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1. Introduction

Free convolution is a binary, associative and commutative operation � on the class
M of probability measures on R. It corresponds to the notion of free independence
(introduced by Voiculescu25,26) in the same way as the classical convolution cor-
responds to the classical independence. There are several ways of describing free
convolution.3,4,9 Here we will use the combinatorial method due to Speicher.22,23,21

Namely, with every µ ∈ M having all moments, there is associated sequence
{rm(µ)}∞m=1 of real numbers, called free cumulants. Then, for two such measures
we have: rm(µ1 � µ2) = rm(µ1) + rm(µ2), for every m ≥ 1, which determines
the moments of µ1 � µ2. For general theory of cumulants we refer to the work of
Lehner.11,12,13,14,15,16

Conditionally free convolution, in turn, is a binary, associative and commutative
operation, introduced by Bożejko, Leinert and Speicher,7 on pairs of compactly
supported probability measures on the real line. In this case, for a pair (µ̃, µ) of
such probability measures there is a sequence {Rm(µ̃, µ)}∞m=1 of real numbers such
that if (µ̃1, µ1) � (µ̃2, µ2) = (µ̃, µ) then rm(µ) = rm(µ1) + rm(µ2) (which means
that µ = µ1 �µ2) and Rm(µ̃, µ) = Rm(µ̃1, µ1)+Rm(µ̃2, µ2) for every m ≥ 1, which
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determines the pair (µ̃, µ). It turns out that the conditionally free convolution can
also be defined when µ̃1, µ̃2 are operator measures.18

If µ ∈ M has all moments then there is a unique sequence {Pm}∞m=0 of monic
polynomials, with deg Pm = m, which are orthogonal with respect to µ. They satisfy
the recurrence relation: P0(x) = 1 and for m ≥ 0

xPm(x) = Pm+1(x) + βmPm(x) + γm−1Pm−1(x), (1.1)

under convention that P−1(x) = 0, where the Jacobi parameters8 satisfy: βm ∈ R,
γm ≥ 0 and if γm = 0 for some m then βn = γn = 0 for all n > m.

The aim of this paper is to express the free and conditionally free cumulants
in terms of Jacobi parameters. In Sec. 5 we also express the conditionally free
cumulants Rm(µ̃, µ) in terms of the free cumulants of µ̃ and µ.

2. Preliminaries

Throughout the paper, X will denote a finite set of natural numbers. Recall that
a partition of X is a family π of nonempty, pairwise disjoint subsets of X , called
blocks of π, such that

⋃
π = X . The partition π is called noncrossing if the following

conditions: x1 < x2 < x3 < x4, x1, x3 ∈ V1 ∈ π and x2, x4 ∈ V2 ∈ π imply that
V1 = V2. By NC(X) we will denote the class of all noncrossing partitions of X and
NC1,2(X) will stand for the class of all partitions π ∈ NC(X) such that |V | ≤ 2 holds
for every V ∈ π. We will use the abbreviation “(m)” instead of “({1, 2, . . . , m})”,
for example NC({1, 2, . . . , m}) will be denoted by NC(m).

On every π ∈ NC(X) there is a natural partial order namely, U � V if there
are r, s ∈ V such that r ≤ k ≤ s holds for every k ∈ U. Now we can define depth
of a block U ∈ π, namely d(U, π) := |{V ∈ π : U � V �= U}|. If d(U, π) ≥ 1,
then we define derivative of U as the unique block U ′ ∈ π such that U � U ′ and
d(U ′, π) = d(U, π) − 1. The derivatives of higher orders are defined by putting
V (k) := (V (k−1))′.

From now on we fix a probability measure µ on R having all the moments finite

sm :=
∫

R

xmdµ(x). (2.1)

Then its Jacobi parameters can be obtained from the Accardi–Bożejko1 formula:

sm =
∑

σ∈NC1,2(m)

∏
V ∈σ
|V |=1

βd(V,σ)

∏
V ∈σ
|V |=2

γd(V,σ) (2.2)

(cf. Viennot24), while for free cumulants we have:

sm =
∑

π∈NC(m)

∏
V ∈π

r|V | (2.3)

(see Speicher22,23,21). Both formulas involve noncrossing partitions. The aim of the
next section is to find a direct combinatorial relation between free cumulants and
Jacobi parameters. For this purpose we will need some additional notions.
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By a labeling of a partition σ ∈ NC(X) we will mean a function κ on σ such
that for every V ∈ σ we have

κ(V ) ∈ {0, 1, . . . , d(V, σ)}.
The family of all labelings of σ will be denoted by LAB(σ) and NCL(X) (resp.
NCL1,2(X)) will stand for the family of all pairs (σ, κ) with σ ∈ NC(X) (resp.
σ ∈ NC1,2(X)) and κ ∈ LAB(σ).

With (σ, κ) ∈ NCL(X) we will associate a partition Π(σ, κ) of X in the following
way. First we define a relation on σ:

−→R0(σ, κ) := {(V (k−1), V (k)) : V ∈ σ, 1 ≤ k ≤ κ(V )}. (2.4)

Let κ∼ be the smallest equivalence relation on σ containing
−→R0(σ, κ). We define a

partition Π(σ, κ) of X whose blocks are of the form
⋃ C, where C ∈ σ/

κ∼:

Π(σ, κ) :=
{⋃
C : C ∈ σ/

κ∼
}

. (2.5)

Example. Take

(σ, κ) = {{1, 7}0, {2, 5}0, {3}2, {4}0, {6}1, {8, 9}0},
where we write Vk if κ(V ) = k. Then

−→R0(σ, κ) = {({3}, {2, 5}), ({2, 5}, {1, 7}), ({6}, {1, 7})}
and

Π(σ, κ) = {{1, 2, 3, 5, 6, 7}, {4}, {8, 9}}.
It is not an accident that in this example Π(σ, κ) is noncrossing.

Proposition 2.1.

1. If (σ, κ) ∈ NCL(X) then Π(σ, κ) is a noncrossing partition of X.
2. Let π ∈ NC(X) and (σ, κ) ∈ NCL(X). Then Π(σ, κ) = π if and only if σ and κ

admit decompositions:

σ =
⋃̇

U∈π
σU and κ =

⋃̇
U∈π

κU ,

where σU ∈ NC(U), κU ∈ LAB(σU ) and Π(σU , κU ) = {U}.

Proof. We will proceed in several steps.

Claim 1. If U, V ∈ σ, then U
κ∼V holds if and only if there is a sequence U =

U0, U1, . . . , Uk = V of blocks of σ and a number 0 ≤ j0 ≤ k such that

U0
−→R0U1, . . . , Uj0−1

−→R0Uj0 , Uj0

←−R0Uj0+1, . . . , Uk−1
←−R0Uk,
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where W1
←−R0W2 means that W2

−→R0W1.

Indeed, suppose that V0, . . . , Vn is such a sequence of blocks of σ that V0 = U ,
Vn = V and (Vi−1, Vi) ∈ −→R0 ∪←−R0. If for some i we have Vi−1

←−R0Vi and Vi
−→R0Vi+1

then Vi−1 = Vi+1 = V ′
i and hence we can remove Vi and Vi+1 from this sequence.

As a consequence we note that the equivalency classes are “convex”:

Claim 2. If U � V �W and U
κ∼W, then U

κ∼V and V
κ∼W .

Now observe that every equivalence class possesses the largest block.

Claim 3. For every C ∈ σ/
κ∼ there is V0 ∈ C such that if V ∈ C then V � V0.

As σ is a finite set, it suffices to notice that if V0, V1 are maximal in C then
V0 = V1, but this is a consequence of Claim 1.

Now note that every class C ∈ σ/
κ∼ is a partition itself: C ∈ NC1,2(

⋃ C).
Claim 4. For V ∈ C we have d(V, C) = d(V, σ) − d(V0, σ), where V0 is the largest
block in C. Moreover, the restriction of κ to C belongs to LAB(C) and Π(C, κ|C) =
{⋃ C}.

The equality is a consequence of “convexity” of C. Note also that if V ∈ C
then κ(V ) ≤ d(V, σ) − d(V0, σ) (for otherwise we would have V ′

0 ∈ C) which proves
the next statement. The equivalence relation resulting from (C, κ|C) is just the
restriction of κ∼ to C, which concludes the proof of Claim 4.

Claim 5. The partition Π(σ, κ) is noncrossing.

Suppose that s1 < s2 < s3 < s4 and that s1, s3 ∈
⋃ C1, s2, s4 ∈

⋃ C2, where
C1, C2 ∈ σ/

κ∼. Assume that si ∈ Vi and V1, V3 ∈ C1, V2, V4 ∈ C2. Let Ui, i = 1, 2,
be the largest (with respect to �) block of Ci and let ki (resp. li) be the smallest
(resp. the largest) element in Ui. Then we have k1 ≤ s1 < s2 < s3 ≤ l1 and
k2 ≤ s2 < s3 < s4 ≤ l2. Since σ is noncrossing we have either k2 ≤ k1 < l1 ≤ l2 or
k1 ≤ k2 < l2 ≤ l1. In the former case we get V2 � U1 � U2 which, by “convexity”,
implies C1 = C2, and the same conclusion we get in the latter case. This means that
Π(σ, κ) is noncrossing.

Therefore we have proved part 1. For part 2 one implication is a consequence of
Claim 4 and the other one is obvious.

3. Free Cumulants

From now on we fix µ ∈ M as in the previous section. For a block V ∈ σ ∈
NC1,2(X), with label k, we define its weight by:

w(V, k) :=


β0 if |V | = 1 and k = 0,
βk − βk−1 if |V | = 1 and k ≥ 1,
γ0 if |V | = 2 and k = 0,
γk − γk−1 if |V | = 2 and k ≥ 1,

(3.1)



June 27, 2009 19:24 WSPC/102-IDAQPRT 00365

Combinatorial Relation between Free Cumulants and Jacobi Parameters 295

and for σ ∈ NC1,2(X), κ ∈ LAB(σ) we put

w(σ, κ) :=
∏
V ∈σ

w(V, κ(V )). (3.2)

By NCL1
1,2(X) we will denote the set of all (σ, κ) ∈ NCL1,2(X) for which

Π(σ, κ) = {X}. Now we are ready to present the main result of this section.

Theorem 3.1. For every m ≥ 1 we have

rm =
∑

(σ,κ)∈NCL1
1,2(m)

w(σ, κ). (3.3)

Proof. Denote the right-hand side of (3.3) by cm. Then, in view of Proposition 2.1,
for every π ∈ NC(m) we have

∑
(σ,κ)∈NC1,2(m)

Π(σ,κ)=π

w(σ, κ) =
∏
U∈π

 ∑
(σU ,κU )∈NCL1

1,2(U)

w(σU , κU )

 =
∏
U∈π

c|U|.

Now, let us fix σ ∈ NC1,2(m). Then expressing every factor ad, where ad = βd

or ad = γd, as the sum

ad = (ad − ad−1) + · · ·+ (a1 − a0) + a0

and expanding the product, we get∏
V ∈σ
|V |=1

βd(V,σ)

∏
V ∈σ
|V |=2

γd(V,σ) =
∑

κ∈LAB(σ)

w(σ, κ).

Therefore, by (2.2), for every m ≥ 1

sm =
∑

σ∈NC1,2(m)
κ∈LAB(σ)

w(σ, κ) =
∑

π∈NC(m)

∑
(σ,κ)∈NCL1,2(m)

Π(σ,κ)=π

w(σ, κ) =
∑

π∈NC(m)

∏
U∈π

c|U|.

Since (2.3) defines the free cumulants uniquely, we have rm = cm for every m.

Examples of free cumulants. Using Theorem 3.1 we can give a list of a few free
cumulants expressed in terms of Jacobi parameters (cf. Ref. 10 for a special case):

r1 = β0, (3.4)

r2 = γ0, (3.5)

r3 = γ0(β1 − β0), (3.6)

r4 = γ0[(β1 − β0)2 + (γ1 − γ0)], (3.7)

r5 = γ0[(β1 − β0)3 + 3(γ1 − γ0)(β1 − β0) + γ1(β2 − β1)], (3.8)

r6 = γ0[(β1 − β0)4 + 6(γ1 − γ0)(β1 − β0)2 + 4γ1(β2 − β1)(β1 − β0)

+ γ1(β2 − β1)2 + 2(γ1 − γ0)2 + γ1(γ2 − γ1)]. (3.9)
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In (3.8) the last summand comes from two labeled partitions, namely
{{1, 5}0, {2, 4}0, {3}2} and {{1, 5}0, {2, 4}1, {3}2}. Similar reductions have been
done in (3.9).

Remark. One can compare (3.3) with Lehner’s formula (Theorem 5.1 in Ref. 12),
which in our notation can be expressed as

rm =
∑

σ∈NC1,2(m)

(−1)|Out(σ)|−1

m− 1

(
m− 1
|Out(σ)|

) ∏
V ∈σ
|V |=1

βd(V,σ)

∏
V ∈σ
|V |=2

γd(V,σ), (3.10)

m ≥ 2, where |Out(σ)| denotes the number of outer blocks in σ. For example

3r4 = −0β4
0 + γ0β

2
0 + γ0β

2
0 + γ0β

2
0 − 3γ0β0β1 − 3γ0β0β1 + 3γ0β

2
1 − 3γ2

0 + 3γ0γ1,

each summand corresponding to one partition σ ∈ NC1,2(4).

Now let β(t), γ(t) be the Jacobi parameters of the free power µ�t. It is known20

that µ�t exists for every t ≥ 1. Then we have rm(µ�t) = t · rm(µ). Using formulas
(3.4)–(3.9) one can consecutively check that:

β0(t) = tβ0, (3.11)

γ0(t) = tγ0, (3.12)

β1(t) = β1 − β0 + tβ0, (3.13)

γ1(t) = γ1 − γ0 + tγ0, (3.14)

β2(t) = β1(t) +
γ1(β2 − β1)

γ1(t)
, (3.15)

γ2(t) = γ1(t) +
γ1(γ2 − γ1)γ1(t)− (1 − t)γ0γ1(β2 − β1)2

γ2
1(t)

. (3.16)

In particular, if µ is infinitely divisible with respect to �, then we have γm(0) ≥ 0
for all m ≥ 0. Therefore (3.14) and (3.16) lead to the following necessary conditions:

Corollary 3.1. If µ is �-infinitely divisible, then γ0 ≤ γ1 and

γ0γ1(β2 − β1)2 ≤ (γ1 − γ0)[γ1(γ2 − γ0)− γ0(γ1 − γ0)]. (3.17)

Corollary 3.2. If γ0 = γ2 �= γ1, then µ is not �-infinitely divisible.

Proof. Note that in this case the right-hand side of (3.17) is negative.

Example. Let us consider the free Poisson law26 ρλ with parameter λ > 0. For
this measure γn = λ, n ≥ 0, β0 = λ, and βn = λ + 1 for n ≥ 1. The support of
ρλ is contained in [0, +∞) and ρλ if �-infinite divisible, in fact for any λ1, λ2 > 0
we have ρλ1 � ρλ2 = ρλ1+λ2 . Now consider the symmetric measure �λ obtained
by symmetrization of ρλ, so that

∫
R

f(x2)d�λ(x) =
∫

R
f(x)dρλ(x) holds for every

continuous function on R. One can check (see for example Corollary 3 in Ref. 19)
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that the Jacobi parameters for �λ are given by: γ′
n = λ if n is even, γ′

n = 1 if n is
odd and β′

n = 0 for all n ≥ 0. Hence, by Corollary 3.2, �λ is not �-infinite divisible,
except the case λ = 1 (the Wigner measure).

4. Conditionally Free Cumulants

A block U ∈ π ∈ NC(X) will be called outer (resp. inner) if d(U, π) = 0 (resp.
d(U, π) > 0). The family of all outer (resp. inner) blocks of π will be denoted by
Out(π) (resp. Inn(π)).

Suppose we have an additional measure µ̃, with moments s̃m and Jacobi param-
eters γ̃m, β̃m. Then the conditionally free cumulants7 Rm = Rm(µ̃, µ) of the pair
(µ̃, µ) are defined by

s̃m =
∑

π∈NC(m)

∏
U∈Out(π)

R|U|(µ̃, µ)
∏

U∈Inn(π)

r|U|(µ), (4.1)

where, as before, rm = rm(µ) are the free cumulants of µ.
For σ ∈ NC1,2(X) and V ∈ σ, with label k, we define

w̃(V, k, σ) :=


β̃k − βk−1 if |V | = 1 and k = d(V, σ),
βk − βk−1 if |V | = 1 and k < d(V, σ),
γ̃k − γk−1 if |V | = 2 and k = d(V, σ),
γk − γk−1 if |V | = 2 and k < d(V, σ),

(4.2)

under convention that β−1 = γ−1 = 0. For (σ, κ) ∈ NCL1,2(X) we put

w̃(σ, κ) :=
∏
V ∈σ

w̃(V, κ(V ), σ). (4.3)

Theorem 4.1. For every m ≥ 1 we have

Rm(µ̃, µ) =
∑

(σ,κ)∈NCL1
1,2(m)

w̃(σ, κ). (4.4)

Proof. Fix π ∈ NC(m). For (σ, κ) ∈ NCL1,2(m), such that Π(σ, κ) = π, take
the decompositions σ =

⋃̇
U∈πσU and κ =

⋃̇
U∈πκU as in Proposition 2.1. If U ∈

Inn(π) and V ∈ σU then κ(V ) ≤ d(V, σU ) < d(V, σ) (see Claim 4 in the proof of
Proposition 2.1) and then w̃(V, k, σ) = w(V, k), see (3.1). Consequently,

w̃(σ, κ) =
∏
V ∈σ

w̃(V, κ(V ), σ) =
∏

U∈Out(π)

w̃(σU , κU )
∏

U∈Inn(π)

w(σU , κU )

and, denoting the right-hand side of (4.4) by Cm,∑
(σ,κ)∈NCL1,2(m)

Π(σ,κ)=π

w̃(σ, κ) =
∏

U∈Out(π)

C|U|
∏

U∈Inn(π)

r|U|(µ).
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Now writing every factor ãd, where ãd = β̃d or ãd = γ̃d, as the sum

ãd = (ãd − ad−1) + · · ·+ (a1 − a0) + a0

and then expanding the products, we get

s̃m =
∑

σ∈NC1,2(m)

∏
V ∈σ

|V |=1

β̃d(V,σ)

∏
V ∈σ
|V |=2

γ̃d(V,σ)

=
∑

σ∈NC1,2(m)

∑
κ∈LAB(σ)

w̃(σ, κ) =
∑

π∈NC(m)

∑
(σ,κ)∈NCL1,2(m)

Π(σ,κ)=π

w̃(σ, κ)

=
∑

π∈NC(m)

∏
U∈Out(π)

C|U|
∏

U∈Inn(π)

r|U|(µ),

which implies that Cm = Rm(µ̃, µ) for every m ≥ 1.

Examples of conditionally free cumulants

R1 = β̃0, (4.5)

R2 = γ̃0, (4.6)

R3 = γ̃0(β̃1 − β0), (4.7)

R4 = γ̃0[(β̃1 − β0)2 +
(
γ̃1 − γ0)], (4.8)

R5 = γ̃0[(β̃1 − β0)3 + 2(γ̃1 − γ0)(β̃1 − β0) + (γ̃1 − γ0)(β1 − β0)

+ γ̃1(β̃2 − β1)], (4.9)

R6 = γ̃0[(β̃1 − β0)4 + 3(γ̃1 − γ0)(β̃1 − β0)2 + 2(γ̃1 − γ0)(β̃1 − β0)(β1 − β0)

+ (γ̃1 − γ0)(β1 − β0)2 + 2γ̃1(β̃2 − β1)(β̃1 − β0) + 2γ̃1(β̃2 − β1)(β1 − β0)

+ γ̃1(β̃2 − β1)2 + (γ̃1 − γ0)2 + (γ̃1 − γ0)(γ1 − γ0) + γ̃1(γ̃2 − γ1)]. (4.10)

The conditionally free power of a pair of measures: (µ̃, µ)�t = (µ̃t, µt) is defined
by: µt = µ�t and Rm(µ̃t, µt) = t · Rm(µ̃, µ). Denoting by β̃m(t), γ̃m(t) the Jacobi
parameters of µ̃t, and using formulas (4.5)–(4.10) we get

β̃0(t) = tβ̃0, (4.11)

γ̃0(t) = tγ̃0, (4.12)

β̃1(t) = β̃1 − β0 + tβ0, (4.13)

γ̃1(t) = γ̃1 − γ0 + tγ0, (4.14)

β̃2(t) = β1(t) +
γ̃1(β̃2 − β1)

γ̃1(t)
, (4.15)

γ̃2(t) = γ1(t) +
γ̃1(γ̃2 − γ1)γ̃1(t)− (1 − t)γ0γ̃1(β̃2 − β1)2

γ̃2
1(t)

. (4.16)
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Corollary 4.1. If the pair (µ̃, µ) is infinitely divisible with respect to the condi-
tionally free convolution then γ0 ≤ γ̃1 and

γ0γ̃1(β̃2 − β1)2 ≤ (γ̃1 − γ0)[γ̃1(γ̃2 − γ0)− γ0(γ1 − γ0)]. (4.17)

5. Conditionally Free Cumulants in Terms of Free Cumulants

We keep the setting from the previous sections, so we fix a pair µ̃, µ of probability
measures on R, s̃m and sm are their moments, r̃m, rm their free cumulants and
Rm(µ̃, µ) = Rm the conditionally free cumulants. It turns out that Rm can also be
expressed in terms of the free cumulants. Namely, denote by NC1(X) the class of
all such σ ∈ NC(m) that σ has only one outer block. Then we have

Theorem 5.1. For every m ≥ 1 we have

Rm =
∑

σ∈NC1(m)

∏
V ∈σ

c(V, σ), (5.1)

where for V ∈ σ ∈ NC1(m) we define

c(V, σ) :=

{
r̃|V | − r|V | if V is inner and minimal,
r̃|V | otherwise.

(5.2)

The word “minimal ” refers to the partial order “�” on σ.

Before the proof we introduce some auxiliary notions. For σ ∈ NC(X) denote by
Sgn(σ) the class of all functions ε : Inn(σ)→ {0, 1}. By NCS(X) we will denote the
class of all pairs (σ, ε) such that σ ∈ NC(X), ε ∈ Sgn(σ). For fixed (σ, ε) ∈ NCS(X)
we define a partition Π(σ, ε) of X in the following way. First we define a relation−→R1 on σ by
−→R1 := {(V (k−1), V (k)) : V ∈ Inn(σ), ε(V ) = 1 and k = 1, 2, . . . , d(V, π)} (5.3)

and then define ε∼ as the smallest equivalence relation on σ which contains
−→R1.

Now we put

Π̃(σ, ε) :=
{⋃
C : C ∈ σ/

ε∼
}

. (5.4)

Denote by NCS1(X) the class of all (σ, ε) ∈ NCS(X) such that Π̃(σ, ε) = {X}. In
particular, σ ∈ NC1(X). For σ ∈ NC1(X) we set

Sgn1(σ) := {ε ∈ Sgn(σ) : Π̃(σ, ε) = {X}}. (5.5)

The following lemma can be proved in a similar way as Proposition 2.1.

Lemma 5.1. 1. If (σ, ε) ∈ NCS(X) then the partition Π̃(σ, ε) is noncrossing.
2. Let π ∈ NC(X), (σ, ε) ∈ NCS(X). Then π = Π̃(σ, ε) if and only if σ and ε admit
such decompositions:

σ =
⋃̇

U∈π
σU and ε =

⋃̇
U∈π

εU
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that if U ∈ Out(π) then (σU , εU ) ∈ NCS1(U) and if U ∈ Inn(π) then U ∈ σ,

σU = {U} and εU (U) = 0.

For V ∈ σ ∈ NC(X), ε ∈ Sgn(σ) we define:

ω(V, σ, ε) :=


r̃|V | if V ∈ Out(σ),
r̃|V | − r|V | if V ∈ Inn(σ) and ε(V ) = 1,
r|V | if V ∈ Inn(σ) and ε(V ) = 0.

(5.6)

Lemma 5.2. For σ ∈ NC1(X) we have∑
ε∈Sgn1(σ)

∏
V ∈σ

ω(V, σ, ε) =
∏
V ∈σ

c(V, σ). (5.7)

Consequently ∑
(σ,ε)∈NCS1(X)

∏
V ∈σ

ω(V, σ, ε) =
∑

σ∈NC1(X)

∏
V ∈σ

c(V, σ) (5.8)

and this quantity depends only on |X |.

Proof. Equality (5.7) holds because Sgn1(σ) consists of all ε ∈ Sgn(σ) such that
ε(V ) = 1 for those inner blocks V ∈ σ which are minimal.

Proof of Theorem 5.1. We have

s̃m =
∑

σ∈NC(m)

∏
V ∈σ

r̃|V | =
∑

σ∈NC(m)

∏
V ∈Out(σ)

r̃|V | ·
∏

V ∈Inn(σ)

[r|V | + (r̃|V | − r|V |)]

=
∑

σ∈NC(m)

∑
ε∈Sgn(σ)

∏
V ∈π

ω(V, σ, ε).

Applying first Lemma 5.1, then Lemma 5.2 and denoting by Cm the right-hand
side of (5.1) we get

s̃m =
∑

π∈NC(m)

∑
(σ,ε)∈NCS(m)

eΠ(σ,ε)=π

∏
V ∈σ

ω(V, π, ε)

=
∑

π∈NC(m)

∏
U∈Inn(π)

r|U| ·
∏

U∈Out(π)

 ∑
(σU ,εU )∈NCS1(U)

∏
V ∈σU

ω(V, σU , εU )


=

∑
π∈NC(m)

∏
U∈Inn(π)

r|U| ·
∏

U∈Out(π)

 ∑
σU∈NC1(U)

∏
V ∈σU

c(V, σ)


=

∑
π∈NC(m)

∏
U∈Inn(π)

r|U| ·
∏

U∈Out(π)

C|U|,

which, by induction, implies that Cm = Rm for every m ≥ 1.
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Let us give a few examples. The consecutive summands are arranged according
to the size of the outer block:

R1 = r̃1, (5.9)

R2 = r̃2, (5.10)

R3 = r̃3 + r̃2(r̃1 − r1), (5.11)

R4 = r̃4 + 2r̃3(r̃1 − r1) + r̃2(r̃2 − r2) + r̃2(r̃1 − r1)2, (5.12)

R5 = r̃5 + 3r̃4(r̃1 − r1) + r̃3[3(r̃1 − r1)2 + 2(r̃2 − r2)]

+ r̃2[(r̃1 − r1)3 + 2(r̃2 − r2)(r̃1 − r1) + r̃2(r̃1 − r1) + (r̃3 − r3)], (5.13)

R6 = r̃6 + 4r̃5(r̃1 − r1) + r̃4[6(r̃1 − r1)2 + 3(r̃2 − r2)]

+ r̃3[4(r̃1 − r1)3 + 6(r̃2 − r2)(r̃1 − r1) + 2r̃2(r̃1 − r1) + 2(r̃3 − r3)]

+ r̃2[(r̃1 − r1)4 + 3(r̃2 − r2)(r̃1 − r1)2 + 3r̃2(r̃1 − r1)2

+ 2(r̃3 − r3)(r̃1 − r1) + 2r̃3(r̃1 − r1) + (r̃2 − r2)2

+ r̃2(r̃2 − r2) + (r̃4 − r4)]. (5.14)

6. Noncommutative Case

In this part we will assume that µ̃ is an operator probability measure5,17 on a Hilbert
space H, i.e. a function µ̃ : Borel(R)→ B+(H) such that µ̃(R) = IdH and for every
ξ ∈ H the function Borel(R) � A �→ 〈µ(A)ξ, ξ〉 is a usual measure. Here Borel(R)
denotes the family of Borel subsets of R and B+(H) is the class of nonnegative
bounded operators on H. We also assume that µ̃ has all moments

s̃m :=
∫

R

xmdµ̃(x)

finite. Then {s̃m}∞m=0 is a positive definite sequence of operators, i.e.

n∑
i,j=0

〈s̃i+jξi, ξj〉 ≥ 0 (6.1)

whenever n ≥ 0, ξ0, . . . , ξn ∈ H.
Now, if µ is as before a usual probability measure on R with finite moments, then

we define conditionally free cumulants Rm = Rm(µ̃, µ) as operators on H satisfying
(4.1). This leads to a generalization of the conditionally free convolution.18

Assume that {β̃m}, {ãl
m}, {ãr

m} are sequences of operators on H and define
γ̃k = ãl

kãr
k. For σ ∈ NC1,2(X), {i, j} ∈ σ, with d({i, j}, σ) = d, we put

w̃0(σ, i) :=


β̃d if i = j,
ãl

d if i < j,
ãr

d if i > j.

(6.2)
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We will call {β̃m}, {ãl
m}, {ãr

m} noncommutative Jacobi parameters of µ̃ if for every
m ≥ 1 we have

s̃m =
∑

σ∈NC1,2(m)

m∏
i=1

w̃0(σ, i), (6.3)

where
∏n

i=1 ai denotes the ordered product a1a2 · · · an. The existence of noncom-
mutative Jacobi parameters, satisfying ãr

k = (ãl
k)∗, was proved by Mac Nerney.17

We will use partitions with partial labelings. Fix σ ∈ NC1,2(X). A subset D ⊆ σ

will be called hereditary if for every V1 ∈ σ and V2 ∈ D the relation V1 � V2 implies
V1 ∈ D. By K(σ) we will denote the class of all such functions κ that:

(1) the domain D(κ) of κ is a hereditary subset of σ,
(2) if V ∈ D(κ) then κ(V ) ∈ {0, 1, . . . , d(V, σ)},
(3) if V1 ∈ D(κ), κ(V1) = d(V1, σ), V2 ∈ σ and V1 � V2 �= V1 then V2 /∈ D(κ).

For κ ∈ K(σ) and i ∈ X , with i ∈ {i, j} = V ∈ σ we define weight w̃(σ, i, κ) in the
following way. If V ∈ D(κ), with κ(i) = k, then we put

w̃(σ, i, κ) :=



β̃k − βk−1 if i = j and k = d(V, σ),
βk − βk−1 if i = j and k < d(V, σ),
γ̃k − γk−1 if i < j and k = d(V, σ),
γk − γk−1 if i < j and k < d(V, σ),
1 if i > j,

(6.4)

with the convention that β−1 = γ−1 = 0. If, on the other hand, V /∈ D(κ) then we
put w̃(σ, i, κ) := w̃0(σ, i). Finally, we define

w̃(σ, κ) :=
∏
i∈X

w̃(σ, i, κ). (6.5)

Let σ ∈ NC1,2(X) and let D be a hereditary subset of σ. By PLAB(D, σ)
(“partial labelings”) we will denote the class of all such functions κ ∈ K(σ) that

(1) D(κ) ⊆ D,
(2) For V ∈ D we have: V ∈ D(κ) if and only if κ(U) < d(U, σ) holds for every

U ∈ D(κ) such that U � V .

Note that if D1 ⊆ D2 ⊆ σ, with D1, D2 hereditary, and κ ∈ PLAB(D2, σ), then
κ|D1 ∈ PLAB(D1, σ). The following lemma will be used for D = σ.

Lemma 6.1. Assume that σ ∈ NC1,2(X) and D is a hereditary subset of σ. Then
m∏

i=1

w̃0(σ, i) =
∑

κ∈PLAB(D,σ)

w̃(σ, κ). (6.6)

Proof. Let X = {1, . . . , m}. If D = ∅ then PLAB(D, σ) consists only of the empty
function and then the statement is obvious.
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Assume that D0,D1 ⊆ σ are hereditary, D1 = D0 ∪̇ {V1} and (6.6) holds for D0.
Then V1 is a minimal block in σ\D0.

Fix κ0 ∈ PLAB(D0). We want to describe the class

K(D1, κ0) := {κ ∈ PLAB(D1, σ) : κ|D0 = κ0}.
If there is U ∈ D0 such that U � V1 and κ(U) = d(U, σ) then K(D1, κ0) = {κ0}. In
the opposite case we have

K(D1, κ0) = {κ0 ∪ {〈V1, k〉} : k ∈ {0, 1, . . . , d}},
where d := d(V1, σ). Assume that V1 = {i1, j1} with i1 < j1. If i1 < i < j1 then the
weight w̃(σ, i, κ0) is a scalar, so we can write

w̃(σ, κ0) =
i1−1∏
i=1

w̃(σ, i, κ0)γ̃d

m∏
i=i1+1

i�=j1

w̃(σ, i, κ0)

=
i1−1∏
i=1

w̃(σ, i, κ0)(γ0 + (γ1 − γ0) + · · ·+ (γ̃d − γd−1))
m∏

i=i1+1
i�=j1

w̃(σ, i, κ0)

=
d∑

k=0

w̃(σ, κ0 ∪ {〈V1, k〉}) =
∑

κ∈K(D1,κ0)

w̃(σ, κ).

Similarly we proceed when |V1| = 1. Therefore∑
κ0∈PLAB(D0,σ)

w̃(σ, κ0) =
∑

κ0∈PLAB(D0,σ)

∑
κ∈K(D1,κ0)

w̃(σ, κ) =
∑

κ∈PLAB(D1,σ)

w̃(σ, κ),

so (6.6) holds for D1. Now we can apply induction to conclude the proof.

Denote by NCP1,2(X) the class of all pairs (σ, κ) with σ ∈ NC1,2(X) and κ ∈
PLAB(σ, σ) (i.e. D = σ). With (σ, κ) ∈ NCP1,2(X) we associate an equivalence
relation κ∼ on σ and the partition Π0(σ, κ) in similar way as before, defining

−→R0(σ, κ) := {(V (k−1), V (k)) : V ∈ D(κ), 1 ≤ k ≤ κ(V )}. (6.7)

Then a modified version of Proposition 2.1 remains true, namely

Proposition 6.1. 1. If (σ, κ) ∈ NCP1,2(X) then Π0(σ, κ) is noncrossing.
2. Let π ∈ NC(X) and (σ, κ) ∈ NCL1,2(X). Then Π0(σ, κ) = π if and only if σ

and κ admit decompositions:

σ =
⋃̇

U∈π
σU and κ =

⋃̇
U∈π

κU ,

where for every U ∈ π we have σU ∈ NC1,2(U) with κU ∈ PLAB(σU , σU ),
Π0(σU , κU ) = {U} whenever U ∈ Out(π) and with κU ∈ LAB(σU ), Π(σU , κU ) =
{U} whenever U ∈ Inn(π).
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Denote by NCP1
1,2(X) the class of (σ, τ) ∈ NCP1,2(X) for which Π0(σ, τ) =

{X}.
Theorem 6.1. For every m ≥ 1 we have

Rm(µ̃, µ) =
∑

(σ,κ)∈NCP1
1,2(m)

w̃(σ, κ). (6.8)

Proof. Applying Lemma 6.1 to D = σ we have

s̃m =
∑

(σ,τ)∈NCP1,2(m)

w̃(σ, κ) =
∑

π∈NC(m)

∑
(σ,κ)∈NCP1,2(m)

Π0(σ,κ)=π

w̃(σ, κ).

Fix π ∈ NC(m). Then, denoting the right-hand side of (6.8) by Am,

∑
(σ,κ)∈NCP1,2(m)

Π0(σ,κ)=π

w̃(σ, κ) =
∏

U∈Inn(π)

 ∑
(σU ,κU )∈NCL1

1,2(U)

w̃(σU , κU )



·
∏

U∈Out(π)

 ∑
(σU ,κU )∈NCP1

1,2(U)

w̃(σU , κU )


=

∏
U∈Inn(π)

r|U| ·
∏

U∈Out(π)

A|U|

and then we conclude that Am = Rm(µ̃, µ).

Examples. Putting Rm := Rm(µ̃, µ) we have:

R1 = β̃0, (6.9)

R2 = γ̃0, (6.10)

R3 = ãl
0(β̃1 − β0)ãr

0, (6.11)

R4 = ãl
0[(β̃1 − β0)2 + (γ̃1 − γ0)]ãr

0, (6.12)

R5 = ãl
0[(β̃1 − β0)3 + (γ̃1 − γ0)(β̃1 − β0) + (β̃1 − β0)(γ̃1 − γ0)

+(β1 − β0)(γ̃1 − γ0) + ãl
1(β̃2 − β1)ãr

1]ã
r
0, (6.13)

R6 = ãl
0[(β̃1 − β0)4 + (γ̃1 − γ0)(β̃1 − β0)2 + (β̃1 − β0)(γ̃1 − γ0)(β̃1 − β0)

+(β̃1 − β0)2(γ̃1 − γ0) + (β1 − β0)(β̃1 − β0)(γ̃1 − γ0)

+ (β1 − β0)(γ̃1 − γ0)(β̃1 − β0) + (β1 − β0)2(γ̃1 − γ0)

+ (β̃1 − β0)ãl
1(β̃2 − β1)ãr

1 + ãl
1(β̃2 − β1)ãr

1(β̃1 − β0)

+ 2(β1 − β0)ãl
1(β̃2 − β1)ãr

1 + ãl
1(β̃2 − β1)2ãr

1

+ (γ̃1 − γ0)2 + (γ1 − γ0)(γ̃1 − γ0) + ãl
1(γ̃2 − γ1)2ãr

1]ã
r
0. (6.14)



June 27, 2009 19:24 WSPC/102-IDAQPRT 00365

Combinatorial Relation between Free Cumulants and Jacobi Parameters 305

For example, the consecutive summands of R5 correspond to the following par-
tially labeled partitions:

{{1, 5}, {2}1, {3}1, {4}1}, {{1, 5}, {2, 3}1, {4}1},
{{1, 5}, {2}1, {3, 4}1}, {{1, 5}, {2, 4}1, {3}1}, {{1, 5}, {2, 4}, {3}2}.
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