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Abstract. We study noncommutative probability spaces endowed with
infinite sequences of states. Following ideas of Cabanal-Duvillard we extend
the notion of conditional freeness. Free product of such spaces is justified
by constructing an appropriate ∗-representation. Finally, we provide limit
theorems and describe the sequences of orthogonal polynomials related to
the limit measures.
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1. Introduction

The idea of noncommutative probability is to work with a unital complex ∗-
algebra A, elements of which are called random variables, equipped with a
stateφ : A → C (i.e. a linear function satisfying φ(1) = 1 and φ(a∗a) ≥ 0
for a ∈ A), which plays the role of a probability measure. According
to Voiculescu [V, VDN], a family {A}i∈I of subalgebras of A is said to
be free if φ(a1a2 · · · am) = 0 holds whenever a1 ∈ Ai1, . . . , am ∈ Aim ,
i1 6= i2 6= · · · 6= im and φ(a1) = φ(a2) = · · · = φ(am) = 0. He proved that
if {(Ai , φi)}i∈I are probability spaces and if A is the unital free product
∗i∈IAi then there is a unique state φ on A satisfying

1) φ|Ai
= φi for every i ∈ I ,

2) The family {Ai}i∈I is free in (A, φ).
Bożejko, Leinert and Speicher [BS, BLS] considered probability spaces A
endowed with a pair (φ, ψ) of states. A family of subalgebras {Ai}i∈I is
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said to be conditionally freeif φ(a1a2 · · · am) = φ(a1)φ(a2) · · ·φ(am) and
ψ(a1a2 · · · am) = 0 whenever a1 ∈ Ai1, . . . , am ∈ Aim , i1 6= i2 6= · · · 6= im
and ψ(a1) = ψ(a2) = · · · = ψ(am) = 0. Similarly as before, they proved
that if {(Ai , φi, ψi)}i∈I is a family of such spaces then there is a unique pair
(φ, ψ) of states on A = ∗i∈IAi such that

1) φ|Ai
= φi and ψ |Ai

= ψi for every i ∈ I ,
2) The family {Ai}i∈I is conditionally free in (A, φ).

It was noticed in [M] that the notion of conditional freeness, together with
the corresponding combinatorics, can be extended to spaces in which the
first state φ is an operator-valued one, i.e. is a completely positive map
φ : A → B(H0) satisfying φ(1) = Id.

Next step was made by Cabanal-Duvillard who investigated spaces A
equipped with a sequence {φk}∞k=0 of states. In this situation freeness of
{Ai}i∈I is defined by imposing that for every k ≥ 0

φk(am · · · a1a0) = φk(am · · · a1)φk(a0)

holds if a0 ∈ Ai0, a1 ∈ Ai1, . . . , am ∈ Aim , i0 6= i1 6= · · · 6= im and
φk+1(a1) = φk+2(a2) = · · · = φk+m(am) = 0. This notion also admits free
product but, in spite of the previous cases, this operation is no longer asso-
ciative. Cabanal-Duvillard proved that in this framework every symmetric
compactly supported probability measure can be reached in the central limit
theorem.

The aim of this paper is to study such spaces in details and from more
general point of view. Namely, for an index set I define S(I) to be the set of
formal words i1i2 · · · im,m ≥ 0, such that ik ∈ I and i1 6= i2 6= · · · 6= im. Let
{Ai} be a family of complex unital ∗-algebras and A = ∗i∈IAi . Assume
that H0 is a fixed Hilbert space and that for every i ∈ I we are given an
operator-valued state φi : Ai → B(H0) and for every i1i2 · · · im ∈ S(I),
with m ≥ 2, we have a state φi1i2···im : Ai1 → C of Ai1 . Then we define a
function φ : A → B(H0) by requiring that

φ(a1 · · · am) = φ(a1 · · · am−1)φim(am)

holds whenever a1 ∈ Ai1, . . . , am ∈ Aim , i1 6= i2 6= · · · 6= im and

φi1···im(a1) = φi2···im(a2) = · · · = φim−1im(am−1) = 0.

In Section 4, Theorem 1, we provide a formula for evaluating φ(a1a2 · · ·
am) for arbitrary a1 ∈ Ai1, . . . , am ∈ Aim and i = (i1, . . . , im) ∈ Im,
which in the (conditionally) free case, i.e. when (form ≥ 2) φi1···im depends
only on i1, is different from that given in [S2, S3] (resp. in [BLS, M]). The
formula presented here involves a family NC(i) of noncrossing partitions
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related to the sequence i (see Section 2) and boolean cumulants, which are
defined and studied in Section 3.

Section 5 contains a proof, by constructing an appropriate represen-
tation, that φ is an operator-valued state. Next we confine ourselves to
probability spaces with a sequence {φk}∞k=0 of states, φ0 is allowed to be
an operator-valued one. In Section 7 we prove, using the formula from
Theorem 1, the limit theorems on such spaces. Finally we describe the se-
quences of orthogonal polynomials related to the central and Poisson limit
theorem.

2. Preliminaries

In the following two sections we provide the combinatorial background
which will be needed later on. The notion of noncrossing partition of a lin-
early ordered set, first studied by Kreweras [K] from a purely combinatorial
point of view, was successfully applied by Speicher [S2, S3] to free proba-
bility. Here we need to study a class NC(i) of noncrossing partitions of the
set {1, 2, . . . , m} related to a given function i on this set.

By a partition of a set X we mean such a family π of nonempty subsets
of X that

⋃
π = X and for V,W ∈ π either V ∩W = ∅ or V = W . The

corresponding equivalence relation on X will be denoted by
π∼ or simply

by π , so pπq means that p, q ∈ V for some V ∈ π .
Now let (X,<) be a finite linearly ordered set. A partition π of X is

called noncrossingif k < p < l < q, k, l ∈ V ∈ π and p, q ∈ W ∈ π

implies V = W . The class of all noncrossing partitions ofXwill be denoted
NC(X). A block V ∈ π ∈ NC(X) is said to be inner if there is another
block W ∈ π and elements p, q ∈ W such that p < k < q for every
k ∈ V (in this situation we write V ≺π W ). Otherwise V is called outer.
The family of all inner (resp. outer) blocks of a noncrossing partition π will
be denoted by π(i) (resp. π(o)). For V ∈ π we define the depthof V by
d(V, π) = d(V ) := |{W ∈ π : V ≺π W }| (in particular d(V, π) = 0 iff
V ∈ π(o)) and if V ∈ π(i) then we define the successorV ′(π) = V ′ of
V as the smallest, with respect to ≺π , block in {W ∈ π : V ≺π W }. A
noncrossing partition π is called booleanif π(i) = ∅ (which means that
every block is an interval), and the class of boolean partition ofX we denote
Bo(X). For X = {1, . . . , m} we write NC(m) and Bo(m) for NC(X) and
Bo(X), respectively. Having a noncrossing partition π of X and a product∏
V∈π f (V ) we will assume that the factors corresponding to the outer

blocks of π are in the same order as these blocks.
For a function i : X → I we define NC(i) to be the set of all partitions

π of X satisfying the following three conditions:
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1) π is noncrossing.
2) If k, l ∈ V ∈ π then i(k) = i(l). We define i(V ) := i(k).
3) If V ∈ π(i) then i(V ) 6= i(V ′).

We define type of V as the formal word t (V , π) = t (V ) := i (V )
i(V ′) · · · i(V (d)), where d = d(V, π).

Assume that X◦ is a finite linearly ordered set, x ∈ X◦ and x◦ is the
successor of x inX◦. For a partition σ ofX◦ we define a partition σ |(x = x◦)
of X = X◦\{x◦} by “gluing” x with x◦ i.e.

σ |(x = x◦) := (σ \{W,W ◦}) ∪ {(W ∪W ◦)\{x◦}}
if x ∈ W ∈ σ , x◦ ∈ W ◦ ∈ σ , possibly W = W ◦. Note that if i◦ : X◦ → I

with i◦(x) = i◦(x◦) and σ ∈ NC(i◦) then σ |(x = x◦) ∈ NC(i), where i
is the restriction of i◦ to X. On the other hand, if π ∈ NC(i) is a partition
of X then there are exactly two partitions σk ∈ NC(i◦) of X◦ satisfying
σk|(x = x◦) = π , namely if x ∈ V ∈ π then

σ1 = (π \{V }) ∪ {V ∪ {x◦}}
and

σ2 = (π \{V }) ∪ {{w ∈ V : w ≤ x}, {w ∈ V : x < w} ∪ {x◦}}.
For a sequence a = (a1, . . . , am) and a set of integers V = {k1, . . . , ks},

with 1 ≤ k1 < k2 < · · · < ks ≤ m, we define a subsequence V (a) =
V (a1, . . . , am) := (ak1, ak2, . . . , aks ) and a product5V (a) := ak1ak2 · · · akm .

3. Boolean cumulant

For unital algebrasA,B over a fieldK and for a linear function8 : A → B
satisfying 8(1) = 1 we define boolean cumulantof 8 as a function

R :
∞⋃
m=1

A × · · · × A︸ ︷︷ ︸
m times

→ B,

satisfying the following recurrence

8(a1 · · · am) =
∑

π∈Bo(m)

∏
V∈π

R(V (a1, . . . , am)) ,

for every m ≥ 1, a1, . . . , am ∈ A. Equivalently (see [SW]),

R(a1, . . . , am) =
∑

π∈Bo(m)

(−1)|π |−1
∏
V∈π

8(5V (a1, . . . , am)) .
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In particular, R restricted to A × · · · × A, m times, is m-linear.
Boolean cumulants were introduced by Speicher and Woroudi [SW] in

order to define a new convolution of probability measures on the real line.
Here we will need the following

Lemma 1. For arbitrary m ≥ 1, a1, . . . , am, a
′
p ∈ A, 1 ≤ p ≤ m, we

have

R(a1, . . . , ap−1, apa
′
p, ap+1, . . . , am)

= R(a1, . . . , ap−1, ap, a
′
p, ap+1, . . . , am)

+R(a1, . . . , ap)R(a
′
p, ap+1, . . . , am).

Proof . Putting X′ = {1, . . . , p, p′, p + 1, . . . , m} we have

R(a1, . . . , apa
′
p, . . . , am)

=
∑

π∈Bo(m)

(−1)|π |−1
∏
V∈π

8(5V (a1, . . . , apa
′
p, . . . , am))

=
∑

σ∈Bo(X′)
pσp′

(−1)|σ |−1
∏
B∈σ

8(5B(a1, . . . , ap, a
′
p, . . . , am))

= R(a1, . . . , ap, a
′
p, . . . , am)

−
∑

σ∈Bo(X′)
p 6σp′

(−1)|σ |−1
∏
B∈σ

8(5B(a1, . . . , ap, a
′
p, . . . , am))

= R(a1, . . . , ap, a
′
p, . . . , am)+

∑
σ1∈Bo(1,...,p)

σ2∈Bo(p′,p+1,...,m)

(−1)|σ1|+|σ2|−2

×
∏
B∈σ1

8(5B(a1, . . . , ap))
∏
B∈σ2

(5B(a′
p, ap+1, . . . , am))

= R(a1, . . . , ap, a
′
p, . . . , am)+ R(a1, . . . , ap)R(a

′
p, ap+1, . . . , am).

ut
Corollary 1. Assume thatm ≥ 2, a1, . . . , am ∈ A.

a) If a1 = 1 or am = 1 thenR(a1, . . . , am) = 0.
b) If ap = 1 for some1 < p < m then

R(a1, . . . , ap−1, 1, ap+1, . . . , am) = R(a1, . . . , ap−1, ap+1, . . . , am) .

Proof . To prove a) we only need to put p = 1 and a1 = 1 or p′ = m and
a′
m = 1. Applying a) to the lemma we get b). ut
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4. General free product

Fix an index set I and define a set of formal words

S(I) = {i1i2 · · · im : m ≥ 0, ik ∈ I and i1 6= i2 6= · · · 6= im}.
The empty word in S(I) will be denoted by e. Let {Ai}i∈I , B be unital
algebras over a field K and assume that for every i ∈ I we have a linear
function φi : Ai → B, with φi(1) = 1, and for every u = i1 · · · im ∈ S(I)
such that m ≥ 2, i1 = i, a linear function φu : Ai → K , with φu(1) = 1.
By Ru we will denote the boolean cumulant function

Ru :
∞⋃
m=1

Ai × · · · × Ai︸ ︷︷ ︸
m times

→
{
B if |u| = 1;
K if |u| > 1,

of φu, where |u| denotes the length of the word u ∈ S(I). Now we define
a linear function φ = ∗u∈S(I)φu on the unital free product A = ∗i∈IAi by
putting φ(1) = 1 and

φ(a1 · · · am) = φ(a1 · · · am−1)φim(am)

whenever a1 ∈ Ai1, . . . , am ∈ Aim , i1 6= i2 6= · · · 6= im and

φi1i2···im(a1) = φi2···im(a2) = · · · = φim−1im(am−1) = 0.

It is clear that this defines φ uniquely on A. Note that special case of this
product, when B = K = C and when φu, u = i1 · · · im ∈ S(I), depends
only on i1 and on h(u), where h (“hauteur”) is a function S(I) → N, was
studied by Cabanal-Duvillard, see [CD, CDI].

Theorem 1. For arbitrary i = (i1, . . . , im) ∈ Im, a1 ∈ Ai1, . . . , am ∈
Aim , we have

φ(a1 · · · am) =
∑

π∈NC(i)

∏
V∈π

Rt(V )(V (a1, . . . , am)) .

Proof . Denote the right hand side by 8(a1, . . . , am). First we show that if
a1 ∈ Ai1, . . . , am ∈ Aim , a′

p ∈ Aip then

8(a1, . . . , ap, a
′
p, . . . , am) = 8(a1, . . . , apa

′
p, . . . , am) .

Denote i ′ = (i1, . . . , ip−1, ip, ip, ip+1, . . . , im), X′ = {1, . . . , p − 1, p, p′,
p + 1, . . . , m}. Fix π ∈ NC(i) and take both σ1, σ2 ∈ NC(i ′) satisfying
σk|(p = p′) = π . If p ∈ V ∈ π then, putting W = V ∪ {p′}, W−
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= {w ∈ V : w ≤ p}, W+ = {w ∈ V : p < w} ∪ {p′}, we have
σ1 = (π \{V }) ∪ {W }, σ2 = (π \{V }) ∪ {W−,W+}. Note that by Lemma 1

Ru(V (a1, . . . , apa
′
p, . . . , am))

= Ru(W(a1, . . . , ap, a
′
p, . . . , am))+ Ru(W−(a1, . . . , ap, a

′
p, . . . , am))

×Ru(W+(a1, . . . , ap, a
′
p, . . . , am)).

Therefore

8(a1, . . . , apa
′
p, . . . , am)

=
∑

π∈NC(i)

∏
V∈π

Rt(V )(V (a1, . . . , apa
′
p, . . . , am))

=
∑

π∈NC(i)

∑
σ∈NC(i′)

σ |(p=p′)=π

∏
W∈σ

Rt(W)(W(a1, . . . , ap, a
′
p, . . . , am))

= 8(a1, . . . , ap, a
′
p, . . . , am)

and hence 8(a1, . . . , am) depends only on the product a1 · · · am.
It remains to show that if a1 ∈ Ai1, . . . , am ∈ Aim , i1 6= i2 6= · · · 6=

im and φi1i2···im(a1) = · · · = φim−1im(am−1) = 0 then 8(a1, . . . , am) =
8(a1, . . . , am−1)φim(am).

Assume that {m} is not a block in π . Then we show that there is a
one-element block {k} of π satisfying Rt({k})(ak) = 0. Note that by the
assumption that i1 6= i2 6= · · · 6= im one element blocks in π do exist,
namely, every minimal, with respect to “≺π”, block must be of this sort. Let k
be the last number satisfying {k} ∈ π . We claim that t ({k}) = ikik+1 · · · im. It
holds because if k < l ≤ m, l ∈ V ∈ π thenV ∩{k+1, k+2, . . . , m} = {l}.
Indeed, if k < l < l′ ≤ m and l, l′ ∈ V then l′ 6= l+1, as il 6= il+1, and in the
interval {l+1, . . . , l′ −1} we would have a minimal block, necessarily one-
element one, later than {k}, which is a contradiction. Consequently, every
l ∈ {k+1, . . . , m} belongs to a block Vl ∈ π and {k} ≺π Vk+1 ≺π Vk+2 ≺π

· · · ≺π Vm. Hence t ({k}) = ikik+1 · · · im and Rt({k})(ak) = φik ···im(ak) = 0.
Therefore, putting i0 = (i1, . . . , im−1), we obtain

8(a1, . . . , am) =
∑

π∈NC(i)

∏
V∈π

Rt(V )(V (a1, . . . , am))

=
∑
π∈NC(i)
{m}∈π

∏
V∈π

Rt(V )(V (a1, . . . , am))
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=
∑

σ∈NC(i0)

∏
W∈σ

Rt(W)(W(a1, . . . , am−1))φim(am)

= 8(a1, . . . , am−1)φim(am),

which completes the proof.
ut

Remarks.
1. One can see that the number k choosen in the proof satisfies k ≥ [

m+2
2

]
,

where [x] denotes the entire part of a real number x, so in the definition
of φ = ∗i∈S(I)φu we only need to assume that φikik+1···im(ak) = 0 holds for[
m+2

2

] ≤ k < m.
2. Note the alternative definition of φ = ∗i∈S(I)φu, namely: if a1 ∈

Ai1, . . . , am ∈ Aim , i1 6= i2 6= · · · 6= im and φik ···i2i1(ak) = 0 for 1 < k ≤ m(
or merely for 1 < k ≤ [

m+1
2

])
then φ(a1a2 . . . am) = φi1(a1)φ(a2 · · · am).

To see that this is equivalent we need to modify the proof choosing k as the
first, instead of the last, number satisfying {k} ∈ π .

3. In the case when φi1···im = φi1i2 := ψi1 for every i1 · · · im ∈ S(I), with
m ≥ 2 (the conditionally free product or the free product if B = K and
ψi = φi for every i ∈ I ), also another formula holds (see [S2, S3, BLS,
M]), namely if i = (i1, . . . , im) ∈ Im, a1 ∈ Ai1, . . . , am ∈ Aim then

φ(a1 · · · am) =
∑

π∈NC′(i)

∏
V∈π(i)

r ′
i(V )(V (a1, . . . , am))

×
∏

V∈π(o)
R′

i(V )(V (a1, . . . , am)) ,

where NC′(i) denotes the class of noncrossing partitions π of {1, . . . , m}
satisfying k, l ∈ V ∈ π ⇒ ik = il(:= i(V )), and where the cumulant
functions

R′
i :

∞⋃
m=1

Ai × · · · × Ai︸ ︷︷ ︸
m times

→ B ; r ′
i :

∞⋃
m=1

Ai × · · · × Ai︸ ︷︷ ︸
m times

→ K

are defined by the following recurrence:

ψi(b1 · · · bn) =
∑

π∈NC(n)

∏
V∈π

r ′
i (V (b1, . . . , bn)) ,

φi(b1 · · · bn) =
∑

π∈NC(n)

∏
V∈π(i)

r ′
i (V (b1, . . . , bn))

∏
V∈π(o)

R′
i(V (b1, . . . , bn)) ,

for every b1, . . . , bn ∈ Ai .
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Corollary 2. If a1 ∈ Ai1, . . . , am ∈ Aim and{i1, . . . , ip}∩{ip+1, . . . , im} =
∅ for some1 ≤ p < m then

φ(a1 · · · am) = φ(a1 · · · ap)φ(ap+1 · · · am).

Proof . It holds because every π ∈ NC(i1, . . . , im) is a product π = π1π2,
π1 ∈ NC(i1, . . . , ip), π2 ∈ NC(ip+1, . . . , im). ut

5. Positivity

In this part we prove that positivity of all φu’s implies that of φ = ∗u∈S(I)φu.
For this purpose we generalise the construction of the free product of rep-
resentations given by Voiculescu [V, VDN] (see also [BS, M, CD]).

Let {Ai}i∈I be a family of unital complex ∗-algebras. We assume that
H0 is a fixed Hilbert space and that for every i ∈ I we have a∗-representation
πi : Ai → B(H0 ⊕ Ki). By φi we denote the corresponding operator
valued state, i.e. for a ∈ Ai we put φi(a) = Piπi(a)|H0 , where Pi is the
orthogonal projection of H0 ⊕Ki onto H0. Moreover, we assume that for
every u = i1 · · · im ∈ S(I), with m ≥ 2, we are given a ∗-representation
πu : Ai1 → B(Cξu ⊕ Ku), where ξu is a unit vector. Let φu denote the
corresponding stateon Ai1 , i.e. φu(a) = 〈πu(a)ξu, ξu〉. In particular all the
functions φu are completely positive.

Now we are going to define a ∗-representation of the unital free product
A = ∗i∈IAi . For u = i1 . . . im ∈ S(I), with m ≥ 1, we put

Hi1i2···im = Ki1i2···im ⊗ Ki2···im ⊗ · · · ⊗ Kim .

In particular we have

Kiu ⊗ Hu = Hiu,

whenever I 3 i 6= i1. Define

H =
⊕
u∈S(I)

Hu.

For every i ∈ I we have the following decomposition

H = (H0 ⊕ Ki)⊕
⊕

u=i1 ···im∈S(I)
m≥1,i1 6=i

(Cξiu ⊕ Kiu)⊗ Hu.
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Using this decomposition we are able to define on H a ∗-representation π̃i
of Ai acting on H0 ⊕Ki by πi and on (Cξiu ⊕ Kiu)⊗Hu by πiu⊗ IdHu

.
Having π̃i defined for every i ∈ I we can define a representation π of A
putting π(a1 · · · am) = π̃i1(a1) · · · π̃im(am) whenever a1 ∈ Ai1, . . . , am ∈
Aim , i1 6= i2 6= · · · 6= im. Denote by φ the corresponding state on A, i.e.
φ(a) = P0π(a)|H0 for a ∈ A. Next theorem says that φ = ∗u∈S(I)φu.

Theorem 2. Assume thata1 ∈ Ai1, a2 ∈ Ai2, . . . , am ∈ Aim , m ≥ 2,
i1 6= i2 6= · · · 6= im and

φi1i2···im(a1) = φi2···im(a2) = · · · = φim−1im(am−1) = 0.

Then

φ(a1a2 · · · am) = φ(a1a2 · · · am−1)φim(am).

Proof . Throughout the proof S(I)will be regarded as a group (S(I ), ◦ , e)
isomorphic to the free product ∗i∈IZ2, with I as the set of generators (i ◦ i =
e for i ∈ I ) and with the empty word e as the neutral element.

For i ∈ I , a ∈ Ai we decompose π̃i(a) into a sum π0
i (a)+π1

i (a) in the
following way. Take a tensor x = x1 ⊗ . . . ⊗ xn of typev = j1j2 . . . jn ∈
S(I), i.e. x1 ∈ Kj1j2···jn, x2 ∈ Kj2···jn, . . . , xn ∈ Kjn . We have to consider
four cases.

1) If v = e then x ∈ H0 and we have

π̃i(a)x = Piπi(a)x + (Id − Pi)πi(a)x

:= π0
i (a)x + π1

i (a)x.

2) If v = i then x ∈ Ki and we have

π̃i(a)x = (Id − Pi)πi(a)x + Piπi(a)x

:= π0
i (a)x + π1

i (a)x.

3) Assume that n ≥ 2 and j1 = i. Then

π̃i(a)x = (πv(a)x1)⊗x2 ⊗ · · · ⊗xn
= [(Id −Pv)πv(a)x1]⊗x2 ⊗ · · · ⊗xn + 〈πv(a)x1, ξv〉x2 ⊗ · · · ⊗ xn

:= π0
i (a)x + π1

i (a)x,
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where Pv denotes the orthogonal projection of Cξv ⊕ Kv onto Cξv.
4) Finally, consider the case when n ≥ 1 and j1 6= i. In this case we

have

π̃i(a)x = πiv(a)ξiv ⊗ x = φiv(a)x + (Id − Piv)πiv(a)ξiv ⊗ x

:= π0
i (a)x + π1

i (a)x.

In this way we have decomposition π̃i(a) = π0
i (a)+ π1

i (a) and πεi (a)
maps a tensor of type v into a tensor of type iε ◦ v. Therefore if i1, . . . , im ∈
I , ε1, . . . , εm ∈ {0, 1}, a1 ∈ Ai1, . . . , am ∈ Aim , then πε1

i1
(a1) . . . π

εm
im
(am)

maps a tensor of type v into a tensor of type iε1
1 ◦ · · · ◦ iεmm ◦ v. For a fixed

ξ ∈ H0 we have

π(a1 · · · am)ξ =
∑

ε1,···,εm∈{0,1}
π
ε1
i1
(a1) . . . π

εm
im
(am)ξ

and

P0π(a1 · · · am)ξ =
∑

ε1,...,εm∈{0,1}
i
ε1
1 ◦ ... ◦ iεmm =e

π
ε1
i1
(a1) · · ·πεmim (am)ξ.

Now assume that i1 6= i2 6= · · · 6= im and that φi1i2···im(a1) = φi2···im(a2) =
· · · = φim−1im(am−1) = 0. If iε1

1 ◦ · · · ◦ iεmm = e and εm = 1 then for some
1 < k < m we have εk = 0, εk+1 = · · · = εm = 1. In this case

x = π1
ik+1
(ak+1) · · ·π1

im
(am)ξ

is a tensor of type ik+1 · · · im and, by (4), π0
ik
(ak)x = φikik+1···im(ak)x = 0.

Therefore we can confine ourselves to summands with εm = 0:

P0π(a1 · · · am)ξ =
∑

ε1,...,εm−1∈{0,1}
i
ε1
1 ◦ ··· ◦ iεm−1

m−1 =e

π
ε1
i1
(a1) · · ·πεm−1

im−1
(am−1)π

0
im
(am)ξ

= φ(a1 · · · am−1)φim(am)ξ,

which concludes the proof. ut

6. Algebraic B-probability spaces

LetB be a fixed unital algebra over a fieldK . We will call a pair (A, {φk}∞k=0)

an algebraic B-probability spaceif A is a unital algebra over K , φk
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are linear functions, φ0 : A → B and φk : A → K for k ≥ 1,
satisfying φk(1) = 1. Having a family (Ai , {φi,k}∞k=0), i ∈ I , of alge-
braic B-probability spaces we define their free product(A, {φk}∞k=0) =
∗i∈I (Ai , {φi,k}∞k=0) putting A = ∗i∈IAi and φk = ∗u∈S(I)φu,k, where
φu,k := φi,m+k−1 for e 6= u = ii1i2 · · · im ∈ S(I). It means that for ev-
ery k ≥ 0

φk(am · · · a1a0) = φk(am · · · a1)φi0,k(a0)

whenever m ≥ 1, am ∈ Aim, . . . , a1 ∈ Ai1, a0 ∈ Ai0 , im 6= · · · 6= i1 6= i0
and φim,k+m(am) = · · · = φi2,k+2(a2) = φi1,k+1(a1) = 0.

Notice that in spite of the free and conditionally free product, this oper-
ation is not associative:

Example. Take three algebraicB-probability spaces and their possible free
products:

(A, {φk}∞k=0) = (Ah, {φh,k}∞k=0) ∗ (Ai , {φi,k}∞k=0) ∗ (Aj , {φj,k}∞k=0),

(A, {φ′
k}∞k=0) =

(
(Ah, {φh,k}∞k=0) ∗ (Ai , {φi,k}∞k=0)

)
∗ (Aj , {φj,k}∞k=0),

(A, {φ′′
k }∞k=0) = (Ah, {φh,k}∞k=0) ∗

(
(Ai , {φi,k}∞k=0) ∗ (Aj , {φj,k}∞k=0)

)
,

where A = Ah ∗ Ai ∗ Aj , and take a1, a2 ∈ Ah, b1, b2 ∈ Ai , c ∈ Aj .
Then, omitting h, i, j, k on the right hand side and writtingφ1 andφ2 instead
of φk+1 and φk+2 respectively, we have

φk(a1b1cb2a2) = φ′′
k (a1b1cb2a2)

= φ(a1)φ(b1)φ(c)φ(b2)φ(a2)

+φ2(c)φ1(b1b2)
[
φ(a1a2)− φ(a1)φ(a2)

]
+φ1(c)φ(a1)

[
φ(b1b2)− φ(b1)φ(b2)

]
φ(a2)

+ [
φ1(c)− φ2(c)

]
φ1(b1)φ1(b2)

[
φ(a1a2)− φ(a1)φ(a2)

]
,

while

φ′
k(a1b1cb2a2) = φ(a1)φ(b1)φ(c)φ(b2)φ(a2)

+φ1(c)φ1(b1b2)
[
φ(a1a2)− φ(a1)φ(a2)

]
+φ1(c)φ(a1)

[
φ(b1b2)− φ(b1)φ(b2)

]
φ(a2),

so the functions φk, φ′
k and φ′′

k are different.
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In this context the following definition seems natural.

Definition. A family {Ai}i∈I of unital subalgebras in an algebraic B-
probability space (A, {φk}∞k=0) is said to be freeif for every k ≥ 0

φk(am · · · a1a0) = φk(am · · · a1)φk(a0)

whenever m ≥ 1, am ∈ Aim, . . . , a1 ∈ Ai1, a0 ∈ Ai0 , im 6= · · · 6= i1 6= i0
and φk+m(am) = · · · = φk+2(a2) = φk+1(a1) = 0.

7. Limit theorems

In this section we assume that B is a unital complex algebra with a norm
‖ · ‖ and that (A, {φk}∞k=0) is an algebraic B-probability space, Rk will
denote the boolean cumulant of φk. We are going to study limit theorems on
(Â, {φ̂k}∞k=0) = ∗i∈N(A, {φk}∞k=0). For a ∈ A, i ∈ N we denote by (a, i)
the embedding of a into the i-th factor A of Â. Note that the next theorem
and Corollary 3 were stated in [CD].

Theorem 3 (general limit theorem). Letm ≥ 1 be a fixed integer and let
for everyN ∈ N elementsa1,N , . . . , am,N of A are given. Assume that for
every nonempty subsetV ⊂ {1, . . . , m} and for everyk there exists limit

lim
N→∞

N · φk
( ∏
p∈V

ap,N

)
= qk(V ).

Set

Sp,N = (ap,N , 1)+ (ap,N , 2)+ · · · + (ap,N ,N).

Then for everyk ≥ 0

lim
N→∞

φ̂k(S1,NS2,N · · · Sm,N) =
∑

π∈NC(m)

∏
V∈π

qk+d(V )(V ).

Proof . We follow ideas of Speicher [S1].
First of all note that in view of the formula preceding Lemma 1 we have

lim
N→∞

N · Rk(V (a1,N , . . . , am,N)) = qk(V ).

For a sequence i = (i1, . . . , im) we denote by πi the partition of {1, . . . , m}
given by pπiq iff ip = iq . Consider

φ̂k(S1,N · · · Sm,N) =
∑

i1,...,im∈{1,...,N}
φ̂k((a1,N , i1) · · · (am,N, im)).
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Denoting by φ̂k(i;N) the summand corresponding to i = (i1, . . . , im) ∈
{1, . . . , N}m we get from Theorem 1

φ̂k(i;N) =
∑

σ∈NC(i)

∏
V∈σ

Rk+d(V )(V (a1,N , . . . , am,N)),

which implies, for π = πi , n = |πi |,

lim
N→∞

Nn · φ̂k(i;N) =
{ ∏

V∈π qk+d(V )(V ) if π ∈ NC(m)
0 otherwise.

Note that if πi ∈ NC(m) then πi ∈ NC(i) and if i, j ∈ {1, . . . , N}m and πi =
πj then φ̂k(i;N) = φ̂k(j ;N). Denoting this common value by φ̂k(πi;N)we
note that for a fixed partition π of {1, . . . , m} there are exactly A(π,N) =
N(N−1) . . . (N−|π |+1) sequences i ∈ {1, . . . , N}m with πi = π . Hence

φ̂k(S1,N · · · Sm,N) =
∑
π

A(π;N)φ̂k(π;N),

where the sum is taken over all partitions π of {1, . . . , m}, and consequently

lim
N→∞

φ̂k(S1,N · · · Sm,N) =
∑

π∈NC(m)

∏
V∈π

qk+d(V )(V ). ut

For a nonnegative integer m we will denote by NC2(m) the set of all
partitions π ∈ NC(m) satisfying |V | = 2 for every block V ∈ π . Note that
if m is odd then NC2(m) is empty.

Corollary 3 (central limit theorem). Let a1, . . . , am ∈ A with φk(ap) =
0 for everyk ≥ 0, 1 ≤ p ≤ m and set

Sp,N = 1√
N

[
(ap, 1)+ · · · + (ap,N)

]
.

Then

lim
N→∞

φ̂k(S1,N · · · Sm,N) =
∑

π∈NC2(m)

∏
V∈π

V={p,q},p<q

φk+d(V )(apaq)

if m is even and the limit equals0 if m is odd.

Proof . Putting ap,N = 1√
N
ap we have φk(ap,N) = 0, N · φk(ap,Naq,N)

= φk(apaq), and for V ⊂ {1, . . . , m}, with |V | ≥ 3, limN→∞N · φk
(
∏
p∈V ap,N) = 0. ut
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Corollary 4 (Poisson limit theorem). Assume thata1, a2, . . . ∈ A with

lim
N→∞

N · φk(aN · · · aN︸ ︷︷ ︸
s times

) = Ak

for everyk ≥ 0 and1 ≤ s ≤ m. Then for

SN = (aN, 1)+ · · · + (aN,N)

we have

lim
N→∞

φ̂k(SN · · · SN︸ ︷︷ ︸
m times

) =
∑

π∈NC(m)

∏
V∈π

Ak+d(V ).

Proof . For every ∅ 6= V ⊂ {1, . . . , m} we have qk(V ) = Ak. ut

8. Orthogonal polynomials

In this section we are going to describe the orthogonal polynomials related
to the limit theorems. Let {Pn(x)}∞n=0 be a sequence of polynomials over a
fieldK ,Pn of degree n, satisfying the following recurrence relation:P0 = 1,

xPn(x) = αnPn+1(x)+ βnPn(x)+ γn−1Pn−1(x), n ≥ 0

(under convention that P−1 ≡ 0), where αn, βn, γn ∈ K and let 8 be a
linear functional onK[x] satisfying8(1) = 1 and8(Pn) = 0 for n ≥ 1. In
this situation we say that the sequence {Pn}∞n=0 is orthogonalwith respect
to 8. Note that the recurrence relation implies that 8(xmPn(x)) = 0, and,
consequently, 8(Pm(x)Pn(x)) = 0, whenever 0 ≤ m < n. Set

NC1,2(m) = {π ∈ NC(m) : |V | ≤ 2 for every V ∈ π} .

The following combinatorial formula (see [AB, Vi]) allows us to evaluate
the moments 8(xm) of 8.

Theorem 4. For everym ≥ 1 the following holds

8(xm) =
∑

NC1,2(m)

∏
V∈π
|V |=2

(
αd(V,π)γd(V,π)

) ∏
V∈π
|V |=1

βd(V,π) . ut
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(a) The central limit theorem(cf. [CD, CDI]). For a sequence {Ak}∞k=0,
Ak ∈ K , we define a functional 8c on K[x] by

8c(x
m) =

∑
π∈NC2(m)

∏
V∈π

Ad(V,π)

We see immediately from Theorem 4 that the related sequence of monic
orthogonal polynomials is given by: P0 ≡ 1;

xPn(x) = Pn+1(x)+ An−1Pn−1(x) for n ≥ 0

(P−1 ≡ 0). Note that the class of such sequences of polynomials, where
{An}∞n=0 ranges over all bounded sequences of positive numbers, corre-
sponds to the class of all compactly supported symmetric probability mea-
sures on R.

(b) The Poisson limit theorem. For this case we need to replace the sum over
all noncrossing partitions NC(m) by a sum over NC1,2(m).

Lemma 2. For any sequence{Ak}∞k=0 of numbers and for arbitrary integer
m ≥ 1 the following equality holds:

∑
σ∈NC(m)

∏
B∈σ

Ad(B,σ) =
∑

π∈NC1,2(m)

∏
V∈π(o)
|V |=1

A0

∏
V∈π
|V |=2

Ad(V,π)
∏
V∈π(i)
|V |=1

(Ad(V,π) + 1).

Proof . For a partition σ ∈ NC(m) we define a partition π = 3(σ) by
replacing every block V = {k1, k2, . . . , ks} ∈ σ , k1 < k2 < · · · < ks , with
s ≥ 2, by one two-element block {k1, ks} and s − 2 one-element blocks
{k2}, {k3}, . . . , {ks−1}. Hence if 1 ≤ p < q ≤ m then

p
π∼q iff there exists V = {k1, k2, . . . , ks} ∈ σ with

p = k1 < k2 < · · · < ks = q.

It is easy to see that
1) 3 : NC(m) → NC1,2(m),
2) 3(π) = π for π ∈ NC1,2(m).
Now let us fix π ∈ NC1,2(m). For V ∈ π with |V | = 2 set S(V ) = {k :

{k} ∈ π and {k}′(π) = V }. If σ ∈ NC(m) and 3(σ) = π then the only
difference between π and σ is that some of the one-element inner blocks
{k} ∈ π(i) can be in σ joined with their successors {k}′(π). Therefore the
class 3−1(π) = {σ ∈ NC(m) : 3(σ) = π} can be described as follows.
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Let V1, . . . , Vr be the two-element blocks of π . For a sequence (S1, . . . , Sr)

of subsets Sj ⊂ S(Vj ) we define σ = π(S1, . . . , Sr) by

p
σ∼q iff p = q or p, q ∈ Vj ∪ (S(Vj )\Sj ) for some 1 ≤ j ≤ r

(in particular π(S(V1), . . . , S(Vr)) = π ). Then

3−1(π) = {π(S1, . . . , Sr) : S1 ⊂ S(V1), . . . , Sr ⊂ S(Vr)} .
Therefore, putting D = |{k : {k} ∈ π(o)}|, dj = d(Vj , π),

∑
σ∈3−1(π)

∏
B∈σ

Ad(B,σ) = AD0

∑
S1⊂S(V1)......
Sr⊂S(Vr )

r∏
j=1

(
AdjA

|Sj |
dj+1

)

= AD0

r∏
j=1


Adj ∑

S⊂S(Vj )
A

|S|
dj+1




= AD0

r∏
j=1

(
Adj (Adj+1 + 1)|S(Vj )|

)

=
∏
V∈π(o)
|V |=1

A0 ·
∏
V∈π
|V |=2

Ad(V,π) ·
∏
V∈π(i)
|V |=1

(Ad(V,π) + 1) ,

which completes the proof. ut
Now for a sequence A0, A1, . . . ∈ K we define 8P : K[x] → K by

8P (x
m) =

∑
π∈NC(m)

∏
V∈π

Ad(V,π).

Using Lemma 2 and Theorem 4 we see that the following sequence of monic
polynomials is orthogonal for 8P : P0 ≡ 1, P1(x) = x − A0,

xPn(x) = Pn+1(x)+ (An + 1)Pn(x)+ An−1Pn−1(x) , for n ≥ 1.
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