A SIMPLE CCC NON-SEPARABLE SPACE WITH SMALL MEASURES

PIOTR BORODULIN-NADZIEJA

ABSTRACT. We show that in the model obtained by adding a Cohen real there is a ccc non-separable space which does not carry a non-separable measure.

In [Bel96] Bell proved that $MA(\omega_1)$ implies existence of a compact ccc nonseparable space which does not map continuously onto $[0,1]^{\omega_1}$. In fact in this construction only an assumption on existence of certain types of gaps was used.

In this note we show that Bell's space satisfies a stronger condition: it does not carry a non-separable measure (see below for the precise definition). We do it by translating his *total ideals space* technique into the language of Boolean algebras, like in [BND].

Although it can be shown that every space constructed by the above technique (from towers or (pre-)gaps) carries only separable measures, we prove it only in the model obtained by adding a Cohen real, since this assumption simplifies the proof. The proof for the general case can be easily found by adapting the (slightly technical) proof of [BND, Theorem 6.7].

Recall that a family $(L_{\alpha}, R_{\alpha})_{\alpha < \kappa}$, where $L_{\alpha}, R_{\alpha} \subseteq \omega$ for each α is a pre-gap if

- $L_{\alpha} \subseteq^* L_{\beta}, R_{\alpha} \subseteq^* R_{\beta};$
- $L_{\alpha} \cap R_{\alpha} = \emptyset$

for each α , $\beta \in \kappa$. If additionally

• there is no $L \subseteq \omega$ such that $L_{\alpha} \subseteq^* L$ and $L \cap R_{\alpha} =^* \emptyset$ for each α ,

then $(L_{\alpha}, R_{\alpha})_{\alpha < \kappa}$ is a gap. If there is L as above, we say that L interpolates $(L_{\alpha}, R_{\alpha})_{\alpha < \kappa}$. A gap satisfies condition (K) if

$$L_{\alpha} \cap R_{\beta} \neq \emptyset \neq L_{\beta} \cap R_{\alpha}$$

for each $\alpha, \beta < \kappa$. By a *sub-gap* of $(L_{\alpha}, R_{\alpha})_{\alpha < \kappa}$ we mean $(L_{\alpha}, R_{\alpha})_{\alpha \in \Lambda}$ for some (usually cofinal) $\Lambda \subseteq \kappa$. Confront [Yor03] for more information concerning gaps.

For a pre-gap $\mathcal{G} = (L_{\alpha}, R_{\alpha})_{\alpha < \kappa}$ define a compact Hausdorff space in the following way. For a pair (L, R) of subsets of ω let

 $\rho(L,R) = \{x \in 2^{\omega} : x(n) = 0 \text{ for each } n \in L \text{ and } x(n) = 1 \text{ for each } n \in R\}.$

Notice that $\rho(L, R)$ is a closed subset of the Cantor space. Now, let \mathfrak{A} be the Boolean algebra generated by all sets of the form $\rho(L, R)$, where $L =^* L_{\alpha}$ and $R =^* R_{\alpha}$ for some $\alpha < \kappa$. Let K be the Stone space of \mathfrak{A} .

Remark 1. The space K is Hausdorff, zero-dimensional and compact (as a Boolean space).

The following two propositions are contained (in a slightly different language) in [Be196].

Proposition 2. The family of sets of the form $\rho(L, R)$ for $L = L_{\alpha}$ and $R = R_{\alpha}$ for some $\alpha < \kappa$ is a π -base of K.

Proof. Sets of the form

$$U=
ho(A_0,B_0)\cap\dots\cap
ho(A_n,B_n)\cap
ho(A_0',B_0')^c\cap\dots\cap
ho(A_m',B_m')^c$$

form a base of K. If a set as above is non-void, then for each $i \leq m$ we can find

$$b_i \in A'_i \setminus (A_0 \cup \cdots \cup A_n)$$

and

$$a_i \in B'_i \setminus (B_0 \cup \cdots \cup B_n).$$

Let

$$L = A_0 \cup \cdots \cup A_n \cup \{a_0, \ldots, a_m\}$$

and

$$R = B_0 \cup \cdots \cup B_n \cup \{b_0, \ldots, b_m\}.$$

It is straightforward to check that $\rho(L,R) \subseteq U$ and $L =^* L_{\alpha}$, $R =^* R_{\alpha}$ for some $\alpha < \kappa$.

Recall that a zero-dimensional space has the κ -Knaster property if each collection of κ clopen subsets has a centered subfamily of cardinality κ .

Lemma 3. The space K defined as above is

- (1) separable if and only if \mathcal{G} is not a gap,
- (2) ccc if and only if G does not contain an uncountable sub-gap satisfying the condition (K).

In fact, if \mathcal{G} is a gap of size κ , then K does not have a κ -Knaster property.

Proof. To show (1) suppose first that there is a set $I \subseteq \omega$ interpolating \mathcal{G} , i.e. such that $L_{\alpha} \subseteq^* I$ and $R_{\alpha} \cap I =^* \emptyset$ for each $\alpha < \kappa$. Consider the family $\{I_n : n \in \omega\}$ of all sets almost equal to I. For each n let $x_n \in K$ be such that $\{c \in 2^{\omega} : c(k) = 0\}$ belongs to x_n if and only if $k \in I_n$. Let $L =^* L_{\alpha}$, $R =^* R_{\alpha}$ for certain $\alpha < \kappa$. Consider n such that $L \subseteq I_n$. Then $x_n \in \rho(L, R)$. Hence, Remark 2 implies that K is separable.

On the other hand, we will show that if \mathcal{G} is a gap, then there is no $x \in K$ which belongs to κ many elements of the form $\rho(L, R)$ for $L =^* L_{\alpha}$, $R =^* R_{\alpha}$. This would imply that K is not separable (and, in fact, that \mathfrak{A} does not posses the κ -Knaster property). Assume that there is such $x \in K$ and consider the set

$$I = \{ n \in \omega : \{ c \in 2^{\omega} : c(n) = 0 \} \in x \}.$$

Let $\alpha < \kappa$. There is $\alpha' > \alpha$ such that $x \in \rho(L, R)$ for $L = L_{\alpha'}$ and $R = R_{\alpha'}$. But this means that $L \subseteq I$ and $I \cap R = \emptyset$. So, $L_{\alpha} \subseteq I$ and $R_{\alpha} \cap I = \emptyset$. Since α was chosen arbitrarily, I interpolates \mathcal{G} .

To prove (2) assume that there is an uncountable $\Lambda \subseteq \kappa$ such that $(L_{\alpha} \cup L_{\beta}) \cap (R_{\alpha} \cup R_{\beta}) \neq \emptyset$ for each $\alpha < \beta \in \Lambda$. Plainly, $\{\rho(L_{\alpha}, R_{\alpha}) : \alpha \in \Lambda\}$ is pairwise disjoint and thus K is not ccc.

To prove the converse suppose K is not ccc. By Remark 2 we may assume that there is an uncountable $\Lambda \subseteq \kappa$ such that

$$\{\rho(L, R) \colon L =^* L_{\alpha}, R =^* R_{\alpha} \text{ for some } \alpha \in \Lambda\}$$

is pairwise disjoint. We may assume without loss of generality that the above family consists of sets of the form $\rho(L_{\alpha} \bigtriangleup F, R_{\alpha} \bigtriangleup G)$ for $\alpha \in \Lambda$ for fixed disjoint finite sets F and G. But we have $\alpha < \beta$ in Λ such that $(L_{\alpha} \cup L_{\beta}) \cap (R_{\alpha} \cup R_{\beta}) = \emptyset$. This means that $\rho(L_{\alpha}, R_{\alpha}) \cap \rho(L_{\beta}, R_{\beta}) \neq \emptyset$ and so $\rho(L_{\alpha} \bigtriangleup F, R_{\alpha} \bigtriangleup G) \neq \emptyset$.

Note that for each space constructed in the above way there is no continuous surjection $f: K \to [0,1]^{\omega_1}$. Indeed, one can show that each filter on \mathfrak{A} can be extended to an ultrafilter by countably many sets. This means that every closed subset of K has a point which is a relative G_{δ} . By Shapirovsky theorem (see [Sap80]) this implies that K cannot be continuously mapped onto $[0, 1]^{\omega_1}$. In fact, one can shown that each space like above carries only separable measures (just mimic the proof of [BND, Theorem 6.7]). Recall that a measure μ on K is separable if $l_1(K)$ is separable. In the zero-dimensional case it is equivalent to saying that the (pseudo-)metric $d_{\mu}(A, B) = \mu(A \bigtriangleup B)$ defined on the Boolean algebra of clopen subsets of K is separable. Note that if K can be mapped continuously onto $[0,1]^{\omega_1}$, then it carries a non-separable measure.

Below we show that in a model obtained by adding a Cohen real there is a gap ${\cal G}$ which does not contain an uncountable sub-gap satisfying the condition (K) and for which it is particularly easy to show that each measure defined on the appropriate space is separable.

Proposition 4. If $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ is a gap, and c is a Cohen real in the extension (seen as a subset of ω). Then for each uncountable $X \subseteq \omega_1$ in the extension there are $\alpha < \beta \in X$ such that

$$L_{\alpha} \cap c \subseteq L_{\beta} \cap c \text{ and } R_{\alpha} \cap c \subseteq R_{\beta} \cap c.$$

Proof. Since the Cohen forcing notion is countable we can assume without loss of generality that X belongs to the ground model. Let $p\in 2^n$ and let lpha<eta be such that $L_{\alpha} \cap n = L_{\beta} \cap n$ and $R_{\alpha} \cap n = R_{\beta} \cap n$. Let *m* be such that $L_{\alpha} \setminus m \subseteq L_{\beta}$ and $R_{\alpha} \setminus m \subseteq R_{\beta}$. Then $q \in 2^m$ such that q|n = p|n and q(i) = 0 for each i > n forces that $L_{\alpha} \cap c \subseteq L_{\beta} \cap c$ and $R_{\alpha} \cap c \subseteq R_{\beta} \cap c$.

Clearly, Proposition 4 implies that the gap $\mathcal{G} = (L_{\alpha} \cap c, R_{\alpha} \cap c)_{\alpha}$ does not have a cofinal sub-gap with property (K) in the Cohen extension (to see that it is a gap, notice that c has an infinite intersection with every infinite subset of ω from the ground model). So, if K is the space constructed in the way described above from \mathcal{G} , then K is non-separable and ccc. We will show the following:

Proposition 5. If K is as above and μ is defined on K, then μ is separable.

Proof. We work in the Cohen extension. Assume we have a non-separable μ defined on K. Then there is an uncountable set $\mathcal{A} \subseteq \mathfrak{A}$ and $\varepsilon > 0$ such that

$$\mu(A \bigtriangleup B) > \varepsilon$$

for each A, $B \in \mathcal{A}$. Without loss of generality we can assume that \mathcal{A} consists of the generators of \mathfrak{A} . So, there is an uncountable $X_0 \subseteq \omega_1$ and collections $(L'_{\alpha})_{\alpha \in X_0}$ and $(R'_{\alpha})_{\alpha \in X_0}$ such that $L'_{\alpha} =^* L_{\alpha}, R'_{\alpha} =^* R_{\alpha}$ for each $\alpha \in X_0$ and

$$\mu(\rho(L'_{\alpha}\cap c,R'_{\alpha}\cap c) \bigtriangleup \rho(L'_{\beta}\cap c,R'_{\beta}\cap c)) > \varepsilon$$

for each $\alpha, \beta \in X_0$.

Define $X \subseteq X_0$ to be an uncountable set such that for each $\alpha, \beta \in X$

- (1) $L'_{\alpha} \bigtriangleup L_{\alpha} = L'_{\beta} \bigtriangleup L_{\beta};$
- (2) $R'_{\alpha} \bigtriangleup R_{\alpha} = \tilde{R'_{\beta}} \bigtriangleup \tilde{R_{\beta}};$ (3) $|\mu(\rho(L'_{\alpha}, R'_{\alpha})) \mu(\rho(L'_{\beta}, R'_{\beta}))| < \varepsilon/2.$

By Proposition 4 there is $\alpha < \beta \in X$ such that

$$L_{\alpha} \cap c \subseteq L_{\beta} \cap c \text{ and } R_{\alpha} \cap c \subseteq R_{\beta} \cap c.$$

Properties (1) and (2) imply that then

$$L'_{\alpha} \cap c \subseteq L'_{\beta} \cap c \text{ and } R'_{\alpha} \cap c \subseteq R'_{\beta} \cap c.$$

Hence, $\rho(L'_{\beta} \cap c, R'_{\beta} \cap c) \subseteq \rho(L'_{\alpha} \cap c, R'_{\alpha} \cap c)$. But this means that

$$\mu(
ho(L'_{lpha}\cap c,R'_{lpha}\cap c))-\mu(
ho(L'_{eta}\cap c,R'_{eta}\cap c))>arepsilon$$

a contradiction with the property (3).

So, finally we obtain the following theorem:

Theorem 6. In a model obtained by adding a single Cohen real there is a compact Hausdorff space K such that

- K is not separable (it does not even have ω_1 -Knaster property),
- K is ccc,
- K does not carry a non-separable measure.

References

- [Bel96] Murray Bell. A compact ccc non-separable space from a Hausdorff gap and Martin's axiom. Comment. Math. Univ. Carolin., 37(3):589-594, 1996.
- [BND] Piotr Borodulin-Nadzieja and Mirna Džamonja. On isomorphism problem for measures on Boolean algebras. preprint.
- [Šap80] B. È. Šapirovskii. Mappings on Tihonov cubes. Uspekhi Mat. Nauk, 35(3(213)):122-130, 1980. International Topology Conference (Moscow State Univ., Moscow, 1979).
- [Yor03] Teruyuki Yorioka. Distinguishing types of gaps in $\mathbb{P}(\omega)/\text{fin. } J.$ Symbolic Logic, 68(4):1261–1276, 2003.

INSTYTUT MATEMATYCZNY, UNIWERSYTET WROCŁAWSKI *E-mail address*: pborod@math.uni.wroc.pl