World Scientific

and Related Topics
www.worldscientific.com

Vol. 12, No. 2 (2009) 291-306
(© World Scientific Publishing Company

Infinite Dimensional Analysis, Quantum Probability \\’

COMBINATORIAL RELATION BETWEEN FREE
CUMULANTS AND JACOBI PARAMETERS

WOJCIECH MLOTKOWSKI

Institute of Mathematics, Wroctaw University,
Pl. Grunwaldzki 2/4, 50-384 Wroctaw, Poland
mlotkow@math.uni.wroc.pl

Received 4 March 2009
Revised 15 March 2009
Communicated by U. Franz

We find a formula which expresses free and conditionally free cumulants in terms of
Jacobi parameters. This leads to some necessary conditions for free and conditionally
free infinite divisibility. We also express conditionally free cumulants of two measures in
terms of their free cumulants.

Keywords: Noncrossing partitions; free cumulants; Jacobi parameters.

AMS Subject Classification: 46154, 60C05

1. Introduction

Free convolution is a binary, associative and commutative operation H on the class
M of probability measures on R. It corresponds to the notion of free independence
(introduced by Voiculescu?>2%) in the same way as the classical convolution cor-
responds to the classical independence. There are several ways of describing free
convolution.?** Here we will use the combinatorial method due to Speicher.??:23:21
Namely, with every 4 € M having all moments, there is associated sequence
{rm(u)}e_; of real numbers, called free cumulants. Then, for two such measures
we have: r, (u1 B p2) = rp(p1) + rm(ue2), for every m > 1, which determines
the moments of puy B po. For general theory of cumulants we refer to the work of
Lehner, 11:12,13,14,15,16

Conditionally free convolution, in turn, is a binary, associative and commutative
operation, introduced by Bozejko, Leinert and Speicher,” on pairs of compactly
supported probability measures on the real line. In this case, for a pair (g, p) of
such probability measures there is a sequence { Ry, (i, 1) }59_; of real numbers such
that if (g1, p1) B (a2, pe) = (@, 1) then 7, (u) = rm(p1) + 7m(p2) (which means
that p = py B us) and Ry, (i, 1) = Ry (f1, 1) + R (fi2, o) for every m > 1, which
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determines the pair (&, pt). It turns out that the conditionally free convolution can
also be defined when i1, fio are operator measures.'8

If 4 € M has all moments then there is a unique sequence {P,,}>_, of monic
polynomials, with deg P,,, = m, which are orthogonal with respect to u. They satisfy
the recurrence relation: Py(x) =1 and for m > 0

2P (2) = Ppt1(2) 4+ B P (2) + Ym—1Pm—1(x), (1.1)

under convention that P_;(x) = 0, where the Jacobi parameters® satisfy: 3,, € R,
Ym > 0 and if 7, = 0 for some m then 3, =, = 0 for all n > m.

The aim of this paper is to express the free and conditionally free cumulants
in terms of Jacobi parameters. In Sec. 5 we also express the conditionally free
cumulants R,, (i, ) in terms of the free cumulants of & and p.

2. Preliminaries

Throughout the paper, X will denote a finite set of natural numbers. Recall that
a partition of X is a family m of nonempty, pairwise disjoint subsets of X, called
blocks of 7, such that | J7m = X. The partition 7 is called noncrossing if the following
conditions: x1 < z9 < x3 < X4, 1,23 € V1 € m and x2,24 € Vo € 7 imply that
Vi = Va. By NC(X) we will denote the class of all noncrossing partitions of X and
NCj 2(X) will stand for the class of all partitions 7 € NC(X) such that [V| < 2 holds
for every V € m. We will use the abbreviation “(m)” instead of “({1,2,...,m})”,
for example NC({1,2,...,m}) will be denoted by NC(m).

On every m € NC(X) there is a natural partial order namely, U < V if there
are r,s € V such that » < k < s holds for every k € U. Now we can define depth
of a block U € m, namely d(U,n) := {V e n : U <V # U}. If d{U,7) > 1,
then we define derivative of U as the unique block U’ € 7 such that U < U’ and
d(U’',7) = d(U,n) — 1. The derivatives of higher orders are defined by putting
V) = (v =y,

From now on we fix a probability measure p on R having all the moments finite

Sm 1= / " dp(x). (2.1)
R
Then its Jacobi parameters can be obtained from the Accardi-Bozejko! formula:

sm= >, I Baviy TI vavien (2.2)

0ceNCy,2(m) VeEo Veo
VI=1 V=2

(cf. Viennot?*), while for free cumulants we have:

Sm = Z HT|V| (2.3)

TeNC(m) Ver

(see Speicher??:23:21) Both formulas involve noncrossing partitions. The aim of the

next section is to find a direct combinatorial relation between free cumulants and
Jacobi parameters. For this purpose we will need some additional notions.
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By a labeling of a partition 0 € NC(X) we will mean a function x on o such
that for every V € o we have

k(V) € {0,1,...,d(V,0)}.

The family of all labelings of ¢ will be denoted by LAB(c) and NCL(X) (resp.
NCL; 2(X)) will stand for the family of all pairs (o,x) with ¢ € NC(X) (resp.
0 € NC; 2(X)) and x € LAB(0).

With (o, k) € NCL(X) we will associate a partition II(o, x) of X in the following
way. First we define a relation on o:

Ro(o,r) = {(VED VEY . Ve o1 <k <r(V)} (2.4)

Let < be the smallest equivalence relation on o containing ﬁo(m k). We define a
partition II(o, k) of X whose blocks are of the form | JC, where C € o/~

(o, k) := {Uc Ce a/ﬁ} . (2.5)
Example. Take
(05) = {{1, 7}, {2,5}0, {3}2, {4}0, {6}1, {8, 9} o},
where we write Vj, if (V) = k. Then
Rolo,m) = {({3},{2,5}), (12,5}, {1,7}), ({6}, {1, 7})}
and
(o, k) = {{1,2,3,5,6,7},{4},{8,9}}.
It is not an accident that in this example II(o, k) is noncrossing.
Proposition 2.1.

1. If (0,k) € NCL(X) then Il(o, k) is a noncrossing partition of X.
2. Let m € NC(X) and (o,k) € NCL(X). Then Il(0, k) = m if and only if o and
admit decompositions:

a:U o and m:U K
Uern v vern v

where oy € NC(U), ky € LAB(oy) and U(oy, ky) = {U}.

Proof. We will proceed in several steps.

Claim 1. If U,V € o, then UXV holds if and only if there is a sequence U =
Uop,Ur,...,Ur =V of blocks of o and a number 0 < jo < k such that

— — — —
UoRoUy, ..., Ujs—1RoUj,, UjoRoUjo+1,--- 3 U1 RoUy,
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— —
where W1 RoWs means that Wo R oW1

Indeed, suppose that KQ’ .. .’an is such a sequence of bloclg of o that ‘é} =U,
V., =V and (Vi_1,V;) € RoU Ry. If for some i we have V;_1 RoV; and V; RoV;11
then V;_1 = V;11 = V/ and hence we can remove V; and V;4; from this sequence.
As a consequence we note that the equivalency classes are “convex”:

Claim 2. IfU =V < Wand UR W, then USV and VW,

Now observe that every equivalence class possesses the largest block.

Claim 3. For every C € o/~ there is Vo € C such that if V € C then V < Vj.

As o is a finite set, it suffices to notice that if Vj,V; are maximal in C then
Vo = Vi, but this is a consequence of Claim 1.
Now note that every class C € o/~ is a partition itself: C € NC1 o(|JC).

Claim 4. For V € C we have d(V,C) = d(V,o) — d(Vy, o), where Vg is the largest
block in C. Moreover, the restriction of k to C belongs to LAB(C) and II(C, k|c) =
{ucy.

The equality is a consequence of “convexity” of C. Note also that if V' € C
then k(V) < d(V,o) — d(Vp, o) (for otherwise we would have V{j € C) which proves
the next statement. The equivalence relation resulting from (C, k|¢) is just the
restriction of ~ to C, which concludes the proof of Claim 4.

Claim 5. The partition (o, k) is noncrossing.

Suppose that s; < s3 < s3 < s4 and that s1,s3 € |JC1, s2,84 € |JC2, where
Cl,CQ S O’/f-f Assume that s; € V; and Vi,Vs € Cl, Vo,Vy € Cs. Let Ui, 1=1,2,
be the largest (with respect to <) block of C; and let k; (resp. [;) be the smallest
(resp. the largest) element in U;. Then we have k1 < s1 < s9 < s3 < [; and
ko < s9 < 83 < s4 < 5. Since o is noncrossing we have either ko < k; <13 <l or
k1 < ky <ly <. In the former case we get Vo < Uy < Us which, by “convexity”,
implies C; = Cs, and the same conclusion we get in the latter case. This means that
II(0, ) is noncrossing.

Therefore we have proved part 1. For part 2 one implication is a consequence of
Claim 4 and the other one is obvious. O

3. Free Cumulants

From now on we fix p € M as in the previous section. For a block V € o €
NCj 2(X), with label k, we define its weight by:

Bo if [V|=1and k=0,
—Bpy if[V|=1andk>1,

w(Viky o= § T P V= Land k> (3.1)
Yo if [V]=2and k=0,

Ve — Y1 if|V]=2and k> 1,
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and for o € NCy 2(X), k € LAB(0) we put
k)= [J wVis(V)). (3.2)
Veo
By NCLiQ(X) we will denote the set of all (o,x) € NCL; 2(X) for which

(o, k) = {X}. Now we are ready to present the main result of this section.

Theorem 3.1. For every m > 1 we have

T = Z w(o, K). (3.3)

(U,K)GNCL%’Q(M)

Proof. Denote the right-hand side of (3.3) by ¢,,. Then, in view of Proposition 2.1,
for every m € NC(m) we have

Z w(o, k) = H Z w(oy, ku) H qu|-

(0,k)ENCy,2(m) Uen (UU7NU)€NCL%Y2(U) Uern
(o,k)=n

Now, let us fix ¢ € NCy 2(m). Then expressing every factor a4, where aq = (4
or ag = 74, as the sum
aq = (aqg — ag—1)+ -+ (a1 — ap) + ao

and expanding the product, we get

H ﬂd(VU H Vd(V,o) = Z U)(O', H)'

Veo KELAB(o)

IV\ % [V]=2

Therefore, by (2.2), for every m > 1

Sm = Z w(o, k) = Z Z w(o, k) = Z H Cu|-

c€ENCq 2(m) weNC(m) (0,k)ENCLy 2(m) TeNC(m)Uen
~ELAB(0) (o,k)=m7

Since (2.3) defines the free cumulants uniquely, we have r,,, = ¢, for every m. O

Examples of free cumulants. Using Theorem 3.1 we can give a list of a few free
cumulants expressed in terms of Jacobi parameters (cf. Ref. 10 for a special case):

r1 = fo, (3.4)

2 = 70, (3.5)

r3 =081 — Bo), (3.6)

ra = Y[(B1 — Bo)* + (71 — 7)), (3.7)

75 = 0[(B1 = B0)® +3(v1 —0)(B1 — Bo) +71(B2 — B1)], (3.8)
[

6 = Y0[(B1 — Bo)* + 6(v1 —70)(B1 — Bo)® + 4v1 (B2 — B1)(B1 — Bo)
+71(B2 = B1)? +2(v1 —70)2 + 11 (72 — 7)) (3.9)
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In (3.8) the last summand comes from two labeled partitions, namely
{{1,5}0,{2,4}0,{3}2} and {{1,5}0,{2,4}1,{3}2}. Similar reductions have been
done in (3.9).

Remark. One can compare (3.3) with Lehner’s formula (Theorem 5.1 in Ref. 12),
which in our notation can be expressed as

_1)/Out(e)-1
m= ¥ EEE (e ) [T fuvr IT v 310

ceNCy 2(m) |V\ 1 “\;|€02

m > 2, where |Out(o)| denotes the number of outer blocks in o. For example

3ry = =085 + 70068 + 70085 + Y085 — 3706081 — 3708051 + 37065 — 375 + 37071,

each summand corresponding to one partition o € NCj »(4).

Now let 3(t), v(t) be the Jacobi parameters of the free power p=*. It is known?°

that p®t exists for every t > 1. Then we have r,, (u®*) =t - 7,,,(11). Using formulas
(3.4)—(3.9) one can consecutively check that:

Bo(t) = tfo, (3.11)
Yo(t) = to, (3.12)
Bi(t) = B — Bo + tho, (3.13)
71(t) =7 = + v, (3.14)
falt) = mr(e) + L2 (3.15)
() = 1 (t) + 1 (2 —7)n(#) — (1 —)yon (B2 — ﬁ1)2. (3.16)

()

In particular, if p is infinitely divisible with respect to B, then we have ~,,(0) > 0

for all m > 0. Therefore (3.14) and (3.16) lead to the following necessary conditions:
Corollary 3.1. If u is B-infinitely divisible, then vy < 1 and

Yo (B2 = £1)* < (71 —70) 1 (v2 = 70) — Y0 (11 = 70))- (3.17)

Corollary 3.2. If v = 2 # 71, then p is not B-infinitely divisible.

Proof. Note that in this case the right-hand side of (3.17) is negative. O

Example. Let us consider the free Poisson law?® p, with parameter A > 0. For
this measure v, = A\, n > 0, B = A, and 5, = A+ 1 for n > 1. The support of
px is contained in [0, +00) and p) if B-infinite divisible, in fact for any Ay, Ay > 0
we have px, B pr, = pr,+2,. Now consider the Symmetric measure o) obtained
by symmetrization of py, so that [, f(2?)dor(z) = [; f(x)dpx(x) holds for every
continuous function on R. One can check (see for example Corollary 3 in Ref. 19)
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that the Jacobi parameters for gy are given by: v/, = A if n is even, v/, = 1 if n is
odd and 3/, = 0 for all n > 0. Hence, by Corollary 3.2, g, is not E-infinite divisible,
except the case A = 1 (the Wigner measure).

4. Conditionally Free Cumulants

A block U € m € NC(X) will be called outer (resp. inner) if d(U,m) = 0 (resp.
d(U,m) > 0). The family of all outer (resp. inner) blocks of = will be denoted by
Out(m) (resp. Inn(m)).

Suppose we have an additional measure gz, with moments s,, and Jacobi param-
eters Y, Em Then the conditionally free cumulants” R,, = R, (1, ) of the pair
(1, ) are defined by

Sm = Z H Ry (i, 1) H v (1) (4.1)
mENC(m) UeOut(m) Uelnn(m)

where, as before, r,,, = r,,(1) are the free cumulants of pu.
For o € NC; 5(X) and V € o, with label k, we define

Bk — Beor i V] =1and k= d(V,0),
— B i [V =1and k < d(V,0),
BV, 0) = § O 7 P W] = and < d(70) (4.2
Vi — k-1 i [V|=2and k =d(V,0),
Vi — k-1 i [V]|=2and k <d(V,0),

under convention that f_; = v_; = 0. For (0,x) € NCL; 2(X) we put
w(o, k) = H w(V,k(V),0). (4.3)
Veo
Theorem 4.1. For every m > 1 we have

R (i, 1) = Z w(o, k). (4.4)

(o,K) ENCL%’2 (m)

Proof. Fix m € NC(m). For (0,k) € NCLj 2(m), such that II(o,x) = m, take
the decompositions o = UU@UU and kK = UU@RU as in Proposition 2.1. If U €
Inn(7) and V' € oy then (V) < d(V,or) < d(V, o) (see Claim 4 in the proof of
Proposition 2.1) and then w(V, k, o) = w(V, k), see (3.1). Consequently,

w(o,k) = [[o(V,s(V),0)= ][] @(ov.kv) [] wlov. ko)
Veo UeOut(m) U€lnn(r)
and, denoting the right-hand side of (4.4) by C,,,

> wor)= [ Cuv [I row.

(0,k)ENCLy,2(m) UeOut(m) U€lnn(r)
(o,k)=m
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Now writing every factor agq, where ag = Bd or ag = 7q4, as the sum
aq = (ag — ag—1) + -+ (a1 —ao) + ao

and then expanding the products, we get

Sm = Z H Bd(V,o’) H )

oce€NCy,2(m) Veo Veo
V=1 vi=
= Y d@en= Y Y, wlow)
c€NCq,2(m) kELAB(o) TeNC(m) (0,k)ENCL1 2(m)
(o,k)=7
= ) II ¢u II rew.
TeNC(m) UeOut() U€lnn(r)
which implies that Cy,, = R, (1, p) for every m > 1. O

Examples of conditionally free cumulants

Ry = fo,

Ry =7,

Ry =F0(B1 — fo),

Ry =[(Br — Bo)? + (51 — 0)];

Rs = Fol(B1 = Bo)® +2(71 = 70) (B1 = Bo) + (F1 = 0)(B1 — Bo)
+31(B2 — Bu)), (4.9)

Rs = o[(B1 — Bo)* +3(F1 — 70) (B — Bo)* +2(F1 — %) (Br — Bo)(Br — o)
+ (1 = 70)(B1 = Bo)* + 231(B2 — B1) (B — fo) + 271(Bz — B1)(B1 — o)
+71(B2 — B1)? + (F1 — 70)* + (31 — 70) (3 — 70) +F1(F2 — 71)]. (4.10)

The conditionally free power of a pair of measures: (i, u)EEt (ﬁt, ) is defined

by: pe = pB and Ro, (fig, i) = t - Ron (i, ). Denoting by B (£), Jim(t) the Jacobi
parameters of i, and using formulas (4.5)—(4.10) we get

Bo(t) = tfo, (4.11)

Yo(t) = t30, (4.12)
B(t) = 51 Bo + tBo, (4.13)
Y1(t) =31 =70 + tyo, (4.14)
Bo(t) = (t)+%(§j7(t_)ﬁl), (4.15)
3(t) = i (t) + 71(32 — 1)) —Ngl — o (B2 — ﬁ1)2. (4.16)

Yi(t)
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Corollary 4.1. If the pair (@, p) is infinitely divisible with respect to the condi-
tionally free convolution then vy <71 and

Y071 (B2 — B1)? < (31 — %0)F1(Fz2 — %) — (71 — %0)]- (4.17)

5. Conditionally Free Cumulants in Terms of Free Cumulants

We keep the setting from the previous sections, so we fix a pair j, 1 of probability
measures on R, S, and s, are their moments, 7,,, 7, their free cumulants and
R, (i, ) = Ry, the conditionally free cumulants. It turns out that R, can also be
expressed in terms of the free cumulants. Namely, denote by NC*(X) the class of
all such o € NC(m) that o has only one outer block. Then we have

Theorem 5.1. For every m > 1 we have
R, = Z H c(V, o), (5.1)
ceNC!(m) Veo

where for V € o € NC'(m) we define

(5.2)

TIv| =T if V is inner and minimal,
o(V,0) = .
T otherwise.

The word “minimal” refers to the partial order “<” on o.

Before the proof we introduce some auxiliary notions. For o € NC(X) denote by
Sgn (o) the class of all functions € : Inn(o) — {0,1}. By NCS(X) we will denote the
class of all pairs (o, €) such that o € NC(X), € € Sgn(c). For fixed (0,¢) € NCS(X)
we define a partition II(o,€) of X in the following way. First we define a relation
ﬁl on o by

Ri = {(VED v®) .V eln(o),e(V)=1and k=1,2,....d(V,7)} (5.3)

_
and then define ~ as the smallest equivalence relation on ¢ which contains R ;.
Now we put

(o, €) := {UC :Ce U/fsf} . (5.4)

Denote by NCS!(X) the class of all (o,¢) € NCS(X) such that II(c,e) = {X}. In
particular, o € NC!(X). For o € NC*(X) we set

Sgn'(0) := {e € Sgn(o) : (o, €) = {X}}. (5.5)
The following lemma can be proved in a similar way as Proposition 2.1.

Lemma 5.1. 1. If (0,¢) € NCS(X) then the partition Il(0, €) is noncrossing.

2. Let m € NC(X), (0,¢) € NCS(X). Then m =1I1(0,€) if and only if o and € admit
such decompositions:

U:U o and e:U €
U€7rU UGﬂ'U
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that if U € Out(n) then (op,ey) € NCSY(U) and if U € Inn(n) then U € o,
v =AU} and ey (U) = 0.

For V € 0 € NC(X), € € Sgn(o) we define:

v if V € Out(o),
w(Vyo,€) == {7y — 1y if Velnn(o) and (V) =1, (5.6)
V| if V € Inn(o) and (V) = 0.

Lemma 5.2. For o € NC'(X) we have

> [ eWioe) =] ev.o). (5.7)

e€Sgnl(o) Veo Veo
Consequently
Z HwVJe) Z H (V,o) (5.8)
(o,e)ENCS (X) VeEo ceNCH(X) Veo

and this quantity depends only on | X]|.

Proof. Equality (5.7) holds because Sgn'(o) consists of all € € Sgn(o) such that
€(V) =1 for those inner blocks V' € ¢ which are minimal. m|

Proof of Theorem 5.1. We have

sm= >, Ilrvi= > I 7w 11 [wi+Gop=repl

ceNC(m) Veo ceNC(m) VeOut(o) Velnn(o)

Z Z H w(V,o,¢).

oc€NC(m) ecSgn(o) Ve

Applying first Lemma 5.1, then Lemma 5.2 and denoting by C,,, the right-hand
side of (5.1) we get

r— Z Z H w(V, 7€)

TeNC(m) (mﬁe)ENCS(m) Veo

I(o,e)=7
= > Il nw 1I > I «Viou,e0)
Te€NC(m) U€lnn(m) UeOut(mw) \(ov,er)ENCS(U) Veou
= > I nw 11 >, I eve
Te€NC(m) U€lnn(m) UeOut(w) \oyeNCH(U) Veou
= > Il nw 11 Cw
TeNC(m) U€lnn(n) UeOut(m)

which, by induction, implies that C,, = R,, for every m > 1. O
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Let us give a few examples. The consecutive summands are arranged according
to the size of the outer block:

R =7, (5.9)
Ry = 7o, (5.10)
Ry =73 +7a(11 — 1), (5.11)
Ry =74 + 273(F1 — 1) + 72(F2 — r2) + P2 (71 — 11)?, (5.12)

Rs =75 +374(F1 —71) +73[3(7F1 — r1)? + 2(72 — 72)]

+7a[(F1 —71)% 4+ 2(F — 12)(F1 — 1) + T2 (F1 — 1) + (T3 —13)],  (5.13)
Re =76 +475(T1 — 71) + 74[6(71 — r1)? + 3(T2 — 2]
+73[4(F — )%+ 6(Fa — ro) (1 — 1) + 272(F1 — 1) + 2(F3 — 13)]
+7[(F1 — ) 4+ 3(F2 — o) (71— 71)2 + 3T (T — 71)?
+2(73 — r3)(F1 — 1) + 273(T1 — 1) + (T2 — 72)?

+F2(7I:2—7"2)+(774—7“4)]. (514)

6. Noncommutative Case

In this part we will assume that jz is an operator probability measure®'” on a Hilbert
space H, i.e. a function g : Borel(R) — By (H) such that i(R) = Idy and for every
& € H the function Borel(R) 5 A — (u(A)E, &) is a usual measure. Here Borel(R)
denotes the family of Borel subsets of R and By (H) is the class of nonnegative
bounded operators on H. We also assume that ;i has all moments

Sm :=/Ra:mdﬁ(a:)

finite. Then {3, }5°_, is a positive definite sequence of operators, i.e.

n
Z (5i456,&) =0 (6.1)
4,j=0
whenever n > 0, &,...,&, € H.

Now, if i is as before a usual probability measure on R with finite moments, then
we define conditionally free camulants R,,, = R,, (11, ) as operators on H satisfying
(4.1). This leads to a generalization of the conditionally free convolution.!®
Assume that {8}, {al,}, {a,} are sequences of operators on H and define

Yk = ayas,. For o € NCy2(X), {i,5} € o, with d({i,5},0) = d, we put
Ba ifi=j,
wo(o,i) = qay ifi<j, (6.2)
ay ifi>j.
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We will call {8}, {@,}, {@%,} noncommutative Jacobi parameters of Ji if for every
m > 1 we have

Sm= > Jl@o(e), (6.3)

O’ENCl‘z(m) i=1

where H?:l a; denotes the ordered product ajas - --a,. The existence of noncom-
mutative Jacobi parameters, satisfying a} = (al)*, was proved by Mac Nerney.!”

We will use partitions with partial labelings. Fix o € NC; 2(X). A subset D C o
will be called hereditary if for every Vi € o and V5 € D the relation Vi < V5 implies
V1 € D. By K(o) we will denote the class of all such functions x that:

(1) the domain D(k) of & is a hereditary subset of o,
(2) if V € D(k) then (V) € {0,1,...,d(V,0)},
(3) if Vi € D(k), k(V1) =d(V1,0), Vo € 0 and Vi < V2 # Vi then Vs ¢ D(k).

For k € K(o) and i € X, with i € {i,j} =V € o we define weight w(o,i, k) in the
following way. If V' € D(k), with k(i) = k, then we put

Bk — By ifi=jand k=d(V,0),
Br — Pr—1 ifi=jand k <d(V,o),
w(o, i, k) =< Yp — 1 ifi<jand k=d(V,o), (6.4)
Ve — k-1 ifi<jand k<d(V, o),
1 if i > j,

with the convention that -1 = v_; = 0. If, on the other hand, V' ¢ D(x) then we
put w(o,i, k) := we(o,i). Finally, we define
w(o,k) =[] @(0.i, k). (6.5)
ieX

Let ¢ € NCj2(X) and let D be a hereditary subset of 0. By PLAB(D, o)
(“partial labelings”) we will denote the class of all such functions k € K(o) that
(1) D(k) €D,
(2) For V € D we have: V € D(k) if and only if x(U) < d(U, o) holds for every

U € D(k) such that U < V.

Note that if D; C Dy C o, with Dy, Dy hereditary, and xk € PLAB(Ds, o), then
k|p, € PLAB(Ds,0). The following lemma will be used for D = o.

Lemma 6.1. Assume that o € NCy 2(X) and D is a hereditary subset of o. Then

Hﬁg(a,i) = Z w(o, k). (6.6)

k€EPLAB(D,0)

Proof. Let X ={1,...,m}. If D = () then PLAB(D, o) consists only of the empty
function and then the statement is obvious.
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Assume that Dy, D; C o are hereditary, D; = Dy U{V;1} and (6.6) holds for Dy.
Then V; is a minimal block in o\ Dy.
Fix ko € PLAB(Dy). We want to describe the class

K(D1, ko) := {x € PLAB(D1,0) : k|lp, = Ko}
If there is U € Dy such that U < V4 and x(U) = d(U, o) then K(D1, ko) = {ko}. In

the opposite case we have

K(Dl,,‘io) = {Iio @] {(VLk)} ke {0,].7 . ..7d}}7

where d := d(V3,0). Assume that Vi = {iy, j1} with 41 < j;. If iy < i < j; then the
weight w(o, 1, ko) is a scalar, so we can write

111

’&7(0-7 KJQ) = H w 0—77’7"{/0 ’Yd H 0-717H0
i=i1+1
i#j1
i1—1 m
= I @i, 50)(v0 + (11 —70) + -+ Fa—va—1)) [ @(o,i,r0)
i=1 i=i1+1

i#£j1
d
=Y w(orU{(Vi,k)) = Y (o).
k=0 REK(D1,k0)
Similarly we proceed when |V;| = 1. Therefore
> (o, ko) = > > dw(ok) = > (o),
ko EPLAB(Dg,0) ko EPLAB(Dg,0) k€K (D1,k0) KEPLAB(D1,0)

so (6.6) holds for Dy. Now we can apply induction to conclude the proof. O

Denote by NCP; o(X) the class of all pairs (o, k) with 0 € NC; 2(X) and x €
PLAB(o,0) (i.e. D = o). With (0,k) € NCP; 2(X) we associate an equivalence
relation ~ on o and the partition IIy(o, k) in similar way as before, defining

Rolo,k) = {(VED VE) .V eDk),1<k<rV)} (6.7)
Then a modified version of Proposition 2.1 remains true, namely

Proposition 6.1. 1. If (0,x) € NCPy o(X) then Ily(o, k) is noncrossing.
2. Let m € NC(X) and (0,k) € NCLy o(X). Then Ily(o,k) = 7 if and only if o
and k admit decompositions:

0:U o and H:U K
Uen v Uern Us

where for every U € m we have oy € NCi2(U) with ky € PLAB(oy,ou),
Iy(ou, ku) = {U} whenever U € Out(n) and with ky € LAB(oy), U(ou, ku) =
{U} whenever U € Inn(r).
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Denote by NCP%Q(X) the class of (o,7) € NCP; 3(X) for which IIy(o,7) =

{X}.
Theorem 6.1. For every m > 1 we have

R (1, p) = Z w(o, k).

(O’,N)ENCP%J(M)

Proof. Applying Lemma 6.1 to D = ¢ we have

S = Z w(o, k) = Z Z w(o, k).

(0,7)ENCPq,2(m) TeNC(m) (o,k)NCPq 2(m)
Ip(o,k)=7

Fix m € NC(m). Then, denoting the right-hand side of (6.8) by A,

Z w(o, k) = H ( Z m(UU,HU)>
)

(0,k)ENCPq,2(m) U€lInn(m) (UU,KU)GNCL%Q(U
Iy (o,k)=m

UeOut(m) GNCP%’Q(U
= I o 11 Aw
U€lnn(r) UeOut(m)

and then we conclude that A,, = Ry, ([, ).

Examples. Putting R,, := R, (11, u) we have:

Ry = [,

Ry = 90,

Rs = ay(B1 — fo)a,

Ry = ap[(B1 — Bo)* + (31 — v0)]ah.

Rs = a[(B1 — Bo)* + (n ’)’0)(~1 Bo) + (B — o) (F1 — 70)
+(B1 — Bo) (1 — o) + @ (B — )t ]ap,

Rs = ay[(B1 — Bo)* + (1 —70)(Br — Bo)? + (Br — Bo) AL — 70)(Br — Bo)
+(Br — 0)2 (1 — 0) + (B1 — Bo)(B1 — Bo) (i — o)
+ (81 — Bo)(F1 —0)(Br — ﬂo) + (B1 — Bo)* (1 — o)

+ (81 — Bo)as (B2 — B1)@ + @ (B — B1)a, (51 — fo)
+2(81 — Bo)ay (B2 — 51)% + @y (B — Br)%a
+ (1 — )% + (71 — %) (1 — 70) + a3 (T2 — 71) aylay.

11 ( > @(UU,HU))
(ou,ku) )

(6.8)

(6.14)
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For example, the consecutive summands of R5 correspond to the following par-

tially labeled partitions:

{{17 5}7 {2}17 {3}17 {4}1}7 {{17 5}7 {27 3}17 {4}1}7
{{175}7{2}17{374}1}7 {{175}7{274}17{3}1}7 {{175}7{274}7{3}2}'
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