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Let X = (V,E) be a tree with the set V of vertices and the set E of
For any = € V we will denote by N(z) the neighbourhood of z, i.e.

. {v eV :dwz) <1}. Suppose that for any 2 € V we have a fixed
positive definite matrix A(z) = (a(v,z,w))y wen(z) such that a(v,z,v) =1 for
any v € N(z). We define the kernel ¢ : V x V — C in the following way: if
sy eV and [v,y] = {xo = 2, 21,29,...,2, =y} CV is the geodesic from z to

U then we put
i 7n

pla,y) = Ha(:ri—l,mi,:ml) ,

=0

Where, by definition, v _; =2y =« and 2,4, = 2, = y. In particular ¢(z,z) = 1.
Let us also define the additional kernel

11
=0

¢) = 1, which will help us in computations. Note that for any
€{0,1,2,...,n} we have

dx,y) = pla,z))alxi—q, i, Tiv1) By, x;) - (1)

We are going to prove:
PHEOREM. ¢ is a positive definite kernel on V.
We start with the following

EMMA. For any positive definite matrix A = (a(2,7)); jer, for any fixed iy € I
and for any finitely supported complex function s on I,
3
> aliyio)s(i)| < alio,is) Y ali,j)s(i)s(i) -

el i,j€l
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Proof. Let (.,.) be the semidefinite positive scalar product given by the matrix
A. Then, by the Cauchy — Schwarz inequality,

2
> ali,io)s(i)

el

= I(S?‘Sio)l? < (S7S>(6i076io>

= aio,io) ¥ a(i,j)s(i)s(j) - 0

1,9€l

Proof of the Theorem. For any z,v € V satisfying d(z,v) <1 we define the set
{z} if v==z2

{ {z eV d(z,z)=d(z,v)+1} otherwise.

Then for any z € V we have the pairwise disjoint decomposition V =

Usen(s) V(2,v). Moreover, for any z, z' such that d(z,z') =1 we also have the

partition V(z,z') = UvGN(:’)\{:} Vi(z'v).

Viz,v) =

We shall prove by induction the following statement: for any z € V and
for any finitely supported complex function f on V satisfying f(xz) = 0 when
d(z,x) > n, we have

> dla ) f(0)f(y)

r,yeV

> > avznw) [ Y Bla,)f(x) > Bly.2)f(y)
v, wEN(z) z€V(z,v) yeV(z,w)

For n =0 the statement is obvious. Assume that it is proved for n; we shall
prove it for fixed z € V and for n+ 1. Note that, by (1), if z € [z,y] then
the coefficients of f(:zt)m on the left and on the right hand side are equal.
Therefore, by (1), we only need to prove that, for any 2’ € N(2)\{z}:

Yo ey fy)

2, yEeEV(z,2")

> Z Bla,z)f(z) Z Bly,2)f(y) |

rEV(z,z2") yeEV(2,2')

recall that a(z',z,z') = 1). Let us compute the right hand side of the ine uality:
1 g q

( Z ﬂ(;l:,:)f(:z?)) Z By, 2)f(y)

€V (z,z") yeV(z,2')
= | Z B, z)f(x)]?
r€eV(z,2")
= Z Z Blx,2)f(z)]?

veEN()\{z} z€V(z'v)




le matrix

O

the set

fn WV =
have the

€ V and

- 0 when

we shall
,y] then
re equal.

equality:

where S(v) = >
z€eV(z',v)

Applying the induction assumption to z' and to fxy (.. (where xy(; . is

the characteristic function of the set V(z,2')) and using the Lemma we get

Yo s f(@)fy)

r,y€V(z,2")

Z a(v,z',w) Z B(z,2") f(x) Z By, 2") f(y)

v,weN(z")\{z} €V (z',v) yeEV (2, w)

S awS@S@ 2] Y (v, 2SI

v,weN(2")\{z} vEN(z')\{z}
which concludes the proof.

Now, suppose that for any = € V we have a fixed negative definite matrix
C(z) = (c(v,z,w))y,wen() such that c(v,z,v) = 0 for any v € N(z). We
define the kernel ¥ : V x V — C in the following way: if z,y € V and
[x,y] = {zg =2, 21,29,...,2, =y} CV is the geodesic from z to y then we put

n

P(z,y) = Z(f(-'l?i—l,-’lfi,-'l’i+l) .

1=

where, as before, x| = xy =2 and 2,41 =2, =y. In particular (z,2) = 0.
COROLLARY 1. 1 is a negative definite kernel on V.

Proof. Let t be a fixed positive number and define ¢ (z,y) = exp(—t(z,y)).
n

Then ¢ (z,y) = [ a(xiz1,2i @ip1), where, for any z € V, the matrix
1=0

A(z) = (a(v,2,w))y wen) 18 given by ai(v,z,w) = exp(—te(v,z,w)). By

Schoenberg’s theorem all matrices A,(z) are positive definite, so ¢, is a positive

definite kernel for any t > 0. Applying Schoenberg’s theorem again, we infer that

i 1s a negative definite kernel. O

As a corollary we obtain a result of A. Valette (cf. [2]).

COROLLARY 2. Let f -be any real valued function on V satisfying f(z) < dogﬁ

and define a kernel 1» on V by

/ ) { if z=y
h(a,y) = ; )
S d(a,y) — [2)+/ () )jf(y) if 2#y .

Then 1) is negative definite on V.

Proof. For any x € V' we define the matrix C(a) = (¢(v,2,w0))y wen(r) in the

following way: c¢(v,x,v) = 0 for v € N(x), ¢(v,z,2) = c(z,z,v) = 1_—£(£l for
v € N(x)\{z} and c¢(v,z,w) =1 for v,w € N(z)\{z}, v # w. We shall prove




that C(z) is negative definite. By [1, Lemma 3.2.1] it is enough to show that
the matrix B = (b(v,w))ywen(z) With b(v,w) = c(v,z,2) + c(w,z,x) — (v, z,w)
is positive definite. We have

0 if v=zorw=ux
b(v,w)=4q 1— f(z) if v=w+#uz
—f(z) if v£w, v#z, wFax .

By [2, Proposition 1] the matrix B is positive definite, so C(x) is negative
definite.

Now, let 1 be the negative definite kernel given by the system of matrices
(C(z))rev. Then e(x,2) =0 and for = #y we have

Yole,y) = 1__# Fdzy)—1+ EL(‘J)

= (z,y) .
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