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Abstract. We study noncommutative probability spaces endowed with
infinite sequences of states. Following ideas of Cabanal-Duvillard we extend
the notion of conditional freeness. Free product of such spaces is justified
by constructing an appropriate *-representation. Finally, we provide limit
theorems and describe the sequences of orthogonal polynomials related to
the limit measures.
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1. Introduction

The idea of noncommutative probability is to work with a unital complex -
algebra .o, elements of which are called random variablesequipped with a
stateg : .o/ — C(i.e. alinear function satisfying ¢ (1) = 1 and ¢ (a*a) > 0
for a € .o/), which plays the role of a probability measure. According
to Voiculescu [V, VDN], a family {.o/};<; of subalgebras of .o/ is said to
be freeif ¢(ajaz - --a,) = 0 holds whenever a; € #;,,...,ay, € o, ,
iWFiy#---Figand¢(ay) = ¢p(ax) = --- = ¢(a,) = 0. He proved that
if {(#;, ¢;)}ic; are probability spaces and if o7 is the unital free product
*;ec7-9/; then there is a unique state ¢ on .o/ satisfying

1) ¢l = ¢ foreveryi € I,

2) The family {.o/;};; is free in (o7, ¢).
Bozejko, Leinert and Speicher [BS, BLS] considered probability spaces ./
endowed with a pair (¢, ¥) of states. A family of subalgebras {.<Z;};¢; is
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said to be conditionally freeif ¢ (a1a; - - - a,,) = ¢ (a))p(az) - - - P (a,,) and
Y(aiay - - - ay,) = Owhenevera, € o, ..., ay € ;i1 Fir F# -+ Fip
and ¥ (a;) = ¥ (ay) = --- = ¥ (a,,) = 0. Similarly as before, they proved
that if {(.«;, ¢;, Vi) }ics 1s a family of such spaces then there is a unique pair
(¢, ) of states on .o/ = *;<;.o/; such that

D) ¢l = ¢ and ¥ |y, = ; foreveryi € I,

2) The family {./;};¢; is conditionally free in (.7, ¢).
It was noticed in [M] that the notion of conditional freeness, together with
the corresponding combinatorics, can be extended to spaces in which the
first state ¢ is an operator-valued one, i.e. is a completely positive map
¢ oA — B(H)y) satisfying ¢ (1) = 1d.

Next step was made by Cabanal-Duvillard who investigated spaces .o/
equipped with a sequence {¢};2, of states. In this situation freeness of
{7 }ies 1s defined by imposing that for every £k > 0

di(ay - - - arap) = Pr(ay - - - ar)d(ao)

holds ifa() (S JZ{,'O,al (S Q,Q{l'l, e,y € &/,'m, i() 75 il 75 ;ﬁ lm and
Grr1(ar) = draa(az) = -+ = ¢ram(ay,) = 0. This notion also admits free
product but, in spite of the previous cases, this operation is no longer asso-
ciative. Cabanal-Duvillard proved that in this framework every symmetric
compactly supported probability measure can be reached in the central limit
theorem.

The aim of this paper is to study such spaces in details and from more
general point of view. Namely, for an index set I define S(/) to be the set of
formal words iy - - - i, m > 0,suchthatiy € Iandi; # iy # --- % i,. Let
{«Z;} be a family of complex unital x-algebras and .o/ = *;;.97;. Assume
that 2 is a fixed Hilbert space and that for every i € I we are given an
operator-valued state ¢; : .&7; — %(H#) and for every iyip---i,, € S(I),
with m > 2, we have a state ¢;;,..;, : &/;, — C of o/;,. Then we define a
function ¢ : .o/ — % () by requiring that

pay---apy) = ¢ay- - am-1)i,(an)

holds whenevera, € .<7;,,...,a, € ; ,i1 # iy # --- # iy and

Giyip, (A1) = Py (@2) = -+ =y, i, (@n—1) = 0.

In Section 4, Theorem 1, we provide a formula for evaluating ¢ (a,a; - - -
an) for arbitrary a; € oZ;,...,an € ; andi = (@iy,...,in) € I",
which in the (conditionally) free case, i.e. when (form > 2) ¢;,..;, depends
only on iy, is different from that given in [S2, S3] (resp. in [BLS, M]). The
formula presented here involves a family NC(i) of noncrossing partitions
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related to the sequence i (see Section 2) and boolean cumulanisvhich are
defined and studied in Section 3.

Section 5 contains a proof, by constructing an appropriate represen-
tation, that ¢ is an operator-valued state. Next we confine ourselves to
probability spaces with a sequence {¢}-, of states, ¢y is allowed to be
an operator-valued one. In Section 7 we prove, using the formula from
Theorem 1, the limit theorems on such spaces. Finally we describe the se-
quences of orthogonal polynomials related to the central and Poisson limit
theorem.

2. Preliminaries

In the following two sections we provide the combinatorial background
which will be needed later on. The notion of noncrossing partition of a lin-
early ordered set, first studied by Kreweras [K] from a purely combinatorial
point of view, was successfully applied by Speicher [S2, S3] to free proba-
bility. Here we need to study a class NC(i) of noncrossing partitions of the
set {1, 2, ..., m} related to a given function i on this set.

By a partition of a set X we mean such a family 7= of nonempty subsets
of X that | J7= = X and for V, W € 7 either VN W = @ or V = W. The
corresponding equivalence relation on X will be denoted by ~ or simply
by m, so prg means that p, g € V for some V € 7.

Now let (X, <) be a finite linearly ordered set. A partition w of X is
called noncrossingfk < p <l <g,k,l e Venmnand p,g e Wen
implies V = W. The class of all noncrossing partitions of X will be denoted
NC(X). A block V € m € NC(X) is said to be inner if there is another
block W € = and elements p,q € W such that p < k < ¢ for every
k € V (in this situation we write V <, W). Otherwise V is called outer.
The family of all inner (resp. outer) blocks of a noncrossing partition 7 will
be denoted by 7 (i) (resp. w(0)). For V € 7 we define the depthof V by
d\V,n) =d(V) = {W e & : V <, W}| (in particular d(V, wr) = 0 iff
V € (o)) and if V € 7 (i) then we define the successoV’'(r) = V' of
V as the smallest, with respect to <, blockin {W € & : V <, W}. A
noncrossing partition 7 is called booleanif (i) = @ (which means that
every block is an interval), and the class of boolean partition of X we denote
Bo(X). For X = {1, ..., m} we write NC(m) and Bo(m) for NC(X) and
Bo(X), respectively. Having a noncrossing partition = of X and a product
[1ve, f(V) we will assume that the factors corresponding to the outer
blocks of 7 are in the same order as these blocks.

For a function i : X — I we define NC(i) to be the set of all partitions
7 of X satisfying the following three conditions:
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1) r is noncrossing.

D) Ifk,l € V emtheni(k) =i(). We define i(V) :=i(k).

NIV en(i)theni(V) #i(V').
We define type of V as the formal word #(V,7) = (V) = i (V)
(V) i(VD), where d = d(V, 7).

Assume that X° is a finite linearly ordered set, x € X° and x° is the
successor of x in X°. For a partition o of X° we define a partition o [(x = x°)
of X = X°\{x°} by “gluing” x with x° i.e.

ol(x =x%) = (@ \{W, WHh U{(WUWH\{x"}}

ifx e Weo,x® e W° e o, possibly W = W°. Note thatif i° : X° — [
with i°(x) = i°(x°) and o € NC(i°) then o|(x = x°) € NC(i), where i
is the restriction of i° to X. On the other hand, if 7 € NC(i) is a partition
of X then there are exactly two partitions o, € NC(i°) of X° satisfying
oi|(x = x°) = w,namely if x € V € 7 then

or = @\{V) U{V U {x"}}

and
o=@\ {(VhHU{{weV:iw=<x},{weV:x <w}U{{x°}}.
For a sequence a = (ay, ..., a,) and a set of integers V = {ky, ..., k;},
with 1 < k; < ky < -+ < ky < m, we define a subsequence V(a) =
Vai,...,an) = (ak, Gk, - - ., ar,) andaproduct [TV (a) := ay,ay, - - - ax,,-

3. Boolean cumulant

For unital algebras .o/, 4 over afield K and for alinear function ® : .o/ — %
satisfying ® (1) = 1 we define boolean cumulanéf @ as a function

0
R:U%x---x&f—m@,
—
m=1 m times

satisfying the following recurrence

@ -an) = Y [[RV(@,....an),

weBo(m) Ver

foreverym > 1, ay, ..., a, € o/. Equivalently (see [SW]),

Ray, ..., ay) = Z (—1)‘”"1l_[CD(l'IV(al,...,am)).

mweBo(m) Ven
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In particular, R restricted to .o X - - - X &/, m times, is m-linear.

Boolean cumulants were introduced by Speicher and Woroudi [SW] in
order to define a new convolution of probability measures on the real line.
Here we will need the following

Lemma 1. For arbitrary m > 1,a1,...,am,a;, e, 1 <p<mwe
have
R(al,...,ap_l,apa;?,apH,...,am)
:R(alv"'aap—lvapya;gvap-‘rla"'7am)
—|—R(a1,...,a,,)R(a;,apH,...,am).

Proof . Putting X' = {1,..., p,p/, p+ 1, ..., m} we have

R(al,...,apa;,...,am)

= Y O] eMVar, ... apd),, ... an)

mweBo(m) Vern
— Z (—1)lo1-! ]_[cb(nB(al,...,a,,,a;,...,am))
aeBo(X) Beo
pop’
= R(al,...,ap,a;,...,am)

= Y (= [[e@B@. ... ap. d).....aw)

oeBo(X’) Beo
v’

= R(ai,...,ap,a,,...,a,) + Z (—1)lorl+lol=2

op€Bo(l,..., P)
oy eBo(p’, p+1,....m)

x [[ @B, ....a)) [[ TB(@),. aps1. ... an))

Beo Beo,

= R(ay, .. .,ap,a;, ....am) + R(ay, .. .,ap)R(a;,,apH, e ).

Corollary 1. Assume thatz > 2,4ay,...,a, € .
alfa =1ora, =1thenR(a,...,a,) =0.
b) If a, = 1 for somel < p < m then

R(ay,...,ap_1,1,ap41,...,an) = R(ayr,...,ap_1,ap41,...,an) .

Proof . To prove a) we only need to put p = 1 anda; = 1 or p’ = m and
a,, = 1. Applying a) to the lemma we get b). O
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4. General free product

Fix an index set / and define a set of formal words
SU) ={iyir- i, :m=>0,i; €I and i, #lz#;ﬁlm}

The empty word in S(/) will be denoted by e. Let {.<Z;};c;, % be unital
algebras over a field K and assume that for every i € I we have a linear
function ¢; : .&/; — 4, with ¢;(1) = 1, and forevery u =i, ---i,, € S(I)
such that m > 2, iy = i, a linear function ¢, : .«/; — K, with ¢,(1) = 1.
By R, we will denote the boolean cumulant function

x .
A if lu| = 1;
R, : oA X X A )
L_JI_X plaliid) _>{K if ju| > 1,

m times

of ¢,, where |u| denotes the length of the word u € S(I/). Now we define
a linear function ¢ = *,¢5(7)¢, on the unital free product .7 = *;¢;.97; by
putting ¢ (1) = 1 and

play---apy) =¢ay - amn-1)i, (an)

whenevera, € /;,...,ay, € ;i1 #ir # -+ # i, and

Giriy-in,(@1) = Giyi (@2) = - =i (@u—1) = 0.

It is clear that this defines ¢ uniquely on .o/. Note that special case of this
product, when 4 = K = C and when ¢, u = i;---i, € S(I), depends
only on i; and on h(u), where i (‘“hauteur”) is a function S(/) — N, was
studied by Cabanal-Duvillard, see [CD, CDI].

Theorem 1. For arbitrary i = (@i,...,in) € ", a1 € A4y, ...,an €
<, , we have

plar-an) = Y []Rw(Via,....an).

7eNC(i) Ver

Proof . Denote the right hand side by ®(a;, ..., a,). First we show that if
a € &/,‘l, e, Qy € &/im,a; IS :Q/,‘P then

CD(al,...,ap,a;,...,am):<D(a1,...,apa;,...,am).

Denote i" = (i1, ..., ip—1,ipsipsipsris---nim), X' ={1,....,p=1,p, P,
p+1,...,m}. Fix 1 € NC(i) and take both o1, 0, € NC(i’) satisfying
orl(p = p) = n.Mf p € V € m then, putting W = V U {p’}, W_
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={weV:iw=<pLhWe=1{weV:p< whUI{p} we have
= @\{VHU{W}, 00 = (@ \{V}) U{W_, W_}. Note that by Lemma 1

R(V(ar, ... apd, ..., an)
:RM(W(a1$" ap7 pa-~-sam))+RM(W—(a1""aaps LR am))
XR,(Wi(ay, ... a,,,a ey Ap)).
Therefore
CD(al,...,apa;,...,am)
= 2 [[RoV@.....apa,....an)
7eNC(i) Ver
= Z Z l_[ Riowy(W(ay, ...,ap,a ,---,am))
weNC(i) oeNCi) Weo
ol(p=p")=n
= <I>(a|,...,ap,a;,...,am)
and hence ®(ay, ..., a,) depends only on the product a; - - - a,,.
It remains to show thatif a; € o/;,....ay, € ;11 # iy # -+ F#
im and @j .., (@) = -+ = @i, i, (@n—1) = 0 then ®(ay,...,a,) =

S(ay, ..., an-1)¢i, (an).

Assume that {m} is not a block in 7. Then we show that there is a
one-element block {k} of m satisfying R, (ax) = 0. Note that by the
assumption that iy # iy # --- # i, one element blocks in 7 do exist,
namely, every minimal, with respectto “<; ", block must be of this sort. Let k
be the last number satisfying {k} € w. We claim thatz ({k}) = ixixy1 - - imm. It
holdsbecauseifk <l <m,l € V e mthen VN{k+1,k+2,...,m} = {l}.
Indeed,ifk <! <!’ <mandl,l’ € Vthenl' #[+1,asi; # i;;1,andinthe
interval {{+1, ..., 1!’ — 1} we would have a minimal block, necessarily one-
element one, later than {k}, which is a contradiction. Consequently, every
lef{k+1,...,m}belongstoablock V; € m and {k} <7 Viy1 <z Vit <x

+ <z Vin. Hence t ({k}) = ixixy1 -+ im and Ry (ax) = ¢iy...i,, (ax) = 0.
Therefore, putting ip = (i1, ..., i;—1), we obtain

@, ....am) = Y [[Rw»(V(ar ... an)

7eNC(i) Ver

= Z HR,(V)(V(al,...,am))

7eNC() Ver
{m}em
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= Z l_[Rt(W)(W(Cl],---,am—l))¢im(am)

0eNC(ig) Weo
= (D(a17 AR} am—l)¢im (am)’

which completes the proof.

Remarks.
1. One can see that the number k& choosen in the proof satisfies k > [’”T“],
where [x] denotes the entire part of a real number x, so in the definition

of ¢ = *;c5(1)¢, We only need to assume that ¢;,;, . ,...;,, (ax) = 0 holds for

m—+2] <k <m.
2. Note the alternative definition of ¢ = *;c5)¢,, namely: if a; €
&[,’l, e,y € &/,’m,il FiyF# - Fip and¢,~k.4.,-2,~l(ak) =0forl <k <m
(or merely for 1 < k < [’”T“]) then ¢ (a1az . ..a,) = ¢, (a)P(az - --ay).

To see that this is equivalent we need to modify the proof choosing k as the
first, instead of the last, number satisfying {k} € 7.

3. Inthe case when ¢,...;,, = ¢i,i, := ¥, forevery iy - - - i, € S(I), with
m > 2 (the conditionally free product or the free product if 4 = K and
Y; = ¢; for every i € I), also another formula holds (see [S2, S3, BLS,
M]), namely if i = (i}, ...,in) € [", a1 € L, ...,an € <;, then

pa-an)y= > ] roy(V@a.....an)

7eNC/(i) Venr(i)
X 1_[ R{(V)(V(al, ceesOp))
Ven(o)

where NC'(i) denotes the class of noncrossing partitions 7 of {1, ..., m}
satisfying k,/ € V € m = iy = i;(:= i(V)), and where the cumulant
functions

o o
R;:Ufszf,-x---x&/,-%%; rl-/:Usz/,-x---xfszi,-%K
[N ———
m=1 m times m=1 m times

are defined by the following recurrence:

Yibr---b) = Y [[riVr,....5a)),

7eNC(n) Ver

¢ibr---by= Y [] V... [ RV, ....50),

TeNC(n) Ver (i) Venr(o)

for every by, ..., b, € ;.
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Corollary 2. Ifa, € i, ...,an € A
¢ for somel < p < m then

poand{iy, .. i N ippr, .o i) =

¢(ar---am) = d(ar---ap)p(@psr---am).

Proof . It holds because every m € NC(iy, .. ., i;,) is a product 7 = 777,
7'[1GNC(il,...,ip),JT2ENC(ip+1,...,im). O
5. Positivity

In this part we prove that positivity of all ¢,,’s implies that of ¢ = *,c5(1) @y
For this purpose we generalise the construction of the free product of rep-
resentations given by Voiculescu [V, VDN] (see also [BS, M, CD]).

Let {.«/;};c; be a family of unital complex *-algebras. We assume that
Ao is afixed Hilbert space and that forevery i € I we have a x-representation
woA — B(AHo® A ;). By ¢ we denote the corresponding operator
valued statei.e. for a € .«Z; we put ¢;(a) = P;m;(a)|x,, where P; is the
orthogonal projection of 'y @ 4 "; onto # . Moreover, we assume that for
every u =1iy---i,, € S(I), with m > 2, we are given a x-representation
m, oA, — B(CE, ® A ,), where &, is a unit vector. Let ¢, denote the
corresponding stateon .«7; ,i.e. ¢, (a) = (m,(a)&,, &,). In particular all the
functions ¢, are completely positive.

Now we are going to define a x-representation of the unital free product
o =x;je;fi. Foru =1iy...0,, € S(I), withm > 1, we put

— .. . o . e o
t;fill‘Z‘”irn - '%/‘1112“‘1171 ® le'“lm ® ® f’m'

In particular we have
Hiw @ Hy=Hiu,
whenever I > i # i;. Define
H = .
ues()

For every i € I we have the following decomposition

%:(%O@XJGB @ (Cgiu@%iu)(@%u-

u=iy-imeS(I)
m=1,iy#i
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Using this decomposition we are able to define on # a x-representation 7;
of o7, actingon #'(® A ; by m; and on (C§;,, & A ';,) @ A, by 7, @Id .
Having 7; defined for every i € I we can define a representation 7 of ./
putting w(a; - - - a,) = 7, (a1) - - - 7, (a,) whenever a; € oZ;,,...,a, €
i, i1 # iy # -+ # iy. Denote by ¢ the corresponding state on 27, i.e.
¢(a) = Pomr(a)|x, for a € /. Next theorem says that ¢ = *,c5)@y-

Theorem 2. Assume thaty, € </;,a, € ;,,...,ay, € A;,m > 2,
iy # iy # -+ # iy and

iriyiy (ar) = ¢i2-~~im (@) =---= ¢im,1im (am-1) =0.
Then

p(aray---ay) = ¢(araz - - - ap_1)P;, (am).

Proof . Throughout the proof S(7) will be regarded as a group (S(1), o, e)
isomorphic to the free product *;;Z,, with [ as the set of generators (i o i =
e for i € I) and with the empty word e as the neutral element.

Fori € I,a € .o/; we decompose 7; (a) into a sum nio (a)+ nil (a) in the
following way. Take a tensor x = x| ® ... ® x, of typev = jijo... ju €
S, ie.x1 € A jjyj X2 € K jyjys -+ - Xn € A j,. We have to consider
four cases.

1) If v = e then x € ) and we have

mi(a)x = Piri(a)x + (Id — P)mi(a)x
= m(a)x + ! (a)x.
2) If v =i then x € #; and we have
7i(a)x = (Id — P)m;i(a)x + Pimi(a)x
= Jrio(a)x + nil (a)x.
3) Assume that n > 2 and j; = i. Then
Ti(@)x = (Ty(@)x) @ X2 ® - - ® Xy
= [[d=P)mpy(@)x1]®@x2® - -+ @ x, + (my(@)x1, E)x2 @ -+ - ® X

=m0 (a)x + 1! (a)x,
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where P, denotes the orthogonal projection of C&, & ", onto C&,.

4) Finally, consider the case when n > 1 and j; # i. In this case we
have

Ti(a)x = miy(@)éi, ® x = Pjy(@)x + (Id — P)miy(a)si, @ x

= nio(a)x + rrl-l (a)x.

In this way we have decomposition 77; (@) = 7 (a) + 7 (a) and 7{ (a)

maps a tensor of type v into a tensor of type i€ o v. Therefore if iy, ..., i, €
Le,....en €{0,1}, a1y € A\, ..., an € o, then 7' (@) ... 7" (ap)
maps a tensor of type v into a tensor of type i{' o --- o i o v. For a fixed

& € #Ho we have

Tar--an = ) wa) . an)§

€] "“,GmE{O,l}
and

Porr(ay -+ -a,)é = Z nl‘ell(al)"’nl‘?(am)g-

€] eens em€{0,1}

Now assume that i; # iy # - - # i, and that ¢; ,..;, (a1) = ¢i,..i, (a2) =
o=, i (@n_1) = 0.Ifi{" o --+ o i = e and €, = 1 then for some
1<k <mwehavee, =0, €41 = --- =€, = 1. In this case

1 1
x =m; () -7y, (am)é
is a tensor of type ixy; - - - i,, and, by (4), 7‘[12 (ar)x = Piiyyiy (@)x = 0.
Therefore we can confine ourselves to summands with €,, = 0:

Pyt(ay -+ - apn)é = Z i (ar) - ﬂé'"_l(am—l)ﬂi?n (am)é

Im—1
€156 —1€10,1}

L€ Em—
ilonoim=l_,
1 m—1

= ¢(a1 e am—l)¢im (am)'i:,

which concludes the proof. O

6. Algebraic #-probability spaces

Let % be afixed unital algebra over afield K. We will call a pair (.o, {¢y}72)
an algebraic #-probability spaceif .o/ is a unital algebra over K, ¢
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are linear functions, ¢g : &/ — % and ¢y : o/ — K for k > 1,
satisfying ¢ (1) = 1. Having a family (<7, {¢i}7o), I € I, of alge-
braic #-probability spaces we define their free product(.«Z, {¢r}2,) =
*ier (i {Pik)iey) putting of = *;c;.o/; and ¢ = *ucs(1)Puk, Where
Gur = Qimtk—1 for e # u = iiyip---ip, € S(I). It means that for ev-
eryk >0

iy - - - arap) = pr(an - - - ar) i,k (aop)

wheneverm > 1, a,, € oZ;,,...,a1 € i, a0 € Ai, Iy # -+ F i1 F# I

and @;, k4m(am) =+ = Gip k+2(a2) = Piy k+1(a1) = 0.
Notice that in spite of the free and conditionally free product, this oper-
ation is not associative:

Example. Take three algebraic #-probability spaces and their possible free
products:

(. (DI20) = (S (1)20) * (S (1) 20) * (71, 1914120),
L A0 = (S 11a)20) * (1, (B0 ) * (7 1, 1614020),
L AGNZ0) = (S (i) * (i, 160)20) * (1, (850020

where .o/ = o/, x o/; * o/ j, and take ay, ar € A, by, by € A, c € A ;.
Then, omitting A, i, j, k on the right hand side and writting ¢; and ¢, instead
of ¢r4+1 and ¢y respectively, we have

dr(a1bicbrar) = ¢ (arbichrar)
= ¢(a)p (L) (c)¢ (b2)¢(ar)
+$2(0)1 (b1b2) [ (ar1a2) — P (a1)¢(a)]
+ o1 an)[¢(brb2) — ¢ (b1 (b2) ¢ (a2)
+[d1() = $2(0)]¢1 (b1)$1(b2) [P (a1a2) — p(an)p(ar)]

while
¢ (arbichraz) = ¢(an g (b1)p(c)¢ (b2)$(az)
+ 1)1 (b152) [P (a1a2) — ¢ (ar) g (ar)]
+¢1(0)p(a)[¢ (b1b2) — ¢ (b1)¢ (b2) | (a2),

so the functions ¢y, ¢; and ¢, are different.
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In this context the following definition seems natural.

Definition. A family {.«/;};c; of unital subalgebras in an algebraic %-
probability space (.7, {¢r}rc,) is said to be freeif for every k > 0

Gi(an - - - arag) = Pr(ay - - - ar)dr(ao)

wheneverm > 1, a,, € ;. ...,a1 € ;a0 € Liy, iy # -+ F i1 F# i
and Qi (am) = - -+ = Pr12(a2) = $ry1(a1) = 0.

7. Limit theorems

In this section we assume that 4 is a unital complex algebra with a norm
[l - II and that (o7, {¢x};) is an algebraic #-probability space, Ry will
denote the boolean cumulant of ¢;. We are going to study limit theorems on
(4;/, {qgk},f‘;o) = *;eN(A, {Pi),)- Fora € o/, i € N we denote by (a, i)
the embedding of a into the i-th factor ./ of /. Note that the next theorem
and Corollary 3 were stated in [CD].

Theorem 3 (general limit theorem). Letm > 1 be a fixed integer and let

for everyN € N elements; v, ..., a, n Of o are given. Assume that for
every nonempty subsegtc {1, ..., m} and for every there exists limit
Jim N g (TTapn) = acv).
peVv
Set

Sp,N = (ap,N’ 1) + (ap,N’ 2) +-- 4+ (ap,Nv N)
Then for every > 0

IJEHOO(ISk(Sl,NSZ,N"'Sm,N): Z Hé]k+d(V>(V)~

weNC(m) Ver

Proof . We follow ideas of Speicher [S1].
First of all note that in view of the formula preceding Lemma 1 we have

hm N N Rk(V(al.Nv R | am,N)) = Qk(v)
N—o0

For a sequence i = (iy, ..., i,,) we denote by 7; the partition of {1, ..., m}
given by pmiq iff i, = i,. Consider

G(Sin - Sun) = D Gellann, i) @y im)).

ila---aime{ls---sN}
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Denoting by ¢?k(i; N) the summand corresponding to i = (i1, ..., 0,) €
{1,..., N}" we get from Theorem 1
dilis N) = Z l_[ Riraovy(V(ain, ..., amn)),
0eNC(i) Veo

which implies, for & = 7j, n = |7,

if r € NC(m)

lim N" - ¢(i; N) = {Hv@z Grtavy(V) :
N0 0 otherwise.

Note that if 7; € NC(m) then r; € NC(i) andifi,j € {1,..., N}" and j =
mj then b (i; N) = qASk(j; N). Denoting this common value by br (i N) we
note that for a fixed partition r of {1, ..., m} there are exactly A(w, N) =
N(N—1)...(N—|m|+1)sequencesi € {1, ..., N}" with 7j = . Hence

G (Siy - Sun) =Y AG: N)di(m; N),

where the sum is taken over all partitions 7 of {1, ..., m}, and consequently
A}Enooék(sl,N “SuN) = Z l_[ Gk+av)(V). O

meNC(m) Ver

For a nonnegative integer m we will denote by NC,(m) the set of all
partitions w € NC(m) satisfying | V| = 2 for every block V € . Note that
if m is odd then NC, (m) is empty.

Corollary 3 (central limit theorem). Leta, ..., a, € o/ with ¢ (a,) =
0 foreveryk > 0,1 < p < m and set
S ! [(@p. D)+ + (ap, N)]
= —|(a,, a,, .
p.N ﬁ P P

Then
A}iinmflgk(Sl,N“-Sm,N)= o IT teramiapay)

T eNC,(m) Ver
V={p.q}.r<q

if m is even and the limit equalsif m is odd.

Proof . Putting a, y = \/Lﬁap we have ¢(a, ny) = 0, N - ¢ (ap nag n)
= ¢r(apay), and for V.C {1,...,m}, with |[V| > 3, limy_ooc N - ¢
(HpeVaPyN) = 0. O
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Corollary 4 (Poisson limit theorem). Assume thaty, a,, ... € o7 with

lim N -¢p(ay---an) = Ax
N—o00 ——

s times

foreveryk > 0and1 < s < m. Then for

Sy =(an,1)+---+(an, N)

we have
hm ¢k(SN -Sy) = Z l_[ Arrawv)-
m tlmes weNC(m) Vern
Proof . Forevery # # V C {1, ..., m} we have g (V) = Ay. 0

8. Orthogonal polynomials

In this section we are going to describe the orthogonal polynomials related
to the limit theorems. Let { P, (x)}72, be a sequence of polynomials over a
field K, P, of degree n, satisfying the following recurrence relation: Py = 1,

XPy(x) =, Pyy1(x) + B Pu(X) + Y1 P (x), n=0

(under convention that P_; = 0), where «,, 8,, ¥, € K and let ® be a
linear functional on K [x] satisfying ®(1) = 1 and ®(P,) = Oforn > 1.In
this situation we say that the sequence {P,}°2, is orthogonalwith respect
to ®. Note that the recurrence relation implies that ® (x™ P, (x)) = 0, and,
consequently, ® (P, (x) P,(x)) = 0, whenever 0 < m < n. Set

NCj(m) ={mr € NC(m) : |V| <2forevery V e &r}.

The following combinatorial formula (see [AB, Vi]) allows us to evaluate
the moments ® (x™) of ®.

Theorem 4. For everym > 1 the following holds

d(x™) = Z 1_[ (Otd(v,n))/d(v,n)) 1_[ Baw ) - .

NC m) Ver Ver
1,2(m) v Vi
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(@) The central limit theorengcf. [CD, CDI]). For a sequence {A;}72,
Ay € K, we define a functional ®. on K[x] by

o .(x") = Z l_[Ad(V,n)

weNCy(m) Ver

We see immediately from Theorem 4 that the related sequence of monic
orthogonal polynomials is given by: Py = 1;

xP,(x) = Poy1(x) + A1 Po_1(x) forn>0

(P_; = 0). Note that the class of such sequences of polynomials, where
{A,},2, ranges over all bounded sequences of positive numbers, corre-
sponds to the class of all compactly supported symmetric probability mea-
sures on R.

(b) The Poisson limit theorerfor this case we need to replace the sum over
all noncrossing partitions NC(m) by a sum over NC; (m).

Lemma 2. For any sequencgA;};2,, of numbers and for arbitrary integer
m > 1 the following equality holds:

Z 1_[ AyBo) = Z l_[ Ao l_[ Ay, 1_[ (Agv,m) + 1).

0eNC(m) Beo 1 eNC) o(m) Ver(o) Vern Ven(i)
V=1 |V|=2 V=1

Proof . For a partition 0 € NC(m) we define a partition 7 = A(c) by
replacing every block V = {ki, ko, ..., k;} € 0, k1 < ky < --- < kg, with
s > 2, by one two-element block {k;, k;} and s — 2 one-element blocks
{ko}, {ks}, ..., {ks_1}. Hence if 1 < p < g < m then

p~q iff there exists V = {ki, ka, ..., k,} € o with

p=ki<ky<---<ki=gq.

It is easy to see that

1) A : NC(m) — NCy »(m),

2) A(m) = 7 form € NC »(m).

Now letus fix m € NCj 2(m). For V € m with |V| =2set S(V) = {k :
{k} € wand {k}/(r) = V}.If 0 € NC(m) and A(c) = 7 then the only
difference between 7 and o is that some of the one-element inner blocks
{k} € 7 (i) can be in o joined with their successors {k}’(;r). Therefore the
class A~!'(r) = {0 € NC(m) : A(c) = m} can be described as follows.
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Let Vi, ..., V, be the two-element blocks of . For a sequence (S, ..., S,)
of subsets S; C S(V;) we define o = 7 (Sy,...,S,) by

prqiff p=gqorp,qeV,U(S(V)\S;) forsomel <;j<r
(in particular 7 (S(Vy), ..., S(V,)) = m). Then
A ') = (7S, ..., 8): S C SV, ..., S C S(V)}.

Therefore, putting D = [{k : {k} € w(0)}|,d; =d(V;, m),

> Mawe =48 ¥ [T(a50)

oecA~ () Beo Siestvp j=1

SrCS(Vr)

=ay[| 40 >0 Al
j=1

SCS(V))

.
= Ag l_[ (Ag,(Ag11 + DIV

j=1
= 1_[ AO . l_[ Ad(vﬂ) . 1_[ (Ad(V,n) + 1) )

Ven(o) Vern Ver(i)
V=1 V=2 V=1

which completes the proof. m|

Now for a sequence Ag, Ay, ... € K we define ®p : K[x] - K by

Op(x™) = Z l_[Ad(v,n)-

weNC(m) Ver

Using Lemma 2 and Theorem 4 we see that the following sequence of monic
polynomials is orthogonal for ®p: Py = 1, Pi(x) = x — Ao,

xpn(x) = Pn+1(x) + (An + l)Pn(x) + An—IPn—l(x) s forn = 1.
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