) + Q(e2, A
c)

2 max
e

X

e′ 6=e

Q(e, e′)
≥ 0.

Using stochastic monotonicity of P we have:

∀(A ↑)∀(e1 ≺ e2) δe1Pt(A) =
∞X

n=0

(ct)ne−ct

n!
δe1P

n(A) ≤
∞X

n=0

(ct)ne−ct

n!
δe2P

n(A) = δe2Pt(A),

i.e.
∀(A ↑)∀(e1 ≺ e2) δe1Pt(A) ≤ δe2Pt(A). (5.108)

Time-reversed process {X̃} is the one with intensity matrix Q̃(e2, e1) = π(e1)
π(e2)

Q(e1, e2) (and process is time-

reversible if Q̃ = Q).

Theorem 5.3.10 (Brown [5]). Assume that A0 − A2 are fulfilled, and in addition that

• Time-reversed process eX = (X̃t, t ≥ 0) is stochastically monotone.

Then
(i) eM is ratio minimal for µ,X,

(ii) ψτµ(eM ) = ψYeM · ψτπ(eM ) (τµ(eM )
d
= YeM + τπ(eM )),

(iii) there exists Minimal Strong Stationary Time Tµ such that

s(µPt, π) = 1 − µPt(eM )

π(eM )
∀(t ≥ 0).

where YeM is random variable independent of chain X with distribution P (YeM ≤ t) = µPt(eM )
π(eM )

.

Proof. Similar to discrete-time case.
Define h(e) = µ(e)

π(e)
. Using Fact 5.1.9 we have

µPt(eM )

π(eM)
=
X

ei∈E

µ(ei)

π(eM)
δeiPt(eM) =

X

ei∈E

µ(ei)

π(eM )
· π(eM)

π(ei)
δeM P̃t(ei)

=
X

ei∈E

µ(ei)

π(ei)
δeM P̃t(ei) = EeMh(X̃) ≤ Eeih(X̃) =

µPt(ei)

π(ei)
,

i.e. eM is ratio minimal for µ,X. This (by Theorem 5.3.7) implies (ii) and (iii).
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• Time-reversible processes

Lemma 5.3.8 gives us factorization in case when δePt(e) is non-increasing in t. We find some conditions which
guarantee it.

Lemma 5.3.11. Let X = (Xt, t ≥ 0) be a Markov chain with finite state space E = |N | which is time-reversible,
i.e. for all e1, e2 ∈ E we have π(e1)Q(e1, e2) = π(e2)Q(e2, e1). Then

∀(e ∈ E),∀(t1 < t2) δePt1(e) ≥ δePt2(e)

i.e. δePt(e) is non-increasing in t for every e ∈ E.

Proof. As seen in subsection 5.2.1(Uniformization) any transition matrix of discrete time Markov chain P can
be constructed out of intensity matrix Q and vice versa. We have the following dependencies:

P has eigenvalues λ1, . . . , λN ⇐⇒ Q has eigenvalues s1 = c(1 − λ1), . . . , sN = c(1 − λN )

for some constant c > 0.
Recall equality (5.95)

δePt(e) =

NX

j=1

e−sjt(πj(e))2,

where all si are non-negative what implies required monotonicity of δePt(e) in t.

Remark: It is worth noting the difference between discrete and continuous time. In discrete time the assumption
of P being time-reversible was not enough to guarantee monotonicity of δePt(e) (this is the case when we observe
only every second step of such chain), whereas in continuous time this condition is sufficient.
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5.4 Non-symmetric random walk on d-dimensional cube

Consider discrete time Markov chain X = {Xn, n ≥ 0}, E = {0, 1}d with transition probabilities:

δxP(x+ si) = αi for xi = 0,

δxP(x− si) = βi for xi = 1,

δxP(x) = 1 −
X

i:xi=0

αi −
X

i:xi=1

βi,

(5.109)

where x = (x1, . . . , xd) ∈ E, xi ∈ {0, 1} and si = (0, . . . , 0, 1, 0, . . . , 0) with 1 at position i.
Assume that αi and βi are such that the chain is ergodic. Note that for αi = βi = 1

d+1
for i = 1, . . . , d we have

a symmetric random walk on cube as defined in (3.51).
From remark 5.1.11 the only potential state which can be ratio minimal is state x+1, where (x+1)i = xi+1 mod 2.
This suggests ordering through distance. Recall dist(x, y) = minn δxP

n(y),

y ≺ z ⇐⇒ dist(x, y) < dist(x, z). (5.110)

Under this ordering x is a unique minimal state, and x + 1 unique maximal. As minimal state we can fix
xmin = (0, . . . , 0), then the maximal state is xmax = (1, . . . , 1). The problem reduces to finding conditions for
αi i βi under which X̃ is stochastically monotone, for then we could use Theorem 5.3.10.

Such chain is time-reversible with stationary distribution:

π(x) =
Y

i:xi=1

αi
αi + βi

Y

i:xi=0

βi
αi + βi

(5.111)

Let us check time-reversibility: let x be such that xk = 0. Denote G =
Qd

i=1(αi + βi).

π(x)δxP(x+ δk) =
1

G

0
B@
Y

i:xi=1
i6=k

αi

1
CA

0
B@
Y

i:xi=0
i6=k

βi · βk

1
CA · αk,

π(x+ δk)δ(x+δk)P(x) =
1

G

0
B@
Y

i:xi=1
i6=k

αi · αk

1
CA

0
B@
Y

i:xi=0
i6=k

βi

1
CA · βk,

so we have equality π(x)δxP(x+ δk) = π(x+ δk)δ(x+δk)P(x).
Because of time-reversibility it is enough to check whether Xn is stochastically monotone.

Brown in [5] stated that the following conditions assured ergodicity and stochastic monotonicity of the chain:

αi > 0, βi > 0, i = 1, . . . , d, (5.112)

∃(A ⊂ {1, 2, . . . , d})
X

i∈A
αi +

X

i∈Ac
βi < 1, (5.113)

max(
dX

i=1

αi + max
i
βi,

dX

i=1

βi + max
i
αi) ≤ 1, (5.114)

however we have

Lemma 5.4.1. The chain given in (5.109) is not always stochastically monotone under ordering (5.110).

Proof. It is enough to consider the example: Take d = 3 and

α1 =
1

1000
, α2 =

5

100
, α3 =

799

1000
, β1 = β2 =

1

10
, β3 =

1

1000

and take
x = (1, 0, 0) � (1, 1, 0) = y, A = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

Then
δxP(A) = α2 + α3, δyP(A) = 1 − β1 − β2
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and stochastic monotonicity would mean that δxP(A) ≤ δyP(A) i.e.

α2 + α3 + β1 + β2 ≤ 1,

but we have

α2 + α3 + β1 + β2 =
50

1000
+

799

1000
+

100

1000
+

100

1000
=

1049

1000
> 1.

Let us introduce the following coordinate-wise ordering:

x � y ⇐⇒ xi ≤ yi for i = 1, 2, . . . d. (5.115)

Theorem 5.4.2. Suppose X = {Xn, n ≥ 0} is a random walk as defined in (5.109). Assume that:

(a) αi > 0, βi > 0, i = 1, . . . , d, (5.116)

(b) ∃(A ⊂ {1, 2, . . . , d})
X

i∈A
αi +

X

i∈Ac
βi < 1, (5.117)

(c) ∀(B ⊆ {1, 2, . . . , d}, r ∈ B)
X

k∈B
αk +

X

k∈Bc
βk + βr ≤ 1. (5.118)

Then we have

(i) xmax is ratio minimal for δxmin ,X,

(ii) ψτδxmin (xmax) = ψYxmax · ψτπ(xmax) (τδxmin (xmax)
d
= Yxmax + τπ(xmax)),

(iii) there exists Minimal Strong Stationary Time Tµ such that

s(δxminP
n, π) = 1 − δxminP

n(xmax)

π(xmax)
= P (Tµ > n) ∀(n ≥ 0).

where Yxmax is a random variable independent of X with distribution P (Yxmax ≤ n) =
δxminPn(xmax)

π(xmax)
.

Proof. Condition (5.116) is sufficient and necessary for irreducibility and (5.117) for aperiodicity. It is enough to
prove that (5.118) implies stochastic monotonicity under coordinate-wise ordering, because: under this ordering
xmin is unique minimal state and xmax is unique maximal state, thus condition A1 (see section 5.1.1) holds,

A2 also holds because for initial distribution being an atom we always have
δxmin (e)

π(e)
non-increasing in e. It is

enough to have stochastic monotonicity of X because it is time-reversible. Having this stochastic monotonicity
we can conclude all three assertions from Theorem 5.3.10.

In order to prove that (5.118) implies stochastic monotonicity assume that

x =


0 at positions {j1, . . . , jm}
1 at positions {i1, . . . , id−m} � y =


0 at positions {j1, . . . , jm} \ {td−m+1, . . . , td−n}
1 at positions {i1, . . . , id−m} ∪ {td−m+1, . . . , td−n}

and let A be an upper set.

Denote level of x by |x| =
Pd

i=1 xi and let ek = (0, 0, . . . , 0, k, 0, . . . , 0), where 1 is on k−th position. Consider
three cases:

1◦ x /∈ A, y /∈ A.

Then
δxP(A) =

X

k∈B
αk, B ⊆ {j1, . . . , jm}.

Fix k ∈ B. We have x /∈ A and x + ek ∈ A. Note that y cannot have 1 on k−th position, because then
we would have x + ek � y and y ∈ A (because A is an upper set), but we assumed y /∈ A. But it means
there is a state y + ek and of course it is comparable to x+ ek which is in A, thus y + ek must also be in
A. Other words: x+ ek ∈ A implies x+ ek ∈ A and we have

δxP(A) ≤ δyP(A).
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2◦ x ∈ A, y ∈ A.

Then
δyP(A) = 1 −

X

k∈C
βk, C ⊆ {i1, . . . , id−m} ∪ {td−m+1, . . . , td−n}.

Fix k ∈ C. Then y − ek /∈ A. Note that 0 cannot have 1 on positione k, because then we would have
x � y − ek and x ∈ A would imply y − ek (because A is an upper set). Thus x has 1 at position k. It
must be that alsa x − ek /∈ A because if we assumed contradiction, i.e. that x − ek ∈ A it would imply
that y − ek ∈ A (because x− ek � y − ek and A is an upper set). Thus

δxP(A) ≤ δyP(A).

3◦ x /∈ A, y ∈ A. Consider two cases:

a) |x| + 1 = |y|, i.e. y is just one level higher (equivalently: n = m− 1).

Then
δxP(A) =

X

k∈B
αk, B ⊆ {j1, . . . , jm}

and
δyP(A) = 1 −

X

k∈C
βk, C ⊆ {i1, . . . , id−m} ∪ {t}.

The worst case is when δxP(A) is maximized and 1 − δyP(A) minimized - let us check this case by
taking B = {j1, . . . , jm} and C = {i1, . . . , id−m} ∪ {t} = Bc ∪ {t}. Stochastic monotonicity means
then for some r ∈ B corresponding to {t}) we have

X

k∈B
αk ≤ 1 −

X

k∈Bc
βk − βr,

what was assumed.

b) |x| + 2 < |y|, i.e. y is at least two levels higher.

Then similarly

δxP(A) =
X

k∈B
αk, B ⊆ {j1, . . . , jm}

and
δyP(A) = 1 −

X

k∈C
βk, C ⊆ {i1, . . . , id−m} ∪ {td−m+1, . . . , td−n}.

Moreover, fix k ∈ B. Then x + ek ∈ A. If y has 0 on k−th position then surely k /∈ C. Otherwise
note that x + ek ∈ A implies (because A is an upper set) that y − es ∈ A for s 6= k and s ∈ B ∩ C.
Thus we conclude that B ∩ C = ∅. So the worst case is C = Bc and then stochastic monotonicity
means

δxP(A) =
X

k∈B
αk ≤ 1 −

X

k∈Bc
βk = δyP(A),

i.e. X

k∈B
αk +

X

k∈Bc
βk ≤ 1

what is implied by our assumption (5.118).

REMARKS

1. Brown’s condition (5.114), even for coordinate-wise partial ordering is not sufficient. Again, take the
example given in Lemma 5.4.1

To see this fix d = 3 and set

α1 =
1

1000
, α2 =

5

100
, α3 =

799

1000
, β1 = β2 =

1

10
, β3 =

1

1000

and take
x = (1, 0, 0) � (1, 1, 0) = y, A = {(1, 1, 0), (1, 0, 1), (1, 1, 1)}.

Then
δxP(A) = α2 + α3, δyP(A) = 1 − β1 − β2
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and stochastic monotonicity would mean that δxP(A) ≤ δyP(A) i.e.

α2 + α3 + β1 + β2 ≤ 1,

but we have

α2 + α3 + β1 + β2 =
50

1000
+

799

1000
+

100

1000
+

100

1000
=

1049

1000
> 1.

2. Brown’s condition (5.114) is just a special case of (5.118).

If we take B = {1, . . . , d} and any r ∈ B, then (5.118) means:
Pd

i=1 αi + βr ≤ 1

If we take B = {r} then (5.118) means: αr +
Pd

i=1 βi ≤ 1. Putting above couple together we have Brown’s
condition, i.e.

max(

dX

i=1

αi + max
i
βi,

dX

i=1

βi + max
i
αi) ≤ 1.

Theorem 5.4.3. Suppose X = {Xn, n ≥ 0} is a random walk as defined in (5.109) and let assumptions of
Theorem 5.4.2 hold, i.e. (5.116), (5.117) and (5.118). Define Ak to be a set of

`
d

k

´
subsets of size k from

{1, . . . , d} and sγ =
P
i∈γ(αi + βi) for γ a subset of 1, . . . , d. Then

(i) s(δxminP
n, π) =

dX

k=1

(−1)k−1
X

γ∈Ak

(1 − sγ)n ∀(n ≥ 0), (5.119)

(ii) all 2d eigenvalues of P are {1 − sγ , γ ⊂ {1, . . . , d}}. (5.120)

If instead of (5.118) we assume that
Pd

i=1(αi + βi) ≤ 1 then

(iii) ∀(x ∈ E) δxP
n(x) is non− increasing in n, (5.121)

(iv) ∀(x ∈ E) ψτπ(x) =
π(x)

1 − (1 − π(x))ψWx
, (5.122)

where Wx is independent of X and P (Wx > n) = δxP
n(x)−π(x)
1−π(x)

.

Proof. To calculate s(δ(xmin)P
n, π) we have to calculate δ(xmin)P

n(xmax). Let us switch to continuous time
using uniformization (with c = 1) Q = P − I. Then on the diagonal of the intensity matrix we have Q(x, x) =
−(
P
i:xi=0 αi+

P
i:xi=1 βi), the process stays in state x for time which is exponentially distributed with parameter

((
P
i:xi=0 αi +

P
i:xi=1 βi). Notice that it is a distribution of minimum of random variables with parameters αi

and βi. Exponential distribution has memoryless property - that is why this process is a sum of d independent
zero-one processes.
Look closer at one such zero-one process, which stays in state 0 time Exp(α), and in 1 Exp(β). Denote this
process by {Zt, t ≥ 0}. To calculate δ(xmin)P

n(xmax) we have to calculate probability P (Zt = 1). I will be easier
to consider process Vt = 1 − Zt.

-

6

T

Exp(α) Exp(α) Exp(α)

Exp(β) Exp(β)

Vt = 1 − Zt

0

1

We will write renewal equation for q(t) = P (Vt = 1). Let F be the distribution of sum of two random variables:
Exp(α) + Exp(β), let X1 ∼ Exp(α),X2 ∼ Exp(β) and T = X1 +X2 ∼ F :

q(t) = P (Vt = 1, t < T ) + P (Vt = 1, t ≥ T ) = z(t) +

Z t

0

q(t− u)F (du)

Where z(t) = P (Vt = 1, t < X1 +X2) = P (t ≤ X1, t < X1 +X2) = P (t ≤ X1) = 1−P (X1 ≤ t) = 1−(1−e−αt) =
e−αt
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The solution to this equation is convolution U ∗ z, where U =
P∞
n=0 F

n∗.
Laplace transform of z(t) : ψz(t)(θ) =

R∞
0
z(t)e−θtdt = 1

α
α
α+θ

= 1
α+θ

. F is the distribution of two independent

random variables Exp(α)+Exp(β), so the Laplace transform of F is: ψF (θ) = αβ

(α+θ)(β+θ)
. The Laplace transform

of renewal function U is given by:

ψU (θ) =
1

1 − αβ

(α+θ)(β+θ)

=
(α+ θ)(β + θ)

θ(α+ β + θ)
.

Therefore here we have transform of q(t) :

ψq(t)(θ) = ψU (θ) · ψz(t)(θ) =
(α+ θ)(β + θ)

θ(α+ β + θ)
· 1

α+ θ
=

β + θ

θ(α+ β + θ)
.

But we were interested in process Zt = 1 − Vt, so p(t) = 1 − q(t) has Laplace transform:

ψp(t)(θ) =

Z ∞

0

p(t)e−θtdt =

Z ∞

0

e−θtdt−
Z ∞

0

q(t)e−θtdt =
1

θ
− β + θ

θ(α+ β + θ)
=

α

θ(α+ β + θ)
.

It is easy to check that this is the Laplace transform of function α
α+β

(1 − e−(α+β)t), hence

p(t) = P (Zt = 1) =
α

α+ β
(1 − e−(α+β)t).

Thus we have:

δ(xmin)Pt(xmax) =
dY

i=1

αi
αi + βi

“
1 − e−(αi+βi)t

”
= π(xmax)

dY

i=1

“
1 − e−(αi+βi)t

”

and a formula for separation distance:

s(δ(xmin)Pt, π) = 1 − δ(xmin)Pt(xmax)

π(xmax)
= 1 −

dY

i=1

“
1 − e−(αi+βi)t

”
.

But we also have

δ(xmin)Pt(xmax) =

dY

i=1

“
1 − e−(αi+βi)t

”
= π(xmax)

dY

i=1

“
1 − e−(αi+βi)t

”
= π(xmax)

dX

k=0

(−1)k
X

γ∈Ak

e−sγt.

From the above expression for δ(xmin)Pt(xmax) and spectral representation (5.96):

δ(xmin)Pt(xmax) = π(xmax) +
dX

j=2

fj(xmin)πj(xmax)e−sjt.

We see that the eigenvalues of Q are {−sγ , γ ⊂ {1, . . . , d}} and thus the eigenvalues of P = I−Q are {1−sγ , γ ⊂
{1, . . . , d}} what proves (ii).

The spectral representation for discrete time (5.93):

δ(xmin)P
n(xmax) = π(xmax) +

dX

j=2

fj(xmin)πj(xmax)(1 − λj)
n.

We conclude that

s(δ(xmin)P
n, π) = 1 − δ(xmin)P

n(xmax)

π(xmax)
=

dX

k=1

(−1)k−1
X

γ∈Ak

(1 − sγ)n,

i.e. (i).

From (ii) we have that the eigenvalues of P are {1 − sγ , γ ⊂ {1, . . . , d}}. From our additional assumptionPd

i=1(αi +βi) ≤ 1 we have that all of them are non-negative, thus assertion (iii) follows from Lemma 5.1.13 and
(iii) implies (iv) by Lemma 5.1.8.
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Remark: In the case
Pd

i=1(αi + βi) ≤ 1 we recognize (i) as an inclusion-exclusion formula. Consider n

multinomial trials with cell probabilities pi = αi + βi, i = 1, . . . , d and pd+1 = 1−Pd

i=1(αi + βi). Let An be the
event that at least one of the cells from 1, . . . , d is empty. Then An = ∪di=1Ci, where Ci = 1 if cell i is empty, 0
otherwise. Then above expression represents inclusion-exclusion formula for Pr(∪di=1Ci). Thus if we denote T
to be the waiting time for all of cells 1, . . . , d to be occupied, then

s(δxminP
n, π) = P (T > n) = P (An).

Next lemma shows, that if we only observe every second step of random walk on cube, we always have δxP
n(x)

non-increasing in n without the assumption that
Pd

i=1(αi + βi) ≤ 1.

Lemma 5.4.4. Let Y = {Yn, n ≥ 0} be random walk with transition matrix R = P2, where P is defined as in
(5.109). Assume (5.116) and (5.117). Then

(i) ∀(x ∈ E) δxP
n(x) is non− increasing in n

(ii) ∀(x ∈ E) ψτπ(x) =
π(x)

1 − (1 − π(x))ψWx
,

Proof. (i) follows from Lemma 5.1.14, and this implies (ii) by Lemma 5.1.8.

Continuous time

Theorem 5.4.5. Let X = (Xt, t ≥ 0) be a non-symmetric continuous time random walk on cube, i.e. its
intensity matrix is given by Q := P − I, where P is given in (5.109). Let initial distribution be µ := δxmin .
Assume that

(a) αi > 0, βi > 0, i = 1, . . . , d, (5.123)

(b) ∃(A ⊂ {1, 2, . . . , d})
X

i∈A
αi +

X

i∈Ac
βi < 1. (5.124)

Then

(i) xmax is ratio minimal for µ,X,

(ii) ∀(t ≥ 0) s(δxminPt, π) = 1 − δxminPt(xmax)

π(xmax)
= 1 −

dY

i=1

“
1 − e−(αi+βi)t

”
,

(iii) ψτδxmin (xmax) = ψYxmax · ψτπ(xmax),

where Yxmax is a random variable independent of {Xn} with distribution P (Yxmax ≤ n) =
δxminPn(xmax)

π(xmax)
.

Proof. In the proof of the Theorem 5.4.3 we had: for one 1-0 process (start at 0, in 0 Exp(α) and in 1 Exp(β))

δ0Pt(1) = P (Zt = 1) =
α

α+ β
(1 − e−(α+β)t).

Thus for d such independent processes we had

δxminPt(xmax) =

dY

i=1

αi
αi + βi

(1 − e−(αi+βi)t) = π(xmax)

dY

i=1

(1 − e−(αi+βi)t).

Now if we look at process starting at 0, the probability that it is at time t at position 0 is:

δ0Pt(0) = 1 − P (Zt = 1) = 1 − α

α+ β
(1 − e−(α+β)t) =

β

α+ β

„
1 +

α

β
e−(α+β)t

«
.

Thus we can calculate for any x

δxminPt(x) =
Y

i:xi=1

αk
αk + βk

“
1 − e−(αk+βk)t

” Y

i:xi=0

βk
αk + βk

„
1 +

αk
βk
e−(αk+βk)t

«

= π(x)
Y

i:xi=1

“
1 − e−(αk+βk)t

” Y

i:xi=0

„
1 +

αk
βk
e−(αk+βk)t

«
. (5.125)

Independently of the choice of αi, βi, i = 1, . . . , d i.e. they just must fulfill (a) and (b) we have that xmax is ratio
minimal for µ = δxmin , X, i.e.
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δxminP
t(xmax)

π(xmax)
≤ δxminP

t(x)

π(x)
.

To check it just use (5.125)

π(xmax)
Qd

i=1(1 − e−(αi+βi)t)

π(xmax)
≤
π(x)

Q
i:xi=1

“
1 − e−(αk+βk)t

”Q
i:xi=0

“
1 + αk

βk
e−(αk+βk)t

”

π(x)
,

dY

i=1

(1 − e−(αi+βi)t) ≤
Y

i:xi=1

“
1 − e−(αk+βk)t

” Y

i:xi=0

„
1 +

αk
βk
e−(αk+βk)t

«
,

Y

i:xi=0

(1 − e−(αi+βi)t) ≤
Y

i:xi=0

„
1 +

αk
βk
e−(αk+βk)t

«
,

what is obviously always true, since all the coefficients on the left hand side are always ≤ 1 and all on the right
hand side are always ≥ 1.

Remark:
In Theorem 5.4.5 we proved that in continuous time we always have that xmax is ratio minimal for µ := δxmin ,
X, i.e.

δxminPt(xmax)

π(xmax)
≤ δxminPt(x)

π(x)
for any x ∈ {0, 1}d,

for any choice of αi, βi, i = 1, . . . , d (they only must fulfill some natural conditions which guarantee irreducibility
and aperiodicity).

In discrete time, we had a condition ∀(B ⊆ {1, 2, . . . , d}, r ∈ B)
X

k∈B
αk +

X

k∈Bc
βk + βr ≤ 1, which guaranteed

it. It was only sufficient. One could think that this ratio minimality in discrete time also always hold, but this
is not a case as shown in next
Example: Let X be a random walk on 3-dimensional cube with parameters.

α1 =
3

12
, α2 =

4

12
, α3 =

4

12
, β1 =

3

12
, β2 =

4

12
, β3 =

4

12

with initial distribution µ := δxmin .
Then the conditions (5.116) and (5.117) hold, the chain is ergodic. But note that the condition 5.118 does not
hold, i.e. we do not have

∀(B ⊆ {1, 2, . . . , d}, r ∈ B)
X

k∈B
αk +

X

k∈Bc
βk + βr ≤ 1,

because for B = {1, . . . , d} and r = 3 above equals to 15
12

≥ 1. In this case we have (calculated in Maple):

δxminP3((111))

π(111)
= 4

3
>

δxminP3((101))

π(101)
= 1

3

δxminP4((111))

π(111)
= 4

9
<

δxminP4((101))

π(101)
= 38

27

i.e. xmax = (1, 1, 1) is not ratio minimal for µ,X.

5.5 Tandem

We consider continuous time Markov chain X = (Xt, t ≥ 0) with state space
E = {(n1, n2, n3) : n1 + n2 + n3 = N, ni ∈ N, i = 1, 2, 3}.
The intensity matrix is following:
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Q((n1, n2, n3), (m1,m2,m3)) =

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

µ1 if n1 > 0, m1 = n1 − 1, m2 = n2 + 1,m3 = n3,

µ2 if n2 > 0, m1 = n1,m2 = n2 − 1,m3 = n3 + 1,

µ3 if n3 > 0, m1 = n1 − 1, m2 = n2,m3 = n3 − 1,

−
X

(r1,r2,r3) 6=(n1,n2,n3)

Q((n1, n2, n3), (r1, r2, r3)) if n1 = m1, n2 = m2, n3 = m3 .

0 otherwise

This is a tandem process: there are 3 servers and N customers. The intensities of service at node i are µi and
customer serviced at server i goes directly to the queue at server (i mod 3) + 1. We assume that waiting room
at each server is of infinite capacity..
For N = 3 the state space and possible transitions are depicted in Fig. 9.

We will consider embedded chain, i.e. observe at at moments when some change occurs. Then the probability
matrix of this discrete time process is given by:

P = I +
1

c
Q, (5.126)

where I is identity matrix and c ≥ sup
n1,n2,n3

(−Q(n1, n2, n3), (n1, n2, n3)), in our case c ≥ µ1 + µ2 + µ3.

003 012 021 030

102
111

120

201 210

300

µ2

c

µ3

c

µ1

c

Figure 9: Closed Tandem, 3 servers, 3 customers

Denote process governed by P by Z = {Zn, n ≥ 0}. The stationary distribution is

π(n1, n2, n3) = Kρn1
1 ρn2

2 ρn3
3 , ρi =

c

µi
, n1 + n2 + n3 = N, (5.127)

where K is normalisation constant.

We will need to have probability transition matrix of time-reversed process, i.e.:

eP(x, y) =
π(y)

π(x)
P(y, x).

(x = (x1, x2, x3), y = (y1, y2, y3)).

Of course the diagonal does not change: eP(x, x) = π(x)
π(x)

P(x, x) = P(x, x).

eP((n1, n2, n3), (m1,m2, m3)) =
π((m1,m2,m3))

π((n1, n2, n3))
P((m1,m2,m3), (n1, n2, n3))
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Consider three cases:

• m1 > 0, n1 = m1 − 1, n2 = m2 + 1, n3 = m3:

eP((m1 − 1,m2 + 1,m3), (m1,m2,m3)) =
π((m1, m2,m3))

π((m1 − 1, m2 + 1,m3))
P((m1,m2,m3), (m1 − 1,m2 + 1, n3)) =

Kρm1
1 ρm2

2 ρm3
3

Kρm1−1
1 ρm2+1

2 ρm3
3

µ1

c
= ρ1

1

ρ2

1

ρ1
=

1

ρ2
=
µ2

c
.

• m2 > 0, n1 = m1, n2 = m2 − 1, n3 = m3 + 1:

eP((m1 − 1,m2 + 1,m3), (m1,m2,m3)) =
π((m1, m2,m3))

π((m1,m2 − 1, m3 + 1))
P((m1,m2,m3), (m1, m2 − 1, n3 + 1)) =

Kρm1
1 ρm2

2 ρm3
3

Kρm1
1 ρm2−1

2 ρm3+1
3

µ2

c
= ρ2

1

ρ3

1

ρ2
=

1

ρ3
=
µ3

c
.

• m3 > 0, n1 = m1 + 1, n2 = m2, n3 = m3 − 1:

eP((m1 + 1,m2, m3 − 1), (m1,m2,m3)) =
π((m1, m2,m3))

π((m1 + 1, m2,m3 − 1))
P((m1,m2,m3), (m1 + 1,m2, n3 − 1)) =

Kρm1
1 ρm2

2 ρm3
3

Kρm1+1
1 ρm2

2 ρm3−1
3

µ3

c
=

1

ρ1
ρ3

1

ρ3
=

1

ρ1
=
µ1

c
.

In other words, the time-reversed process dynamics correspond to the picture when we change the orientations
of the arrows and change the µs: fµ1 = µ2,fµ2 = µ3,fµ3 = µ3. The example for N = 3 is depicted on Fig. 10.
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c
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c
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c

Figure 10: Time-reversed chain for tandem, 3 servers, 3 customers

Theorem 5.5.1. Let Z = {Zn, n ≥ 0} be a embedded Markov chain for tandem queue process with transition
matrix P given in (5.126). Take initial distribution µ := δxmin , where xmin := (0, 0, N). Assume that c ≥
(µ1 + µ2 + µ3). Then

(i) xmax := (N, 0, 0) is ratio minimal for µ,X, (5.128)

(ii) ∀(n ≥ 0) s(δ(0,0,N)P
n, π) = 1 − δ(0,0,N)P

n(N, 0, 0)

π(N, 0, 0)
(5.129)

= 1 − 1
K

“
c
µ1

”N
δ(0,0,N)P

n(N, 0, 0),

(iii) ψτµ(xmax) = ψYxmax · ψτπ(xmax) (τδxmin (xmax)
d
= Yxmax + τπ(xmax)), (5.130)
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where Yxmax is a random variable independent of Z with distribution P (Yxmax ≤ n) =
δxminPn(xmax)

π(xmax)
and K is

a normalising constant from (5.127).

Proof. Consider partial sum ordering for this chain �, i.e:

(n1, n2, n3) � (m1,m2,m3) ⇐⇒ n1 ≤ m1, n1 + n2 ≤ m1 +m2, n1 + n2 + n3 ≤ m1 +m2 +m3.

Under this ordering there exist: unique minimal state xmin = (0, 0, N) and unique maximal state xmax =
(N, 0, 0). With initial distribution µ := δxmin the assumptions A0 − A2 of Theorem 5.3.10 are fulfilled. It is

enough to have stochastic monotonicity of time-reversed process { eXn, n ≥ 0} under this ordering. Having this
we can conclude all three assertions from Theorem 5.3.10. Second equality in (ii) is obtained using π(N, 0, 0) =

K
“
c
µ1

”N
.

Recall that A is an upper set if: x � y, x ∈ A⇒ y ∈ A

Stochastic monotonicity of eP means:

∀(x � y) ∀A− upper set δx eP(A) ≤ δy eP(A).

Consider 3 cases:

• x ≺ y, x /∈ A, y /∈ A and δx eP(A) > 0.

The only possibility of getting from x /∈ A to A in one step is to go from x = (x1, x3, x3) to x′ =

(x1 + 1, x2 − 1, x3) ∈ A or to x′′ = (x1, x2 + 1, x3 − 1) ∈ A. Thus δx eP(A) is at most µ2+µ3
c

.

But if δx eP(A) = µ2+µ3
c

then we cannot have y which is y ≻ x (i.e. and y � x and y 6= x) such that y /∈ A.

Thus we have δxeP(A) = µ2
c

or δx eP(A) = µ3
c

.

– If δxeP(A) = µ2
c

then possible ys : y ≻ x are of form y = (x1, x2 + k, x3 − k) for some k ≥ 1. But

then surely y′ = (y1 + 1, y2 − 1, y3) ∈ A what means that δy eP(A) is at least µ2
c

(it is possible that

δy eP(A) = µ2+µ3
c

).

– If δx eP(A) = µ3
c

then possible ys: y ≻ x are of form y = (x1 + k, x2 − k, x3) for some k ≥ 1. But then

surely y′ = (y1, y2 + 1, y3 − 1) ∈ A what means that δy eP(A) is at least µ3
c

(again, it is possible to

have δy eP(A) = µ2+µ3
c

).

• x ≺ y, x ∈ A and y ∈ A

The only possibility of getting out from A is to change from x = (x1, x2, x3) to (x1 − 1, x2, x3 + 1). Thus

δx eP(A) = 1 − µ1
c

. But then there are only to possibilities for y ≻ x such that δy eP(A) > 0: either

δy eP(A) = 1 − µ1
c

or δy eP(A) = 1. Of course in both cases we have δx eP(A) ≤ δy eP(A).

• x ≺ y, x /∈ A and y ∈ A

δx eP(A) for x /∈ A can be at most µ2+µ3
c

(in case when x′ = (x1 + 1, x2 − 1, x3) ∈ A and x′′ = (x1, x2 +

1, x3−1) ∈ A. The smallest value of δy eP(A) for y ∈ A is for y being on border of A, then δy eP(A) = 1− µ1
c

.

Thus we always have δx eP(A) ≤ δy eP(A), because µ2+µ3
c

≤ 1 − µ1
c

, which follows from assumption that
c ≥ (µ1 + µ2 + µ3).

Remark: In order to have an upper bound on mixing time for this process it is needed to calculate or estimate
δ(0,0,N)P

n((N, 0, 0)) for all n ≥ 1.

Remark: The similar result can easily be formulated for continuous time process X.
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6 Spectral gap in queueing networks

6.1 Hazard rate function & Heavy Tail

Let us start with general definition of heavy tail

Definition 6.1.1. Random variable X is heavy-tailed if

∀s > 0 E[esX ] = ∞

and light-tailed if
∃s0 > 0 E[es0X ] <∞.

We make the following assumption: F (0) = 0.

Continuous case

Define hazard rate function for t : F̄ (t) > 0

h(t) =
f(t)

F̄ (t)
, and h(t) = +∞ otherwise.

Equivalently,
h(t) = (− log(F̄ (t))′.

Define cumulative hazard rate function:

H(t) =

Z t

0

h(s)ds.

We have

H(t) =

Z t

0

h(s)ds =

Z t

0

(− log(F̄ (t))′ = − log(F̄ (t)) + log F̄ (0)| {z }
=1

= − log(F̄ (t)),

thus
F̄ (t) = e−H(t) = e−

R
t
0 h(s)ds.

Discrete case

For random variable X distributed on 0, 1, . . ., define hazard rate function:

h(k) =
P (X = k)P∞
j=k P (X = j)

=
P (X = k)

P (X ≥ k)
=
P (X > k − 1) − P (X > k)

P (X > k − 1)
=

=
F̄ (k − 1) − F̄ (k)

F̄ (k − 1)
= 1 − F̄ (k)

F̄ (k − 1)
.

Define cumulative hazard rate function:

H(m) =
mX

k=0

h(k) =
mX

k=0

„
1 − F̄ (k)

F̄ (k − 1)

«
.

We have

F̄ (m) =
mY

j=1

F̄ (j)

F̄ (j − 1)
=

mY

j=1

(1 − h(j)) . (6.131)
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Next theorem characterizes heavy-tail distribution by hazard rates. We assume lim infk→∞ h(k) = lim supk→∞ h(k)
to make it simpler, this assumption can be relaxed allowing lim infk→∞ h(k) = lim supk→∞ h(k), for such char-
acterization in case lim infk→∞ h(k) 6= lim supk→∞ h(k) see for example T. Rolski et al. [39].

Moreover, throughout the paper we assume that for any fixed k > 0 we have h(k) > 0 (what is not a restriction
in most distributions we are interested in).

Lemma 6.1.2. If the hazard rate h fulfills lim inf
k→∞

h(k) = lim sup
k→∞

h(k), then

lim
k→∞

h(k) = 0 ⇐⇒ X is heavy-tailed.

Proof.

(=⇒) Assume lim
k→∞

h(k) = 0, what means

∀(ε ∈ (0, 1]) ∃(k′) ∀(k ≥ k′) h(k) < ε

and thus
∀(k ≥ k′) 1 − h(k) > 1 − ε.

And on the contrary assume X is light-tailed, this means ∃s0 > 0 : Ees0X <∞. Then:

Using (6.131) we obtain

F̄ (k) =

kY

j=1

(1 − h(j)) =

k′−1Y

j=1

(1 − h(j)) ·
kY

j=k′
(1 − h(j)) ≥ ck

′−1
2 (1 − ε)k−k

′
,

where c2 = min
1≤j≤k′−1

(1 − h(j)). Set c = ck
′−1

2 (1 − ε)−k
′
, then

F̄ (k) ≥ c(1 − ε)k

Setting any ε0 = 1 − e−s0+2 < 1 − e−s0+1 we have (denoting finite sum d =
k′−1X

k=0

es0kF̄ (k))

∞X

k=0

es0kF̄ (k) =

k′−1X

k=0

es0kF̄ (k) +

∞X

k=k′
es0kF̄ (k) ≥ d+ c

∞X

k=k′
es0k(1 − ε0)k = d+ c

∞X

k=k′
es0kek·log(1−ε0)

= d+ c

∞X

k=k′
e(s0+log(1−ε0))k ≥ d+ c

∞X

k=k′
e(s0+log(e−s0+2))k = d+ c

∞X

k=k′
e2k = ∞,

but

∞X

k=0

es0kF̄ (k) =
∞X

k=0

es0kP (X > k) =
∞X

k=0

es0k
∞X

m=k+1

P (X = m) =
∞X

m=1

m−1X

k=0

eskP (X = m) =

∞X

m=1

P (X = m)

m−1X

k=0

es0k =

∞X

m=1

P (X = m)
es0m − 1

es0 − 1
=

1

es0 − 1

" ∞X

m=0

es0mP (X = m) − e0P (X = 0) − (1 − P (X = 0))

#
=
Ees0X − 1

es0 − 1
,

i.e. we have

Ees0X = 1 + (es0 − 1)

∞X

k=0

es0kF̄ (k) (6.132)

and thus Ees0X = ∞ what contradicts the finiteness of Ees0X or equivalently, contradicts that X is
heavy-tailed.
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(⇐=) Assume X is heavy-tailed, i.e. ∀(s > 0) : EesX = ∞ and in contradiction assume limk→∞ h(k) > 0, this
means

∀(ε ∈ (0, 1)) ∃(k′) ∀(k ≥ k′) h(k) > ε

i.e.
∀(ε ∈ (0, 1)) ∃(k′) ∀(k ≥ k′) 1 − h(k) ≤ 1 − ε

Using (6.131) we obtain

F̄ (k) =
kY

j=1

(1 − h(j)) =
k′−1Y

j=1

(1 − h(j)) ·
kY

j=k′
(1 − h(j)) ≤ ck

′−1
2 (1 − ε)k−k

′
,

where c2 = max
1≤j≤k′−1

(1 − h(j)). Set c = ck
′−1

2 (1 − ε)−k
′
, then

F̄ (k) ≤ c(1 − ε)k

Setting s0 = log
“

1√
1−ε

”
> 0 we have

∞X

k=0

es0kF̄ (k) =

k′−1X

k=0

es0kF̄ (k) +
∞X

k=k′
es0kF̄ (k) ≤ d+ c

∞X

k=k′
es0k(1 − ε)k = d+ c

∞X

k=k′
es0kek·log(1−ε)

= d+ c
∞X

k=k′
e(s0+log(1−ε))k = d+ c

∞X

k=k′
e

“
log

“
1√
1−ε

”
+log(1−ε)

”
k

= d+ c
∞X

k=k′
e(log

√
1−ε)k = M <∞,

because log
√

1 − ε < 0 but from (6.132) and assumption that Ees0X = ∞ for every s > 0 we have

∞ = Ees0X = 1 + (es0 − 1)
∞X

k=0

es0kF̄ (k) ≤ 1 + (es0 − 1)M <∞

which is in contradiction to the fact that X is heavy-tailed.

6.2 Markov Jump Process

Consider a Markov Jump process X = (Xt, t ≥ 0) with enumerable state space E and intensity matrix J .
Corresponding infinitesimal generator −L can be defined by:

Lf(e) =
X

e′∈E
[f(e) − f(e′)]J(e, e′), e ∈ E.

Definition 6.2.1. We call Markov jump process reversible if

∀(e,e′ ∈ E) π(e)J(e,e′) = π(e′)J(e′, e).

The scalar product on L2(π) is given by

(f, g)π =
X

e

f(e)g(e)π(e), ||f ||2π = (f, f)π .

Lemma 6.2.2. For a reversible Markov jump process and f satisfying (f,111111111)π = 0 (111 denotes the constant
function with value 1) we have

(f, Lf)π =
1

2

X

e

X

e′
(f(e) − f(e′))2π(e)J(e,e′).

Proof. Use ∀(e)
R
e′ J(e, e′) = 0 and ∀(e′)

R
e
π(e)J(e,e′) = 0..

Definition 6.2.3 (Spectral Gap). Suppose −L is the infinitesimal generator of X.
As spectral gap we define

Gap(L) := inf {−(f, Lf)π : ||f ||π = 1, (f,111)π = 0} . (6.133)
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Define
M = sup

e∈E
J(e, {e}c).

Definition 6.2.4. Cheeger’s constant is defined as follows:

k := inf
A⊂E,π(A)∈(0,1)

k(A), k(A) :=

R
x∈A π(dx)J(x,Ac)

π(A)π(Ac)
. (6.134)

Lemma 6.2.5 (Lawler & Sokal [30]). For a reversible Markov process with infinitesimal generator −L we have

Gap(L) ≤ k.

Proof. Consider

f(e) =


π(Ac), e ∈ A,
−π(A), e ∈ Ac.

We have

(f,111)π =
X

e

f(e)π(e) =
X

e∈A
f(e)π(e) +

X

e∈Ac
f(e)π(e) = π(A)π(Ac) − π(Ac)π(A) = 0.

(f, f)π =
X

e

f2(e)π(e) =
X

e∈A
f2(e)π(e) +

X

e∈A
f2(e)π(e) = π(A)π2(Ac) + π(Ac)π2(A) = π(A)π(Ac).

Using Lemma 6.2.2:

(f, Lf)π =
1

2

X

e

X

e′
(f(e) − f(e′))2π(e)J(e,e′) =

1

2

 
0 + 0 +

X

e∈A

X

e′∈Ac
1 · π(e)J(e,e′) +

X

e∈Ac

X

e′∈A
1 · π(e)J(e,e′)

!
revers.

=
X

e∈A
π(e)J(e,Ac).

Thus

k(A) =
(f, Lf)π
(f, f)π

and because it was just a special function, thus

k = inf
A⊂E,π(A)∈(0,1)

k(A) = inf
A⊂E,π(A)∈(0,1)


(f, Lf)π
(f, f)π

ff
≥ Gap(L).

Before stating next theorem we define

η = inf
L

sup
c

(E|(X + c)2 − (Y + c)2|)2
E(X + c)2

,

where the infimum is taken over all distributions of i.i.d r.v. (X,Y ) with variance 1. It is not obvious that η 6= 0,
but indeed

η ≥ 1, (6.135)

as proved in Lawler & Sokal [30].

Theorem 6.2.6 (Lawler & Sokal [30]). For any reversible, stationary Markov jump process with bounded in-
finitesimal generator −L and stationary measure π we have:

Gap(L) ≥ ηk2

8M
≥ k2

8M
.

Proof. Let f ∈ L2(π), and g = f + c (constant c will be determined later). Using Lemma 6.2.2 and the Schwarz
inequality we have:

(f, Lf)π =
1

2

X

e,e′
π(e)J(e,e′)[g(e) − g(e′)]2 ≥ 1

2

“P
e,e′ π(e)J(e,e′)[g2(e) − g2(e′)]2

”2

P
e,e′ π(e)J(e,e′)[g(e) + g(e′)]2

≥ 1

2

“P
e,e′ π(e)J(e,e′)[g2(e) − g2(e′)]2

”2

P
e,e′ π(e)J(e,e′)[2g2(e) + 2g2(e′)]

≥ 1

2

“P
e,e′ π(e)J(e,e′)[g2(e) − g2(e′)]2

”2

4M
P

e
π(e)g2(e)

. (6.136)
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By reversibility
X

e,e′
π(e)J(e,e′)[g2(e) − g2(e′)] = 2

X

e,e′:
g2(e)>g2(e′)

π(e)J(e,e′)[g2(e) − g2(e′)].

= 2

Z ∞

0

dα
X

e,e′:
g2(e)>α≥g2(e′)

π(e)J(e,e′)[g2(e) − g2(e′)] = 2

Z ∞

0

dα− (I(Ac), LI(Ac))π

(where I is the indicator function, and Aα := {e : g2(e) > α})

≥ 2

Z ∞

0

dαkπ(Aα)π(Acα) = 2k

Z ∞

0

dα
X

e,e′:
g2(e)>α≥g2(e′)

π(e)π(e′)

= 2k

Z ∞

0

X

e,e′:
g2(e)>g2(e′)

π(e)π(e′)(g2(e) − g2(e′)) = k
X

e,e′
π(e)π(e′)|g2(e) − g2(e′)|

i.e. X

e,e′
π(e)J(e,e′)|g2(e) − g2(e′)| ≥ k

X

e,e′
π(e)π(e′)|g2(e) − g2(e′)| (6.137)

Combining (6.136) and (6.137) we have

(f, Lf)π ≥ k2

8M

“P
e,e′ π(e)J(e,e′)[g2(e) − g2(e′)]2

”2

P
e∈E π(e)g2(e)

We now optimize the choice of c. By definition of η we have

(f, Lf)π ≥ ηk2

8M

"X

e∈E
f2(e)π(e) −

 X

e∈E
f(e)π(e)

!#

In particular, if (f,111)π = 0:

(f, Lf)π ≥ ηk2

8M
||f ||2π ,

which (using (6.135)) implies

Gap(L) ≥ ηk2

8M
≥ k2

8M
.

Lemma 6.2.7 (Liggett [31]). Let −eL be the infinitesimal generator of a vector Markov process with stationary
distribution π whose components are independent Markov processes on the state space E = E1 × E2 × E3 × . . .,
whose components are independent Markov processes: on i−th component there is Markov process with generator
−Li, state space E1 and and invariant probability measure. Let π be the product of πi’s. Then

Gap(eL) = inf
i
Gap(Li).

Proof. To show that Gap(eL) ≤ Gap(Li) for i = 1, . . . ,m, simply take in definition of spectral gap (6.133) as
functions f , functions which depend only on the i-th coordinate.

For Gap(eL) ≥ Gap(Li), it is enough to consider the case with two components only, for then iterating this proof
gives it for infinitely many components, since functions which depend on finitely many coordinates are dense in
L2(π).
Thus we consider L1, L2 and coordinates x and y, number them 1 and 2. Set ε = min(Gap(L1), Gap(L2)). Let
f be the function on the product space which satisfies

R
fdπ = 0 (i.e. (f,111)π = 0) and ||f ||π = 1. Write

f(x, y) = h(x, y) + h1(x) + h2(y),

where
R
h(x, y)dπ1 for a.e. y,

R
h(x, y)dπ2 = 0 for a.e. x,

R
h1(x)dπ1 = 0,

R
h2(x)dπ2 = 0. Then h, h1 and h2 are

orthogonal in L2(π), so that
||h||2π + ||h1||2π + ||h2||2π = ||f ||2π = 1. (6.138)

So are Pth, Pth1 and Pth2:
||Pth||2π + ||Pth1||2π + ||Pth2||2π = ||Ptf ||2π . (6.139)
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Since Pth1 = P
(1)
t h1, Pth2 = P

(2)
t h2 and fact that Gap(L) is the largest ε′ for which ||Ptg||π ≤ e−ε

′Gap(L)||g||π
(see subsection 6.5.3), we have

||Pth1||π ≤ e−εt||h1||π , ||Pth2||π ≤ e−εt||h2||π . (6.140)

On the other hand:
||Pth||π = ||P (1)

t P
(2)
t h||π ≤ e−εt||P (2)

t h||π ≤ e−2εt||h||π (6.141)

Combining (6.138)-(6.141) we get

||Ptf ||2π ≤ e−4εt||h||2π + e−2εt||h1||2π + e−2εt||h2||2π ≤ e−2εt

i.e.
||Ptf ||π ≤ e−εt,

which means that Gap(eL) ≥ ε.

6.3 Markov chains on Z+

We consider a continuous time Markov chain X = (Xt, t ≥ 0) on the state space E = Z+, with transition rates
qx,y . Infinitesimal generator −Ω of process on L2(N, π) is given by

Ωf(x) =
X

y

[f(x) − f(y)]qx,y

for f ∈ G - the set of functions on Z+ with finite support. Let π be the stationary distribution of the process.
Assume that X

x∈E
|qx,x|π(x) <∞.

Then π(x)qx,y = 0 for all y ∈ E.

Lemma 6.3.1. If f ∈ G then
X

x

f(x)Ωf(x)π(x) = −1

2

X

x,y

qx,y[f(y) − f(x)]2π(x),

Thus

Gap(Ω) =
1

2
inf

(
X

x,y

[f(y) − f(x)]2qx,yπ(x) : f ∈ G,
X

x

f(x)π(x) = 0,
X

x

f2(x)π(x) = 1

)

Proof. Use ∀(x)
P
y qx,y = 0 and ∀(y)

P
x π(x)qx,y = 0

Theorem 6.3.2 (Liggett [31]).

Gap(Ω) ≤ 1

2
inf
n≥0

P
x≤n≤y [π(x)qx,y + π(y)qy,x]

(
P
x≤n π(x))(

P
x>n π(x))

,

and if process is reversible, then 1
2

infn≥0

P
x≤n≤y[π(x)qx,y+π(y)qy,x]
(
P
x≤n π(x))(

P
x>n π(x))

= infn≥0

P
x≤n≤y[π(x)qx,y]

(
P
x≤n π(x))(

P
x>n π(x))

Proof. In Lemma 6.3.1 use f(x) = c ·K(x) − d, where K(x) := 1{x∈An}, An := {0, 1, . . . , n}. Constants c and d
are chosen so that

P
f(x)π(x) = 0,

P
f2(x)π(x) = 1.

X

x,y

qx,y [f(y) − f(x)]2 π(x) =
X

x∈An,y∈An
0 +

X

x∈An,y∈Acn

c2qx,yπ(x) +
X

x∈Acn,y∈An
c2qy,xπ(y)

= c2
X

x≤n≤y
[π(x)qx,y + π(y)qy,x] .

What is left is to calculate c2. It is done from:
X

f(x)π(x) =
X

x≤n
(c− d)π(x) +

X

x>n

−dπ(x) = 0

and X
f2(x)π(x) =

X

x≤n
(c− d)2π(x) +

X

x>n

d2π(x) = 1

obtaining:

c2 =

0
@X

x≤n
π(x)

1
A
 
X

x>n

π(x)

!
.
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6.4 Birth & Death process

Again we take E = Z+.
Birth & Death (B & D) process X = (Xt, t ≥ 0) is a Markov chain on Z+ such that qx,y = 0 if |x− y| > 1. Thus
we only have birth rates qj,j+1 = λ(j) and death rates qj,j−1 = µ(j).
Infinitesimal generator −Ω of such process on L2(N, π) is given by

Ωf(j) := [f(j) − f(j + 1)]λ(j) + [f(j) − f(j − 1)]µ(j). (6.142)

Similarly we consider Q = [qx,y ]x,y∈N, the intensity matrix:

qx,y =

8
>>>>>>>><
>>>>>>>>:

λ(x) if y = x+ 1

µ(y) if y = x− 1

−µ(y) − λ(y) if y = x

0 otherwise

Define

m(0) := 1,m(n) :=
λ(0) . . . λ(n− 1)

µ(1) . . . µ(n)
.

Stationary distribution for a B & D process X is then given by

π(i) =
m(i)

m
, where m :=

∞X

i=0

m(i).

The proof of next theorem uses the Schwarz inequality and can be found in Liggett [31].

Theorem 6.4.1 (Liggett [31]). Assume that X is a Birth & Death process with qi,i+1 > 0, for all i ≥ 0 and for
some b, c > 0 we have X

j>i

π(j) ≤ cπ(i)qi,i+1 and
X

j>i

π(j)qj,j+1 ≤ bπ(i)qi,i+1.

Then

Gap(Ω) ≥ (
√
b+ 1 −

√
b)2

c
≥ 1

2c(1 + 2b)
.

�

Let us calculate hazard rate of stationary distribution of birth and death process:

h(i) =
π(i)P
j≥i π(j)

=
m(i)
mP

j≥i
m(j)
m

=
m(i)P
j≥im(j)

=
λ(0) · · · λ(i− 1)

µ(1) · · ·µ(i)

1
P
j≥i

λ(0)···λ(j−1)
µ(1)···µ(j)

=
1

1 +
P
j>i

λ(i)···λ(j−1)
µ(i+1)···µ(j)

Next theorem is reformulation of theorem of Chen, [6] into hazard rates.

Theorem 6.4.2 (Chen [6]). If 0 < infi λ(i) ≤ supi λ(i) =: C <∞ then

Gap(Ω) > 0 ⇐⇒ inf
i≥0

h(i) > 0

Proof.
(⇐=) Assume infi≥0 h(i) > 0.

It means sup
i≥0

1

h(i)
> 0.

We have

sup
i≥0

1

h(i)
= sup

i≥0

 
1 +

X

j>i

λ(i) · · ·λ(j − 1)

µ(i+ 1) · · ·µ(j)

!
= sup

i≥0

 
1 +

λ(i)

µ(i+ 1)
+
X

j>i+1

λ(i) · · ·λ(j − 1)

µ(i+ 1) · · ·µ(j)

!
<∞.

Because of assumption it means that

sup
i≥0

 
1

µ(i+ 1)
+
X

j>i+1

λ(i) · · ·λ(j − 1)

µ(i+ 1) · · ·µ(j)

!
<∞
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what is equivalent to

sup
i≥0

 
X

j>i+1

λ(i+ 1) . . . λ(j − 1)

µ(i+ 1) . . . µ(j)

!
= sup

i≥0

 
X

j>i

m(j)

m(i)λ(i)

!
<∞.

Therefore for every i we have

X

j>i

π(j)

λ(i)π(i)
≤ c <∞, i.e.

X

j>i

π(j) ≤ cπ(i)λ(i),

and this is the assumption of Theorem 6.4.1, thus Gap(Ω) > 0.

(=⇒) Assume Gap(Ω) > 0
From Theorem 6.3.2 we have

0 < Gap(Ω) ≤ inf
n≥0

P
i≤n≤j π(i)q(i, j)

(
P
i≤n π(i))(

P
i>n π(i))

= inf
n≥0

π(n)q(n, n+ 1)

(
P
i≤n π(i))(

P
i>n π(i))

≤ C inf
n≥0

π(n)

(
P
i≤n π(i))(

P
i>n π(i))

≤ C inf
n≥0

π(n)

(π(0))(
P
i>n π(i))

=
C

π(0)
inf
n≥0

π(n)

(
P
i>n π(i))

i.e.

inf
i≥0

π(i)

(
P
j>i π(j))

> 0,

which is of course equivalent to

inf
i≥0

π(i)

(
P
j≥i π(j))

= inf
i≥0

h(i) > 0.

Remark 6.4.3.

For constant birth intensities, i.e. λ(i) ≡ λ we can easily have any distribution {pi} as a stationary distribution,
as can be seen in next Theorem.

Theorem 6.4.4. Consider a Birth & Death process X with λ(k) ≡ λ, µ(k) = λ · pk−1

pk
(p0 ≡ 1). Let h be a

hazard rate of its statinary distribution and −Ω its infinitesimal generator. Assume that lim infk→∞ h(k) =
lim supk→∞ h(k) Then

(i) π(i) = pi,

(ii) {pi} is heavy-tailed ⇐⇒ Gap(Ω) = 0,

(iii) {pi} is light-tailed ⇐⇒ Gap(Ω) > 0.

Proof.
(i)

π(i) =
λ · · ·λ

λ · · · λ p0
p1

p1
p2

· · · pi−1

pi

=
λi

λi 1
pi

= pi.

(ii) If π is heavy-tailed, then by Lemma 6.1.2 we have that limi→∞ h(i) = 0 what implies infi≥0 h(i) = 0 (because
we assumed also throughout the paper that h(i) > 0), what holds if and only if Gap(Ω) = 0 (Theorem 6.4.2).
(ii) If π is light-tailed, then by Lemma 6.1.2 we have that limi→∞ h(i) > 0 what implies infi≥0 h(i) > 0, what
holds if and only if Gap(Ω) > 0 (again, Theorem 6.4.2).

It is worth noting that for general λ(i) and µ(i) the fact that stationary distribution is heavy-tailed does not
imply that spectral gap is equal to zero.

Example (Chen & Wang [7]). Let E = Z+ and λ(i) = µ(i) = iγ(i ≥ 1) for some γ > 0 and µ(0) = 0 (then we
have equilibrium rate r(i) = 1). Denote its infinitesimal generator by Ω. Stationary distribution is π(n) = C · 1

nγ
,

where c is a normalisation constant. This distribution is heavy-tailed (for any γ > 0), but Gap(Ω) > 0 if and
only if γ ≥ 2.
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6.5 Queueing networks

6.5.1 Spectral gap for Jackson network

Consider a Jackson network which consists of m numbered servers, denoted by M̄ := {1, . . . ,m}. Station
j ∈ M̄ , is a single server queue with infinite waiting room under FCFS (First Come First Served) regime. All
the customers in the network are indistinguishable. There is an external Poisson arrival stream with intensity λ̄
and arriving customers are sent to node j with probability r0j ,

Pm

j=1 r0j = r ≤ 1. The quantity r00 := 1 − r is
then the rejection probability with that customers immediately leave the network. Customers arriving at node j
from the outside or from other nodes request a service which is exponentially distributed with mean 1. Service
at node j is provided with intensity µj(xj) (µj(0) := 0), where xj is the number of customers at node j including
the one being served. All the service times and arrival processes are assumed to be independent.
A customer departing from node i immediately proceeds to node j with probability rij ≥ 0 or departs from the
network with probability ri0. The routing is independent of the past system given the momentary node where
the customer is. Let M̄0 := {0, 1, . . . ,m}. We assume that the matrix R := (rij , i, j ∈ M̄0) is irreducible.
Let X ′

j(t) be the number of customers present at node j at time t ≥ 0. Then X ′(t) = (X ′
1(t), . . . ,X ′

m(t)) is the
joint queue length vector at time instant t ≥ 0 and X := (X ′(t), t ≥ 0) is the joint queue length process with
state space E = Z

m
+ .

Denote possible transformations from one state to another:

Tijx := (x1, . . . , xi − 1, . . . , xj + 1, . . . , xm),
T·jx := (x1, . . . , xj + 1, . . . , xm),
Ti·x := (x1, . . . , xi − 1, . . . , xm).

(6.143)

The following theorem is classical.

Theorem 6.5.1 (Jackson [26]). Under the above assumptions the queueing process X is a continuous time
Markov process with transition matrix Q = (q(x, y), x, y ∈ E) given by

q(x, y) =

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

µi(xi)rij if y = Tijx,

λ̄r0j if y = T·jx,

µi(xi)ri0 if y = Ti·x,

−
X

x 6=y
q(x, y) if y = x,

0 otherwise.

(6.144)

The corresponding infinitesimal generator is given by

Lf(x) =

mX

j=1

[f(x) − f(T·jx)]λ̄r0j +

mX

i=1

mX

j=1

[f(x) − f(Tijx)]µi(xi)rij +

mX

j=1

[f(x) − f(Tj·x)]µj(xj)rj . (6.145)

The unique stationary distribution exists if and only if the unique solution of the traffic equation

λi = λ̄r0j +
mX

j=1

λjrji, i = 1, . . . ,m (6.146)

satisfies

bi :=
∞X

n=0

λniQn

y=1 µi(y)
<∞, 1 ≤ i ≤ m.

what we henceforth assume. Then, the stationary distribution π(x), x = (x1, . . . , xm) is given by product:

π(x) =
mY

i=1

πi(xi), where πi(xi) :=
1

bi

λxiiQxi
y=1 µi(y)

. (6.147)

�
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The parameters of a Jackson network are: the arrival intensity λ̄, the routing matrix R (with its traffic vector
λλλ = (λ1, . . . , λm)), the vector of service rates µµµ = (µ1(·), . . . , µm(·)) and the numbers of servers m.

Remark: We will shortly write λ̄j for λ̄r0j .

For some monotonicities in Jackson networks see Szekli [45], Daduna and Szekli [11] or Lindvall [35].

Let

hi(k) =
πi(k)P∞
j=k πi(j)

be the hazard rate of marginal distribution πi.
We make the following assumptions:

A1 There exist unique (up to a multiplying constant) (6.148)

solution to the traffic equation (6.146) i.e. λ1, . . . , λm,

A2 ∀i : µi = sup
y

µi(y) <∞, µi = inf
y
µi(y) > 0, (6.149)

A3 ∀i : lim inf
k→∞

hi(k) = lim sup
k→∞

hi(k). (6.150)

Let R > 0 denotes the fact that all elements of R are positive numbers .
Recall that the spectral gap for this process (with generator given in 6.145) is given by

Gap(L) := inf{−(f, Lf)π : ||f ||π = 1, (f,111)π = 0}.

We say that spectral gap exists if Gap(L) > 0.

Next theorem states that spectral gap exists for Jackson network if and only if each of marginal distributions πi,
i = 1, . . . ,m is light-tailed.
Remark Assumption A3 in next theorem can be relaxed allowing lim infk→∞ hi(k) 6= lim supk→∞ hi(k), the
proof would be then similar, just some more cases to consider would be needed.

Theorem 6.5.2. Consider Jackson network with routing such that Rk > 0 for some k > 0 and let −L be the
infinitesimal generator of this network. Assume in addition A1, A2 and A3. Then

Gap(L) > 0 if and only if each of marginal distributions πi, i = 1, . . . ,m is light-tailed.

Proof. Let J be the kernel corresponding to −L i.e. such that Lf(e) =
X

e′∈E
(f(e) − f(e′))J(e, e′).

We start with defining m birth and death processes. Define infinitesimal generator −Li on L2(N, π) by

Lif(y) := [f(y) − f(y − 1)]λi + [f(y) − f(y − 1)]µi(y) (6.151)

Let J(i) = [J
(i)
x,y ]x,y∈N be:

J(i)
x,y =

8
>>>>>>>><
>>>>>>>>:

λi if y = x+ 1,

µi(y) if y = x− 1,

−µi(y) − λi if y = x,

0 otherwise.

(6.152)

On E = Zm consider the Markov chain eX = ( eXt, t ≥ 0), whose components are m independent, stationary birth

and death processes, each having infinitesimal generator −Li. Denote the infinitesimal generator of eX by −eL.

Let eJ be the corresponding kernel such that eLf(e) =
X

e′∈E
(f(e) − f(e′)) eJ(e, e′).

The stationary distribution of process with generator −eL is the product of stationary distributions of processes
with generators −Li, i = 1, 2, . . . ,m. Thus, by Theorem 6.2.7, we have Gap(eL) = infiGap(Li).

Note that both, J and eJ , have the same stationary distribution being a product of stationary distributions of
J(i).
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Define ek to be the Cheeger’s constant for eX process and k to be Cheeger’s constant for X, i.e.

ek := inf
A⊂E,π(A)∈(0,1)

ek(A), ek(A) :=

R
x∈A π(dx) eJ(x,Ac)

π(A)π(Ac)
,

k := inf
A⊂E,π(A)∈(0,1)

k(A), k(A) :=

R
x∈A π(dx)J(x,Ac)

π(A)π(Ac)
.

To establish the theorem it is enough to have the following

∃(w1 > 0, w2 > 0) ∀(A ⊂ E) w2

X

x∈A
π(x) eJ(x,Ac) ≥

X

x∈A
π(x)J(x,Ac) ≥ w1

X

x∈A
π(x) eJ(x,Ac). (6.153)

Having above is enough because:

1. If ∃i : πi is heavy-tailed.

Then according to Theorem 6.4.4 we have that Gap(Li) = 0 and thus (Lemma 6.2.7) Gap(eL) = 0. Next,

from Theorem 6.2.6 for eL we conclude that ek = 0 (ek2 ≤ 8M · Gap(eL) = 0). Now using (6.153) we have
that

k(A) :=

R
x∈A π(dx)J(x,Ac)

π(A)π(Ac)
≤ w2

R
x∈A π(dx) eJ(x,Ac)

π(A)π(Ac)
= w2

ek(A)

i.e.
k ≤ w2

ek = 0

thus k = 0 and from Lemma 6.2.5 we have that Gap(L) = 0.

2. If ∀i : πi is light-tailed.

Then according to Theorem 6.4.4 we have that Gap(Li) > 0 for all i and thus (Lemma 6.2.7) Gap(eL) > 0.

Applying Lemma 6.2.5 to eL we conclude that ek > 0. Now using the existence of w1 in (6.153) we have

k(A) =

R
x∈A π(dx)J(x,Ac)

π(A)π(Ac)
≥ w1

R
x∈A π(dx) eJ(x,Ac)

π(A)π(Ac)
= w1

ek(A)

i.e.
k ≥ w1

ek > 0

thus (using Lemma 6.2.6) we get
Gap(L) > 0.

Note, that (6.153) is equivalent to two conditions:

inf
A⊂E

π(A)∈(0,1)

(P
x∈A π(x)J(x,Ac)

P
x∈A π(x) eJ(x,Ac)

)
> 0 and sup

A⊂E
π(A)∈(0,1)

(P
x∈A π(x)J(x,Ac)

P
x∈A π(x) eJ(x,Ac)

)
<∞. (6.154)

Denote

W (A) =

P
x∈A π(x)J(x,Ac)

P
x∈A π(x) eJ(x,Ac)

=

X

x∈A
π(x)

0
@ X

Tijx∈Ac
µi(xi)rij +

X

T·jx∈Ac
λ̄j +

X

Ti·x∈Ac
µi(xi)ri0

1
A

X

x∈A
π(x)

0
@ X

T·jx∈Ac
λj +

X

Ti·x∈Ac
µi(xi)

1
A

.

Recall that µi = supi µi(xi) <∞ and µi = infy µi(y) > 0.
Let µmax = max

0≤i≤m
µi <∞ and µmin = min

0≤i≤m
µi > 0.

Denote
MJ (A,x) =

X

Tijx∈Ac
µi(xi)rij +

X

T·jx∈Ac
λ̄j +

X

Ti·x∈Ac
µi(xi)ri0

and
Mmin
J = inf

A,x:MJ (A,x)>0
{MJ (A, x)} , Mmax

J = sup
A,x:MJ(A,x)>0

{MJ (A, x)} .
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We have
Mmin
J ≥ min{µmin · min

i,j:rij>0

rij , min
j:λ̄j>0

λ̄j , µmin · min
i:ri0>0

ri0} > 0,

Mmax
J ≤ m(m− 1)µmax · 1 +

mX

j=1

λ̄j +mµmax · 1 = m2µmax +
mX

j=1

λ̄j <∞.

Similarly

M eJ (A, x) =
X

T·jx∈Ac
λj +

X

Ti·x∈Ac
µi(xi)

and
Mmin

eJ = inf
A,x:M eJ(A,x)>0

˘
M eJ (A,x)

¯
, Mmax

eJ = sup
A,x:M eJ(A,x)>0

˘
M eJ (A,x)

¯
.

We have
Mmin

eJ ≥ min{min
j
λj , µmin} > 0,

Mmax
eJ ≤

mX

j=1

λj +m · µmax <∞.

Note that both MJ and M eJ do not depend on A. Define:

∂ eA = {x : M eJ (A,x) > 0}, ∂A = {x : MJ (A, x) > 0}.

∂ eA is a set of all states from which process with kernel eJ can get in one step to Ac, whereas ∂A is a set of states
from which original process with kernel J can get in one step to Ac. We have

W (A) =

X

x∈∂A
π(x)MJ(A, x)

X

x∈∂ eA

π(x)M eJ(A, x)

and

Mmax
J

Mmin
eJ

·

X

x∈∂A
π(x)

X

x∈∂ eA

π(x)
≥

X

x∈∂A
π(x)MJ(A,x)

X

x∈∂ eA

π(x)M eJ(A,x)
≥ Mmin

J

Mmax
eJ

·

X

x∈∂A
π(x)

X

x∈∂ eA

π(x)

To show (6.154) we have to show that

∞ >

X

x∈∂A
π(x)

X

x∈∂ eA

π(x)
> 0

or equivalently

∞ >

X

x∈∂ eA

π(x)

X

x∈∂A
π(x)

> 0. (6.155)

Before proceeding let us examine how much can differ π(x) and π(x′), where x′ is a state to which one can get
from x in at most k ≤ m steps.
Recall (6.147)

π(x) =

mY

i=1

πi(xi), where πi(xi) :=
1

bi

λxiiQxi
y=1 µi(y)

.

Note that x and x′ on position i can only differ by at most k. We have (assume xi ≥ k)

πi(xi + k) =
1

bi

λxi+kiQxi+k
y=1 µi(y)

= πi(xi)
λki

µi(xi + 1) · · ·µi(xi + k)

and

πi(xi − k) =
1

bi

λxi−kiQxi−k
y=1 µi(y)

= πi(xi)
λ−k
i
1

µi(xi−m+1)···µi(xi)

and thus we have bounds:
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“
λi
µi

”k
πi(xi) ≤ πi(xi +m) ≤ πi(xi)

“
λi
µi

”k
,

“
λi
µi

”−k
πi(xi) ≤ πi(xi − k) ≤ πi(xi)

“
λi
µi

”−k
.

Let ci = max

„“
λi
µi

”
,
“
λi
µi

”−1 “
λi
µi

”
,
“
λi
µi

”«
. We have

„
1

ci

«k
πi(xi) ≤ πi(xi ± k) ≤ cki πi(xi)

Denote yet c =
Qk

i=1 ci. So if we take x and x′ which can differ from x′ by ±k at each position, we have

1

c
π(x) ≤ π(x′) ≤ cπ(x),

i.e.
1

c
π(x′) ≤ π(x) ≤ cπ(x′) (6.156)

Of course we can have states which are in ∂A and not in ∂ eA and also such that are in ∂ eA but not in ∂A.
If we take z ∈ ∂A \ ∂ eA, i.e. there exists some yz ∈ Ac such that process with kernel eJ cannot move from z to
yz in one step, but process with kernel J can. State yz must be of form yz = Tijz. But note that there always
exists path Ti·, T·j such that z′ = Ti·z ∈ A and yz = T·jz

′ ∈ Ac. See the following

Example. Consider Jackson network with two stations and no transition T·1, i.e. with λ̄1 = 0, assume all other
transitions are possible.
Take A as on the picture (poly-line going through x′, x, z, z′ belongs to A) and x = (n,m), yx = (n+ 1, m), x′ =
(n+ 1, m− 1), z = (n,m+ 3), yz = (n+ 1, m+ 2), z′ = (n+ 1,m+ 3).

-
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kernel eJ

6.5.1

In the above example we have z ∈ ∂A \ ∂ eA and x ∈ ∂ eA \ ∂A. In the example we have that z′ = T·1z ∈ A and
yz = T2·z

′ ∈ Ac (there is also, not drawn on the picture, another such path: z′′ = T2· ∈ A and then yz = T·1z
′′).

Of course either z′ ∈ ∂ eA \ ∂A or z′ ∈ ∂ eA ∩ ∂A. For any such z′ there are no more than 2m corresponding z,
thus using (6.156) (where c ≥ 1) we have

X

x∈∂ eA

π(x)

X

x∈∂A
π(x)

=

X

x∈∂ eA∩∂A

π(x) +
X

x∈∂ eA\∂A

π(x)

X

x∈∂ eA∩∂A

π(x) +
X

x∈∂A\∂ eA

π(x)
≥

X

x∈∂ eA∩∂A

π(x) +
X

x∈∂ eA\∂A

π(x)

X

x∈∂ eA∩∂A

π(x) + 2mc

0
@ X

x∈∂ eA∩∂A

π(x) +
X

x∈∂ eA\∂A

π(x)

1
A
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≥

X

x∈∂ eA∩∂A

π(x) +
X

x∈∂ eA\∂A

π(x)

(2mc+ 1)

0
@ X

x∈∂ eA∩∂A

π(x) +
X

x∈∂ eA\∂A

π(x)

1
A

=
1

2mc+ 1

Similarly fix x ∈ ∂ eA \ ∂A, i.e. there exists some yx ∈ Ac such that original process with kernel J cannot move

there in one step, but process with kernel eJ can. State yx must be of form yx = T·ix or yx = Tj·x. Then there
exists path of length at most k such that process with kernel J can, moving along the path, get to yx. There must
exists state x′ on this path such that x′ ∈ A and next state on the path is in Ac. Of course either x′ ∈ ∂ eA ∩ ∂A
or x′ ∈ ∂A \ ∂ eA. For any such x′ there can be surely no more than (2k)m states corresponding to it (because
there is at most so many any other states: they can differ by ±k at each of m positions). Thus, using (6.156)
(where c ≥ 1) we have

X

x∈∂ eA

π(x)

X

x∈∂A
π(x)

=

X

x∈∂ eA∩∂A

π(x) +
X

x∈∂ eA\∂A

π(x)

X

x∈∂ eA∩∂A

π(x) +
X

x∈∂A\∂ eA

π(x)
≤

X

x∈∂ eA∩∂A

π(x) + c(2k)m

0
@ X

x∈∂ eA∩∂A

π(x) +
X

x∈∂A\∂ eA

π(x)

1
A

X

x∈∂ eA∩∂A

π(x) +
X

x∈∂A\∂ eA

π(x)

≤

(1 + c(2k)m)

0
@ X

x∈∂ eA∩∂A

π(x) +
X

x∈∂A\∂ eA

π(x)

1
A

X

x∈∂ eA∩∂A

π(x) +
X

x∈∂A\∂ eA

π(x)
= (1 + c(2k)m) <∞.

This way we have shown that W (A) is bounded uniformly (for any A : π(A) ∈ (0, 1)) from below and above:

∞ > (1 + c(2k)m)
Mmax
J

Mmin
eJ

≥

X

x∈∂ eA

π(x)MJ(A,x)

X

x∈∂A
π(x)M eJ(A,x)

≥ Mmin
J

Mmax
eJ

· 1

2mc+ 1
> 0

i.e. (6.154).

For comparison we will recall theorem with proof by McDonald, Iscoe [36] in our settings. The theorem states
that if each πi, i = 1, . . . , m is light-tailed, then there exists spectral gap for Jackson network. The idea of proof
is different from the one of Theorem 6.5.2, authors construct some birth and death process and then compare it
to the original Jackson network.
Remark As in case of standard Jackson network, assumption A3 in next theorem can be relaxed allowing
lim infk→∞ hi(k) 6= lim supk→∞ hi(k), the proof would be then similar, just some more cases to consider would
be needed.

Theorem 6.5.3 (McDonald & Iscoe [36]). Consider Jackson network with routing such that Rk > 0 for some
k > 0 and let −L be the infinitesimal generator of this network. Assume in addition A1, A2 and A3. Then

if each of marginal distributions πi, i = 1, . . . ,m is light-tailed, then Gap(L) > 0.

Proof. Let −L, J,−eL,− eJ be defined as in Theorem 6.5.2.
It is enough to find constants ν > 0 such that

∀(A ⊂ E,π(A) > 0)
X

x∈A
π(x)J(x,Ac) ≥ ν

X

x∈A
π(x) eJ(x,Ac), (6.157)

because then according to Theorem 6.4.4 we have that Gap(Li) > 0 for all i and thus (Lemma 6.2.7) Gap(eL) > 0.

Now applying Lemma 6.2.5 to eL we conclude that ek > 0. Now using the existence of ν > 0 in (6.157) we have

k(A) :=

R
x∈A π(dx)J(x,Ac)

π(A)π(Ac)
≥ ν2

R
x∈A π(dx) eJ(x,Ac)

π(A)π(Ac)
= νek(A)

i.e.
k ≥ νek > 0
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thus (using Lemma 6.2.6) we get
Gap(L) > 0.

To prove existence of µ consider two cases:

a) λ := min(
λ̄i
λi

: 1 ≤ i ≤ m) > 0 and µ := min(ri0 : 1 ≤ i ≤ m) > 0.

Take ν = min(λ, µ), for then we have λ̄j ≥ νλj and ri0 ≥ ν and we have for x ∈ A

J(x,Ac) =
X

y∈Ac
J(x, y) =

X

y=Tijx∈Ac
J(x, y) +

X

y=T·jx∈Ac
J(x, y) +

X

y=Ti·x∈Ac
J(x, y)

=
X

Tijx∈Ac
µi(xi)rij +

X

T·jx∈Ac
λ̄j +

X

Ti·x∈Ac
µi(xi)ri0 ≥

ν
X

T·jx∈Ac
λj + ν

X

Ti·x∈Ac
µi(xi) = ν eJ(x,Ac).

(Terms at Tij were simply dropped).

b) min(
λ̄i
λi

: 1 ≤ i ≤ m) = 0 or min(ri0 : 1 ≤ i ≤ m) = 0.

This time it is possible that λ̄i = 0 or some ri0 = 0. We will describe ν by constructed birth and death process
with matrix Q = Q+ +Q− and such that

X

x∈A
π(x)J(x,Ac) ≥

X

x∈A
π(x)Q(x,Ac) ≥ ν

X

x∈A
π(x) eJ(x,Ac).

We start with Q+.
Define polytope P+(x) = {x} ∪ {T·kx : 1 ≤ k ≤ m} and define eC·i(x) to be the set of all nonself-intersecting
probable paths on P+(x) (”probable” means that transition from any point on the path to next one can occur).
A typical path consists of x followed by an exogenous arrival at some node, say a1, followed by departure from
a1 into some a2 etc and finally a transition from let say as to i. Because the Jackson network is exogenously
supplied, there must exist such path. (of course t = (x, T·ix) ∈ eC·i(x) if λ̄i > 0). The transitions corresponding
to the path described above are

T·a1 , Ta1a2 , . . . , Tasi

For such a path t, define

λ(t) := min(λ̄a1 , λa1ra1a2 , . . . , λasrasi).

Of course λ(t) does not depend on x. We reduce eC·i(x) to

C·i(x) = {t ∈ eC·i(x) : no two paths have any transition in common} =
n[

k=1

t
(i)
k .

Note that |C·i(x)| = n ≤ m (because if t
(i)
k starts with T·a, then any other cannot start with the same a).

Set the transition (birth) rate of process Q+ at i:

Q+(i) = Q+(x, T·ix)) :=
1

2m

X

t∈C·i(x)

λ(t) =
1

2m

nX

k=1

λ(t
(i)
k ).

(Factor 1
2

will become clear at the and of proof).
Fix x ∈ A such that J(x,Ac) > 0, then we have Q+(x, T·ix) > 0 for all i such that T·ix ∈ Ac. If we take any
path t ∈ C·i(x) we have x ∈ A and T·ix ∈ Ac, so at least one transition in t, say Tjk crosses from A to Ac (i.e.
T·jx ∈ A, T·kx ∈ Ac) and is in the sum

P
y∈A π(y)J(y,Ac), namely in term π(y)µj(yj)rjk, where y = T·jx.

Reversibility implies:
λ̄j = λjrj0, and λirij = λjrji, (6.158)

Using this we have:
π(x)λ̄j = πj(xj)λ̄j = πj(xj)λjrj0,

i.e.
πj(xj)λjrj0 = πj(xj + 1)µj(xj + 1)rj0
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and
πj(xj)λj = πj(xj + 1)µj(xj + 1).

Thus

π(y)µj(yj)rjk = π(T·jx)µj(xj + 1)rjk = πj(xj + 1)µj(xj + 1)rjk = π(x)λjrjk ≥ π(x)λ(t).

But y = T·jx can only be used (at most) once for each i (because no two paths in C·i(x) have any transitions in
common), i.e. at most m times in total. This is also true with initial transition x→ T·ax for which contribution
to previous sum is

π(x)λ̄a ≥ π(x)λ(t).

Thus

X

x∈A
π(x)Q+(x,Ac) =

X

x∈A
π(x)

X

T·ix∈Ac
Q+(x, T·ix) =

1

2m

X

x∈A

X

T·ix∈Ac

X

t∈C·i(x)

λ(2)(t)π(x) ≤ 1

2m

X

y∈A
mπ(y)J(y,Ac)

and thus
1

2

X

x∈A
π(x)J(x,Ac) ≥

X

x∈A
π(x)Q+(x,Ac). (6.159)

In the similar way for x different from 0 vector we define P
(i)
− (x) := {x} ∪ {Ti·x} ∪ {Tijx : j 6= i}. Define eCi·(x)

to be the set of all probable non-self-intersecting paths on P
(i)
− (x) having common initial point x and terminal

point Ti·x. A typical path t consists of transition from i to a1, then from a1 to a2 and so on, till leaving the
network from as. Clearly path (x, Ti·x) ∈ eCi· if ri0 > 0. The transitions corresponding to above path are:

Tia1 , Ta1a2 , . . . , Tas·

For such path t define

µ(t) = min

„
µiria1 ,

µi
λi
λa1ra1a2 , . . . ,

µi
λi
λasras

« “
recall : µi := inf

y
µi(y)

”
.

If ri0 > 0, then µ(t) = µiri0.
Of course µ(t) does not depend on x. Denote

Ci·(x) = {t ∈ eCi·(x) : no two paths have any transition in common} =
n[

k=1

t
(i·)
k .

Of course n ≤ m. Define

Q−(i) = Q−(x, Ti·x) =
1

2m

X

t∈Ci·x
µ(t) =

1

2m

nX

k=1

µ(t
(i·)
k ).

Above is then independent of x and Q−(x, y) > 0 ⇐⇒ y = Ti·x for some i.
Fix x ∈ A such that Q+(x,Ac) > 0, then for each i ∈ {1, . . . , m} such that Ti·x ∈ Ac we have Q−(x, Ti·x). For
every t ∈ Ci·(x) we have x ∈ A and Ti·x ∈ Ac.
It follows that there is at least one transition in t, say Tjk crosses from A to Ac (i.e. Tijx ∈ A and Tikx ∈ Ac)
and contributes the term π(y)µj(yj)rjk with y = Tijx to the sum

P
y∈A π(y)J(y,Ac).

By reversibility (equation: (6.158)):

π(x)Q(x,Tijx) = π(x)µi(xi)rij = π(Tijx)Q(Tijx, x) = π(Tijx)µj(xj + 1)rji

and using λirij = λjrji we have

π(y)µj(yj)rjk = π(Tijx)µj(xj + 1)rjirjk = π(x)
µi(xi)

λi
λjrjk ≥ π(x)µ(t).

Further:

If we consider Tas· then it contributes the term π(y)µas(yas)ras0, where y = Tiasx to the sum
P
y∈A π(y)J(y,Ac),

then we also have

π(y)µas(yas)ras = π(Tiasx)µas(xas + 1)ras = π(x)
µi(xi)

λi
λasras ≥ π(x)µ(t).
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If ri0 > 0, then Ti· is possible, then in the sum
P
y∈A π(y)J(y,Ac) there is a term π(x)µi(xi)ri ≥ π(x)µ(t). In

Ci·(x) there are no two transitions in common, so above y is only being used at most once, and at most m times
in total, thus

X

x∈A
π(x)Q−(x,Ac) =

1

2m

X

x∈A

X

i:Ti·x∈Ac

X

t∈Ci·(x)
µ(t)π(x) ≤ 1

2m

X

y∈A
mπ(y)J(y,Ac),

which gives
1

2

X

x∈A
π(x)J(x,Ac) ≥

X

x∈A
π(x)Q−(x,Ac). (6.160)

Adding (6.159) and (6.160) gives
X

x∈A
π(x)J(x,Ac) ≥

X

x∈A
π(x)Q(x,Ac), Q := Q+ +Q− (6.161)

Now Q is a transition kernel of some multidimensional birth and death process. It’s stationary distribution

can differ from π, but simply redefine λ := min(Q
+(i)
λi

, 1 ≤ i ≤ m), µ := min(Q
−(i)

µi
; 1 ≤ i ≤ m) and take

ν := min(λ, µ) > 0. Then we always have Q+(x, T·jx) = Q+(j) ≥ νλj and Q−(x, Ti·x)Q−(i) ≥ νµi(xi), using
these we have

X

x∈A
π(x)Q(x,Ac) =

X

x∈A
y=T·jx

π(x)Q+(x, T·jx) +
X

x∈A
y=Ti·x

π(x)Q−(x, Ti·x)

≥ ν
X

x∈A
y=T·jx

π(x)λj + ν
X

x∈A
y=Ti·x

π(x)µi(xi) = ν
X

x∈A
π(x) eJ(x,Ac).

Using this and (6.161) we have
X

x∈A
π(x)J(x,Ac) ≥

X

x∈A
π(x)Q(x,Ac) ≥ ν

X

x∈A
π(x) eJ(x,Ac).

6.5.2 Unreliable Jackson network & spectral gap

In this subsection we investigate the existence of spectral gap in unreliable Jackson networks, i.e. a Jackson
network in which servers may break down.
The breakdowns events are of rather general structure and may occur in different ways: they can break down
as an isolated event or in groups, the same with repairs. It is not required that those servers which stopped
together return to service at the same time.

Denote M̄ := {1, 2, . . . ,m} and M̄0 := {0, 1, 2, . . . ,m}.
Behaviour of breakdowns and repair:

• Let D̄ ⊂ M̄ be the set of servers in down status and Ī ⊂ M̄ \ D̄, Ī 6= ∅ be the subset of nodes in up status.

Then the servers in Ī break down with intensity αD̄D̄∪Ī(xi : i ∈ M̄), if there are xi customers at server
i, i ∈ D̄ ∪ Ī. Thus the breakdown of servers Ī depends on local loads at servers in Ī and of those which are
already under repair D̄.

• Let D̄ ⊂ M̄ be the set of servers in down status and H̄ ⊂ D̄, H̄ 6= ∅. The broken servers from H̄ return
from repair with intensity βD̄D̄\H̄(xi : i ∈ M̄).

• The routing is changed according to so-called Repetitive Service - Random Destination Blocking

(RS-RD BLOCKING) rule: For D̄ - set of servers under repair routing probabilities are restricted to nodes
from M̄0 \ D̄ as follows:

rD̄ij =


rij , i, j ∈ M̄0 \ D̄, i 6= j
rii +

P
k∈D̄ rik, i ∈ M̄0 \ D̄, i = j

The external arrival rates are:

λ̄D̄j = λ̄rD̄0j = λ̄r0j = λ̄j for nodes j ∈ M̄ \ D̄

λ̄D̄j = λ̄rD̄0j = 0 for nodes j ∈ D̄, (j 6= 0).

(6.162)

Denote RD̄ = (rD̄ij )i,j∈M̄0
. Note that R∅ = R.
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Intensities αD̄D̄∪Ī(xi : i ∈ M̄) and βD̄D̄\H̄(xi : i ∈ M̄) cannot be general.

Indices at αs and βs are to mean that subset of broken nodes changes from D̄ to D̄ ∪ Ī or D̄ \ H̄ respectively.
Rules for general classes of suitable intensities were found by Sauer ([41], [42]), such that breakdown and repair
events are controlled by a multidimensional birth & death process: if we represent for each j ∈ M̄ its normal
status as 0 and its repair status as 1, then the intensities of births and deaths are:

q(~s,~s′) :=


α(~s,~a), if ~s′ = ~s+ ~a
β(~s,~a), if ~s′ = ~s− ~a

for ~s,~s′,~a ∈ {0, 1}M .

Definition 6.5.4. The intensities of breakdowns and repairs for ∅ 6= Ī ⊂ D̄ and ∅ 6= H̄ ⊂ M̄ \ D̄ are

αD̄D̄∪Ī(xi : i ∈ M̄) := A(xi:i∈D̄∪Ī)
A(xi:i∈D̄)

and

βD̄D̄\H̄(xi : i ∈ M̄) := B(xi:i∈D̄)

B(xi:i∈D̄\H)

where A and B are any non-negative functions :

A,B :
[

Ī⊂M̄

“
{Ī} × N

|Ī|
”
→ (0,∞)

with A(xi : i ∈ ∅) = B(xi : i ∈ ∅) = 1 such that all feasible intensities αD̄D̄∪Ī and βD̄D̄\H̄ are finite and assuming
0
0

:= 0.

In this subsection we will consider breakdowns and repairs which are state independent.

State independent breakdowns and repairs: Breakdown and repair intensities depend on the servers but
are independent of the number of customers. Then the function A and B are of form:

A(xi : i ∈ Ī) = A(Ī), B(xi, i :∈ H̄) = B(H̄), for all Ī, H̄ ⊂ M̄

Thus, if D̄ ⊂ M̄ is in down status then the intensities of breakdown of set Ī 6= ∅ and repair of set H̄ 6= ∅ are:

αD̄D̄∪Ī(xi : i ∈ M̄) = A(D̄∪Ī)
A(D̄)

βD̄D̄\H̄(xi : i ∈ M̄) = B(D̄)

B(D̄\H̄)

where A and B are any non-negative functions,

A,B : P(M̄) → (0,∞)

with A(∅) = B(∅) = 1 such that all feasible intensities αD̄D̄∪Ī and βD̄D̄\H̄ are finite.
The important characteristic is that here breakdown/repair process is a Markov process on its own state space
P(M̄) of all subsets of M̄ .

Product form

In order to describe unreliable Jackson network we need to attach to the state space Z
m
+ of the corresponding

standard network process X an additional component which includes information of availability behaviour of the
system described by a process Y. We introduce states of the form:

(Ī, x1, x2, . . . , xm) ∈ P(M̄) × Z
m
+ =: eE

The set Ī is the set of servers in down status. At node i ∈ Ī there are xi customers waiting for server being
repaired.

Denote intensity matrix of this process by J . We can write down these intensities.
First extend the notion of possible transformation from one state to another. Let x = (D̄, x1, . . . , xm) ∈ P(M̄)×
Z
m
+

Tijx := (D̄, x1, . . . , xi − 1, . . . , xj + 1, . . . , xm),
T·jx := (D̄, x1, . . . , xj + 1, . . . , xm),
Ti·x := (D̄, x1, . . . , xi − 1, . . . , xm),
T·H̄x := (D̄ \ H̄, x1, . . . , xm),
TĪ·x := (D̄ ∪ Ī , x1, . . . , xm).

(6.163)
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For x = (∅, x1 . . . , xm):

J (x, y) =

8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

µi(xi)rij if y = Tijx

λ̄j if y = T·jx

µi(xi)ri0 if y = Ti·x

A(Ī) if y = TĪ·x

−
X

x 6=y
J (x, y) if y = x

0 otherwise

(6.164)

And for general x = (D̄, x1 . . . , xm):

J (x, y) =

8
>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

µi(xi)r
D̄
ij if y = Tijx

λ̄D̄j if y = T·jx

µi(xi)r
D̄
i0 if y = Ti·x

A(D̄∪Ī)
A(D̄)

if y = TĪ·x

B(D̄)

B(D̄\H̄)
if y = T·H̄x

−
X

x 6=y
J (x, y) if y = x

0 otherwise

(6.165)

Theorem 6.5.5 (Sauer & Daduna [42]). Let eX = (Y,X) be the process described above operating on the state

space eE with breakdown/repair intensities from Definition 6.5.4.
Assume rule RS-RD-BLOCKING is used for changing routing matrix when there are some broken servers. In
addition let us assume that original routing matrix R is reversible, i.e.:

λjrji = λirij , i, j ∈ M̄0

(λj - solution to the traffic equation).

Then the stationary distribution of process eX is of product form:

For x = (Ī , x1, . . . , xm) ∈ P(M̄) × Z
m
+ we have:

π(x) = π(Ī, x1, . . . , xm) =
1

C

A(Ī)

B(Ī)

mY

i=1

πi(xi) (6.166)

(note that for Ī = ∅ we have A(∅)
B(∅) = 1

1
= 1), where

πi(xi) =
1

bi

λxiQxi
y=1 µi(y)

, bi =
∞X

n=0

λniQn

y=1 µi(y)

and C is a normalisation constant.
Constants bi, i = 1, . . . ,m are finite if and only if network is ergodic.

Next theorem is the extension of Theorem 6.5.2 for unreliable Jackson network. Sauer in [41] showed geometric
rate of convergence in total variation distance for unreliable Jackson networks without rerouting (i.e. customers
do traverse according to the routing matrix and are allowed to join the queue at broken server waiting till it is
repaired, the stationary distribution in this case is not known) with constant service rates, i.e. µi(y) = µi under
some assumptions.
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Theorem 6.5.6 (Spectral Gap for unreliable Jackson network). Let L be the infinitesimal generator of unreliable
Jackson network process with routing matrix satisfying Rk > 0 for some k ≥ 1. Denote its kernel by J . Let
intensities of breakdown and repairs be of form given in Definition 6.5.4 and use RS-RD BLOCKING as a
rerouting rule. Assume in addition A1 and A2 (i.e. (6.149) and (6.149)). Then

Gap(L) > 0 if and only if each of marginal distributions πi, i = 1, . . . , m is light-tailed.

Proof. Define eJ to be a Q matrix associated with (m + 1)-dimensional vector eZt = ( eYt, eXt), where eXt is a
vector of m independent birth and death processes with Q matrices given in (6.152), i.e. ones with stationary

distribution πi and generators −Li, and let eYt be the process on state space P(M̄) with infinitesimal generator
denoted by −Lm+1 and stationary distribution:

πm+1(Ī) =
1

C′
A(Ī)

B(Ī)
, C′ :=

0
@X

Ī⊂M̄

A(Ī)

B(Ī)

1
A

Denote the infinitesimal generator of process eJ by − eL.
From Lemma 6.2.7 we have that Gap( eL) = min

1≤i≤m+1
Gap(Li). The state space P(M̄) is finite, thus Gap(Lm+1) >

0.

Define Cheeger’s constants:

κ := inf
A,π(A)∈(0,1)

κ(A), κ(A) :=

R
x∈A π(dx)J (x,Ac)

π(A)π(Ac)
.

eκ := inf
A,π(A)∈(0,1)

eκ(A), eκ(A) :=

R
x∈A π(dx) eJ (x,Ac)

π(A)π(Ac)
.

The proof is similar to case of standard Jackson network.
To establish the theorem it is enough that the following two conditions hold:

∃(v1 > 0, v2 > 0) ∀(A ⊂ E) v2
X

x∈A
π(x) eJ (x,Ac) ≥

X

x∈A
π(x)J (x,Ac) ≥ v1

X

x∈A
π(x) eJ (x,Ac). (6.167)

Having this is enough, because:

1. If ∃i : πi is heavy-tailed.

Then according to Theorem 6.4.4 we have that Gap(Li) = 0 and thus (Lemma 6.2.7) Gap( eL) = 0. Next,

from Theorem 6.2.6 for eL we conclude that eκ = 0 (eκ2 ≤ 8M · Gap( eL) = 0). Now using (6.167) we have
that

κ(A) :=

R
x∈A π(dx)J (x,Ac)

π(A)π(Ac)
≤ v2

R
x∈A π(dx) eJ (x,Ac)

π(A)π(Ac)
= v2eκ(A)

i.e.
κ ≤ v2eκ = 0

thus κ = 0 and from Lemma 6.2.5 we have that Gap(L) = 0.

2. If ∀i : πi is light-tailed.

Then according to Theorem 6.4.4 we have that Gap(Li) > 0 for all i = 1, . . . ,m and and Gap(Lm+1) > 0

(because state space of this process P(M̄) is finite) thus (Lemma 6.2.7) Gap( eL) > 0. Now applying Lemma

6.2.5 to eL we conclude that eκ > 0. Using the existence of v1 > 0 in (6.167) we have

κ :=

R
x∈A π(dx)J (x,Ac)

π(A)π(Ac)
≥ v1

R
x∈A π(dx) eJ (x,Ac)

π(A)π(Ac)
= v1eκ > 0

i.e.
κ > 0

what implies (using Lemma 6.2.6) Gap(J ) > 0.
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Note that (6.167) is equivalent to two conditions:

inf
A⊂E

π(A)∈(0,1)

(P
x∈A π(x)J (x,Ac)

P
x∈A π(x) eJ (x,Ac)

)
> 0 and sup

A⊂E
π(A)∈(0,1)

(P
x∈A π(x)J (x,Ac)

P
x∈A π(x) eJ (x,Ac)

)
<∞. (6.168)

Denote

W (A) =

P
x∈A π(x)J (x,Ac)

P
x∈A π(x) eJ (x,Ac)

=

X

x∈A
π(x)

0
@ X

Tijx∈Ac
µi(xi)r

D̄
ij +

X

T·jx∈Ac
λ̄D̄j +

X

Ti·x∈Ac
µi(xi)r

D̄
i0 +

X

TĪ·x∈Ac

A(D̄ ∪ Ī)
A(D̄)

+
X

T·H̄x∈Ac

B(D̄)

B(D̄ \ H̄)

1
A

X

Ti·x∈Ac
µi(xi) +

X

T·jx∈Ac
λj +

X

TĪ·x∈Ac

A(D̄ ∪ Ī)

A(D̄)
+

X

T·H̄x∈Ac

B(D̄)

B(D̄ \ H̄)

.

Recall that µi = supi µi(xi) <∞ and µi = infy µi(y) > 0.
Let µmax = max

0≤i≤m
µi <∞ and µmin = min

0≤i≤m
µi > 0.

Denote

MJ (A,x) =
X

Tijx∈Ac
µi(xi)r

D̄
ij +

X

T·jx∈Ac
λ̄D̄j +

X

Ti·x∈Ac
µi(xi)r

D̄
i0 +

X

TĪ·x∈Ac

A(D̄ ∪ Ī)
A(D̄)

+
X

T·H̄x∈Ac

B(D̄)

B(D̄ \ H̄)

and
Mmin

J = inf
A,x:MJ (A,x)>0

{MJ (A, x)} , Mmax
J = sup

A,x:MJ (A,x)>0

{MJ (A,x)} .

We have

Mmin
J ≥ min

8
>><
>>:
µmin · min

i,j:rij>0

rij , min
j:λ̄j>0

λ̄j , µmin · min
i:ri0>0

ri0, min
D̄⊂M̄,Ī⊂M̄\D̄
A(D̄∪Ī)
A(D̄)

>0

„
A(D̄ ∪ Ī)

A(D̄)

«
, min
D̄⊂M̄,H̄⊂D̄
B(D̄)

B(D̄\H̄)
>0

„
B(D̄)

B(D̄ \ H̄)

«
9
>>=
>>;
> 0,

Mmax
J ≤ m(m− 1)µmax · 1 +

mX

j=1

λ̄j +mµmax · 1 +
X

D̄⊂M̄,Ī⊂M̄\D̄

„
A(D̄ ∪ Ī)

A(D̄)

«
+

X

D̄⊂M̄,H̄⊂D̄

„
B(D̄)

B(D̄ \ H̄)

«
<∞.

Similarly

M eJ (A, x) =
X

T·jx∈Ac
λj +

X

Ti·x∈Ac
µi(xi) + +

X

TĪ·x∈Ac

A(D̄ ∪ Ī)

A(D̄)
+

X

T·H̄x∈Ac

B(D̄)

B(D̄ \ H̄)

and
Mmin

eJ = inf
A,x:MfJ (A,x)>0

˘
M eJ (A,x)

¯
, Mmax

eJ = sup
A,x:MfJ (A,x)>0

˘
M eJ (A, x)

¯
.

We have

Mmin
eJ ≥ min

8
>><
>>:

min
j
λj , µmin, min

D̄⊂M̄,Ī⊂M̄\D̄
A(D̄∪Ī)
A(D̄)

>0

„
A(D̄ ∪ Ī)
A(D̄)

«
, min
D̄⊂M̄,H̄⊂D̄
B(D̄)

B(D̄\H̄)
>0

„
B(D̄)

B(D̄ \ H̄)

«
9
>>=
>>;
> 0,

Mmax
eJ ≤

mX

j=1

λj +m · µmax +
X

D̄⊂M̄,Ī⊂M̄\D̄

„
A(D̄ ∪ Ī)
A(D̄)

«
+

X

D̄⊂M̄,H̄⊂D̄

„
B(D̄)

B(D̄ \ H̄)

«
<∞.

Note that both MJ and M eJ do not depend on A. Define:

∂ eA = {x : M eJ (A,x) > 0}, ∂A = {x : MJ (A, x) > 0}.

∂ eA is a set of all states from which process with kernel eJ can get in one step to Ac, whereas ∂A is a set of states
from which original process with kernel J can get in one step to Ac. We have
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W (A) =

X

x∈∂A
π(x)MJ (A,x)

X

x∈∂ eA

π(x)M eJ (A,x)

and

Mmax
J

Mmin
eJ

·

X

x∈∂A
π(x)

X

x∈∂ eA

π(x)
≥

X

x∈∂A
π(x)MJ (A, x)

X

x∈∂ eA

π(x)M eJ (A, x)
≥ Mmin

J
Mmax

eJ
·

X

x∈∂A
π(x)

X

x∈∂ eA

π(x)

To show (6.154) we have to show that

∞ >

X

x∈∂A
π(x)

X

x∈∂ eA

π(x)
> 0

or equivalently

∞ >

X

x∈∂ eA

π(x)

X

x∈∂A
π(x)

> 0. (6.169)

Before proceeding let us examine how much can differ π(x) and π(x′), where x′ is a state to which one can get
from x in at most k ≤ m steps movements within the and both x and x′ have the same set of broken nodes Ī .
Recall (6.166) that for x = (Ī, x1, . . . , xm) ∈ P(M̄) × Z

m
+ we have:

π(x) = π(Ī, x1, . . . , xm) =
1

C

A(Ī)

B(Ī)

mY

i=1

πi(xi), where πi(xi) :=
1

bi

λxiiQxi
y=1 µi(y)

and for x′ = (Ī , x′
1, . . . , x

′
m) ∈ P(M̄) × Z

m
+ we have

π(x′) = π(Ī, x′
1, . . . , x

′
m) =

1

C

A(Ī)

B(Ī)

mY

i=1

πi(x
′
i), where πi(x

′
i) :=

1

bi

λ
x′i
iQx′

i
y=1 µi(y)

.

Note that xi and x′
i can only differ by at most k for i, i = 1, . . . ,m. Exactly the same calculations as for standard

Jackson networks show that (6.156) holds, i.e.

1

c
π(x′) ≤ π(x) ≤ cπ(x′), (6.170)

where c =
Qk

i=1 ci, ci = max

„“
λi
µi

”
,
“
λi
µi

”−1 “
λi
µi

”
,
“
λi
µi

”«
.

Of course we can have states which are in ∂A and not in ∂ eA and also such that are in ∂ eA but not in ∂A.
If we take z ∈ ∂A \ ∂ eA, i.e. there exists some yz ∈ Ac such that process with kernel eJ cannot move from z to yz
in one step, but process with kernel J can. State yz must be of form yz = Tijz, it cannot be of form yz = TĪ·z
or yz = T·H̄z because changing only set of broken nodes in z is always possible in both processes, i.e. one driven
by J and eJ . Of course neither it can be of form yz = Ti·z nor yz = T·jz, because then process driven by eJ
could also move in this direction in one step.
But note that there always exists path Ti·, T·j such that z′ = Ti·z ∈ A and yz = T·jz

′ ∈ Ac.
Of course either z′ ∈ ∂ eA \ ∂A or z′ ∈ ∂ eA ∩ ∂A.
For any such z′ there are surely no more than 2m corresponding z, thus using (6.170) (where c ≥ 1) we have

X

x∈∂ eA

π(x)

X

x∈∂A
π(x)

=

X

x∈∂ eA∩∂A

π(x) +
X

x∈∂ eA\∂A

π(x)

X

x∈∂ eA∩∂A

π(x) +
X

x∈∂A\∂ eA

π(x)
≥

X

x∈∂ eA∩∂A

π(x) +
X

x∈∂ eA\∂A

π(x)

X

x∈∂ eA∩∂A

π(x) + 2mc

0
@ X

x∈∂ eA∩∂A

π(x) +
X

x∈∂ eA\∂A

π(x)

1
A

≥

X

x∈∂ eA∩∂A

π(x) +
X

x∈∂ eA\∂A

π(x)

(2mc+ 1)

0
@ X

x∈∂ eA∩∂A

π(x) +
X

x∈∂ eA\∂A

π(x)

1
A

=
1

2mc+ 1
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Similarly fix x ∈ ∂ eA \ ∂A, i.e. there exists some yx ∈ Ac such that original process with kernel J cannot move

there in one step, but process with kernel eJ can. State yx must be of form yx = T·ix or yx = Tj·x, it cannot
be of form yx = TĪ·y or yx = T·H̄ , because changing only set of broken nodes in z is always possible in both
processes, i.e. driven by J and eJ . Then there exists path of length at most k such that process with kernel J
can, moving along the path, get to yx. The path consists only of T·i, Tj·, Tij (it does not contain any TĪ·, T·H̄ ,

because such transitions are always possible in both processes, with kernel eJ and J ). There must exists state x′

on this path such that x′ ∈ A and next state on the path is in Ac. Of course either x′ ∈ ∂ eA∩∂A or x′ ∈ ∂A\∂ eA.
For any such x′ there can be surely no more than (2k)m states corresponding to it. Thus, using (6.156) (where
c ≥ 1) we have

X

x∈∂ eA

π(x)

X

x∈∂A
π(x)

=

X

x∈∂ eA∩∂A

π(x) +
X

x∈∂ eA\∂A

π(x)

X

x∈∂ eA∩∂A

π(x) +
X

x∈∂A\∂ eA

π(x)
≤

X

x∈∂ eA∩∂A

π(x) + c(2k)m

0
@ X

x∈∂ eA∩∂A

π(x) +
X

x∈∂A\∂ eA

π(x)

1
A

X

x∈∂ eA∩∂A

π(x) +
X

x∈∂A\∂ eA

π(x)

≤

(1 + c(2k)m)

0
@ X

x∈∂ eA∩∂A

π(x) +
X

x∈∂A\∂ eA

π(x)

1
A

X

x∈∂ eA∩∂A

π(x) +
X

x∈∂A\∂ eA

π(x)
= (1 + c(2k)m) <∞.

This way we have shown that W (A) is bounded uniformly (for any A : π(A) ∈ (0, 1)) from below and above:

∞ > (1 + c(2k)m) · M
max
J

Mmin
eJ

≥

X

x∈∂ eA

π(x)MJ (A,x)

X

x∈∂A
π(x)M eJ (A,x)

≥ Mmin
J

Mmax
eJ

· 1

2mc+ 1
> 0

i.e. (6.154).

6.5.3 Consequences of existence of spectral gap for rate of convergence

Spectral gap controls the exponential rate of convergence in L2(π) in the sense that it is the largest ε for which

||Ptf −
Z
fdπ||π ≤ e−εt||f −

Z
fdπ||π (6.171)

for all f ∈ L2(π) and t ≥ 0. To see this suppose ||f ||π = 1 and (f,111)π = 0, then we have

d

dt
||Ptf ||2π = 2(Ptf, LPtf)π ≤ −2Gap(L)||Ptf ||2,

i.e.
d
dt
||Ptf ||2π

||Ptf ||2π
≤ −2Gap(L),

which means ||Ptf ||2π ≤ e−2Gap(L). Equivalently (because ||f ||π = 1)

||Ptf ||π ≤ e−Gap(L)||f ||π .

We say that exponential L2 convergence occurs if there exists spectral gap, i.e. Gap(L) > 0.
Thus in previous sections we showed that for Jackson network, both standard and unreliable, we have exponential
convergence rate if and only if each of marginal stationary distribution is light-tailed (plus some other natural
assumptions on the parameters of the network).
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