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Abstract

We investigate properties of minimally generated Boolean algebras. It is shown

that all measures de�ned on such algebras are separable but not necessarily weakly

uniformly regular. On the other hand, there exist Boolean algebras small in terms

of measures which are not minimally generated. We prove that under CH a measure

on a retractive Boolean algebra can be nonseparable. Some relevant examples are

indicated. Also, we give two examples of spaces satisfying some kind of E�mov

property.

1. Introduction

In [18] Sabine Koppelberg introduced the notion of minimally generated Boolean algebra.

Loosely speaking a Boolean algebra is minimally generated if it can be generated by small,

indivisible steps (see the next sections for precise de�nitions and terminology used here).

Among other results, Koppelberg showed that all such algebras are small in the sense

they do not contain an uncountable independent sequence. On the other hand, almost

all well{known subclasses of small Boolean algebras such as interval, tree or superatomic

ones appeared to be minimally generated.

The studies originated in [18] were continued in [20], where some interesting counterex-

amples were indicated. In [21] one can �nd examples of forcing with minimally generated

algebras. Several papers by Lutz Heindorf are closely related to the topic, see, e.g., [4].

This paper is a modest attempt to deepen the knowledge about this class of Boolean

algebras.

In Section 2 we set up notation and terminology.

Section 3 is devoted to the study of the Stone spaces of minimally generated algebras. We

try to �nd their place among well{known classes of topological spaces. We have not been

able to give a topological characterization of the compact spaces whose algebras of clopen

subsets are minimally generated. Nearly all results contained in the section are direct

applications of Koppelberg's theorems (repeated without proofs at the beginning of the

section), so we decided to call such spaces Koppelberg compacta. Quite unexpectedly, it

appeared that all monotonically normal spaces are Koppelberg compact.
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The essential part of the paper presents several results on measures on minimally gen-

erated algebras. It is done in Section 4. We show that all measures admitted by such

algebras are separable (in fact, they ful�l a certain stronger regularity condition). It

sheds some new light on similar results obtained for interval algebras and monotonically

normal spaces (see [27, 7] respectively).

Moreover, in Section 4 we prove that a Boolean algebra carries either a nonseparable

measure or a measure which is uniformly regular. It is shown that all measures on a free

product A � B of Boolean algebras are weakly uniformly regular if only all measures

on A and B are weakly uniformly regular. We show that minimal generation cannot be

characterized by measure theoretic conditions, at least not in any natural way. We point

out that measures on retractive algebras can be nonseparable if CH is assumed. The

retractive algebras are, thus, the only well{known subclass of small Boolean algebras

which is not included in the class of minimally generated algebras. Using the above

results we present some new examples of small (also, retractive) but not minimally

generated Boolean algebras.

The last section deals with the connection between Koppelberg compacta and E�mov

spaces, where by a E�mov space we mean a compact space that neither contains a

nontrivial convergent sequence nor a copy of �!. It is not known if such spaces can

be constructed in ZFC. However, many constructions of such spaces were carried out in

several models of ZFC. Most of them (see [8, 10, 11]) use, explicitly or not, the notion of

minimally generated Boolean algebra. Section 5 discusses this topic. We do not exhibit

any new E�mov space, but we try to locate potential E�mov spaces within the class

of Koppelberg compacta. We give here alternative and quite simple proof of Haydon's

theorem stating that there is a compact but not sequentially compact space without a

nonseparable measure. We �nish with a construction of a E�mov{like space not involving

minimally generated algebras.

I wish to thank Grzegorz Plebanek, my Ph.D. advisor at Wroc law University, under

whose kind supervision the results of this paper were obtained. I am also greatly in-

debted to the referee for helpful comments and for pointing out many mathematical and

linguistic errors in the previous versions of this paper.

2. Preliminaries

We use the standard set theoretic notation. For any unexplained terminology the reader

is referred to [19].

Throughout this paper all "algebras" are Boolean algebras, even if it is not stated explic-

itly. We denote the Boolean operations like in algebras of sets ([,

c

, and so on). Given

a Boolean algebra A we denote by Stone(A) its Stone space, i.e. the space of ultra�lters

on A. A topological space is said to be Boolean if it is compact and zero{dimensional.

By a measure on a Boolean algebra we mean a �nitely additive function. We also

occasionally mention Radon measures on topological spaces. If X is a topological space

then � is a Radon measure on X if it is a �{additive measure de�ned on the �{algebra

of Borel sets on X. We treat here only �nite measures.

Let A be a Boolean algebra and let K be its Stone space. Recall that every (�nitely

additive) measure on A can be transferred to the algebra of clopen subsets of K and

then extended to the unique Radon measure.
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A measure � on a Boolean algebra A is atomless if for every " > 0 there is a �nite

partition of 1 into elements of measure at most ". In [6] such a measure is called

"strongly continuous". Notice that there are di�erent notions of atomlessness of measure,

not necessary equivalent to the above one. We say that a measure � on a topological

space (a Boolean algebra) is strictly positive if �(A) > 0 for every nonempty open set

(nonempty element of algebra) A .

Let us �x some notation concerning Boolean algebras. If A is a family of subsets of X

then alg(A) is the subalgebra of P (X) generated by A. If A is a Boolean algebra then

A(B) = alg(A[fBg). Recall that in A(B) all elements are of the form (B\A

1

)[(B

c

\A

2

),

where A

1

, A

2

belong to A. By Fin(X) we denote the family of �nite subsets of X (write

Fin if X = !) and by Fin{Cofin(X) the algebra alg(Fin(X)).

Recall that A �B (A �B) is a free product (product) of Boolean algebras A and B if

it is the algebra of clopen sets of the product (disjoint union, respectively) of its Stone

spaces.

For an algebra A it is convenient to say that a sequence (A

n

)

n2!

in A is convergent to

an ultra�lter p 2 Stone(A) if for every U 2 p we have A

n

� U for almost all n. We say

that a sequence (p

n

)

n2!

in Stone(A) is convergent to p if for every U 2 p we have p

n

2 U

for almost all n.

A familyA � A is said to be independent if for arbitrary disjoint �nite subsets fA

0

; :::; A

n

g

and fB

0

; :::; B

m

g of A we have

A

0

\ ::: \ A

n

\B

c

0

\ ::: \B

c

m

6= ;:

We say that a Boolean algebra is small if it does not contain an uncountable independent

sequence.

A family P of open sets is called a �{base for a topological space X provided every

nonempty open set contains a nonempty member of P. A Boolean algebra A is dense in

B if A � B and for every B 2 B we can �nd A � B such that A 2 A. Of course, then

A forms a �{base for Stone(B).

For a Boolean algebra A we say that T � A is a pseudo{tree if for every A, B 2 T

either A \ B = ;, A � B or B � A. If, additionally, the family fS 2 T : T � Sg is

well{ordered by "�" for every T 2 T , then T is a tree. The following simple fact is

proved in [20].

Fact 2.1 (Koppelberg) If a Boolean algebra A admits a strictly positive measure then

all trees in A are countable.

3. Minimally generated Boolean algebras and their Stone spaces

In this section we overview known results concerning minimal generation and translate

them to the language of topology. We start by the de�nition of our main notion. It was

introduced by Sabine Koppelberg in [18] although it was previously used implicitly by

other authors.

De�nition 3.1 We say that B is a minimal extension of A if A � B and there is no

algebra C such that A ( C ( B.
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An algebra B is minimally generated over A if there is a continuous sequence of algebras

(A

�

)

���

, such that A

0

= A, A

�+1

is a minimal extension of A

�

for every � < � and

A

�

= B.

Finally, a Boolean algebra is minimally generated if it is minimally generated over f0; 1g.

The notion of minimal extension corresponds to the idea of a simple extension in the

inverse limits setting. Indeed, many authors considering problems similar to those pre-

sented in this paper prefer to use the language of inverse limits (see e.g. [8, 10]).

De�nition 3.2 Let (X

�

)

�2�

be an inverse limit and let (f

��

)

�<�<�

be the set of its

bonding mappings. We say that X

�+1

is a simple extension of X

�

if there is exactly one

point x

�

2 X

�

such that f

�1

(�)(�+1)

(x) is a singleton for all x 6= x

�

and consists of two

points if x = x

�

.

The connection can be explained by the following simple lemma. Indeed, if an algebra B

extends A minimally then all ultra�lters in A but (possibly) one has unique extensions

in B. It is stated (in a slightly di�erent language) in [18], but we prove it here for the

reader's convenience.

Lemma 3.3 Let A � B. Then B extends A minimally if and only if the set

U = fA 2 A : 9B 2 B A \B =2 Ag

is an ultra�lter on A and only this ultra�lter is split by B, i.e. only this ultra�lter can

be extended to two di�erent ultra�lters on B.

Proof. Let A � B. It is easy to check that if A

0

2 U and A

0

� A

1

then A

1

2 U . If

B 2 B n A then for every A 2 A either A \ B =2 A or A

c

\ B =2 A. Therefore, if U is

closed under �nite intersections then it is an ultra�lter.

Assume that B extends A minimally. Consider A

0

, A

1

2 A and B

0

, B

1

2 B such that

A

0

\B

0

=2 A and A

1

\B

1

=2 A. Suppose that A

0

\A

1

=2 U . Then C = A

0

\A

1

\B

0

\B

1

2 A.

Hence, C

0

= A

0

\B

0

n C =2 A and C

1

= A

1

\B

1

nC =2 A, C

0

\C

1

= ; and C

0

[ C

1

6= 1.

Therefore,

A ( A(C

0

) ( A(C

0

; C

1

) � B;

a contradiction. Thus, U is an ultra�lter.

Consider p 2 Stone(A) such that there is A 2 p n U . Then A \ B 2 A and A n B 2 A

for every B 2 B n A. Thus, either A \ B 2 p and then we cannot extend p by B

c

or

A n B 2 p but then we cannot extend p by B. Consequently, U is the only ultra�lter

split by B.

It is easy to see that if B is not a minimal extension of A, then there exist pairwise

disjoint B

0

; B

1

; B

2

2 B n A. Therefore, either U is not an ultra�lter on A or it can be

extended to at least three ultra�lters on B.

This gives some idea how minimal extensions look like. The following remark is a simple

consequence of the de�nition and of Lemma 3.3 but it simpli�es many considerations

included in the next sections.
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Proposition 3.4 Let B be a minimal extension of A. The following facts hold:

� if B 2 B n A then B = A(B);

� if we consider disjoint elements A

0

; A

1

of A and any element B of B then A

0

\B 2

A or A

1

\B 2 A.

Now we review some basic facts concerning minimally generated Boolean algebras. The

proofs of Proposition 3.5 and of Theorem 3.6 can be found in [18].

Proposition 3.5 The class of minimally generated algebras is closed under the following

operations:

(a) taking subalgebras;

(b) homomorphic images;

(c) �nite products.

A Boolean algebra is called an interval algebra if it is generated by a subset linearly

ordered under the Boolean partial order. Similarly, an algebra generated by a tree is

called a tree algebra. Every tree algebra is embeddable into some interval algebra. A

Boolean algebra A is said to be superatomic if every nontrivial homomorphic image of

A has at least one atom. Recall also that a topological space is said to be ordered if its

topology is generated by open intervals of some linear order (for Boolean spaces, if it is

a Stone space of some interval algebra, equivalently). A topological space X is called

scattered if for every closed subspace Y of X the isolated points of Y are dense in Y (i.e.

if it is a Stone space of some superatomic algebra in the case of Boolean spaces).

Theorem 3.6 (Koppelberg) [18] The following classes are included in the class of min-

imally generated Boolean algebras:

(a) subalgebras of interval algebras (and, thus, countable algebras, tree algebras);

(b) superatomic algebras.

If a Boolean algebra contains an uncountable independent set then it cannot be minimally

generated (see [18] or Theorem 4.9 in the next section). The algebra C of clopen subsets

of [0; 1) � ([0; 1) \ Q), where [0; 1) is endowed with the Sorgenfrey line topology, is an

example of a small algebra which is not minimally generated (see [20]). It also shows that

a free product of minimally generated Boolean algebras does not need to be minimally

generated.

We translate now Koppelberg's results to the language of topology. Most of the following

reformulations are trivial. Say that a topological space is Koppelberg compact if it is

Boolean and the algebra of its clopen subsets is minimally generated.

Proposition 3.7 The class of Koppelberg compacta is closed under the following oper-

ations:
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(a) continuous images;

(b) taking closed subspaces;

(c) �nite disjoint unions.

Proof. Clearly, (a) and (c) are direct consequences of Proposition 3.5. For Boolean alge-

bras A;B let f : Stone(A) ! Stone(B) be a continuous mapping. The set ff

�1

(B) : B 2

Bg forms a subalgebra of A, on the other hand it is isomorphic to B. We conclude that

the minimal generation of A implies the minimal generation of B, by (a) of Proposition

3.5. The proof of (b) is complete.

We translate in the same way Theorem 3.6. We �rst recall the notion of monotonically

normal spaces which has been intensively studied in a number of papers over last years.

De�nition 3.8 A topological space X is monotonically normal if it is T

1

and for every

open U � X and x 2 U we can �nd an open subset h(U; x) such that x 2 h(U; x) � U

and

� U � V implies h(U; x) � h(V; x) for every x 2 U ;

� h(x;X n fyg) \ h(y;X n fxg) = ; for x 6= y.

Theorem 3.9 A Boolean space K is Koppelberg compact if one of the following condi-

tions is ful�lled:

(a) K is metrizable;

(b) K is ordered;

(c) K is scattered;

(d) K is monotonically normal.

Proof. Of these (a), (b) and (c) are trivial since the ordered Boolean spaces coincide

with the Stone spaces of interval algebras and the class of scattered Boolean spaces is

exactly the class of Stone spaces of superatomic algebras. To prove (d) recall Rudin's

theorem (see [26]) stating that every compact monotonically normal space is a continuous

image of compact ordered space. By (a) of Proposition 3.7 we are done.

The class of Koppelberg compact spaces is not included in any class mentioned in the

above theorem, which is a trivial assertion in case of (a), (b) and (c). Also, monotone nor-

mality and minimal generation are not equivalent, even in the class of zero{dimensional

spaces. Before exhibiting the example recall that by the result due to Heindorf (see [17])

every subalgebra of an interval algebra is generated by a pseudo{tree.

The example is following. Consider an algebra A = alg(Fin [ fA

�

: � 2 cg), where

(A

�

)

�2c

is an almost disjoint family of subsets of !. It is clear that A is minimally gener-

ated and that we cannot generate A by a pseudo{tree. Therefore, A is not embeddable

in an interval algebra and, by Rudin's result, Stone(A) is not monotonically normal.
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Anyway, the connection between the class of interval algebras, tree algebras and minimal

generation is stronger than just the inclusion. The proof of following theorem can be

found in [20].

Theorem 3.10 (Koppelberg) If a Boolean algebra A is minimally generated then A

contains a dense tree subalgebra B such that A is minimally generated over B.

The topological conclusion is as follows. Recall that two topological spaces are co{

absolute if the algebras of their regular open sets are isomorphic.

Theorem 3.11 Let K be Koppelberg compact. Then the following conditions are ful�lled

for every closed subspace F of K:

(a) F is co{absolute with an ordered space (i.e. its algebra of regular open sets is

isomorphic to the algebra of regular open sets of some ordered space);

(b) F has a tree �{base.

Proof. First, we sketch the proof that every tree algebra has a dense tree. Let A be an

algebra generated by a tree T . Then T can be extended to a tree T

0

� A being dense

in A. Indeed, if A 2 A and S � A is a tree generating A, such that no element S 2 S

ful�ls S � A, then without loss of generality we can assume that A

c

is of the form

A

c

=

[

i�n

T

i

;

where T

i

2 S for i � n. Therefore, there is no T 2 S disjoint with every T

i

. It follows

that there is a level of S which is not a partition of 1 and we can extend this level by

an element below A. For trees T

0

, T

1

we say that T

0

� T

1

if T

0

� T

1

and no element of

T

1

nT

0

has an element of T

0

below. It is easy to see that there is a �{maximal tree in A.

Such a tree is dense in A (otherwise, it would not be maximal, by the above remark).

By Theorem 3.10 every minimally generated Boolean algebra has a dense tree algebra,

so it has a dense tree. Therefore K has a tree �{base. Both implications for F = K are

proved in [18]. By (b) of Proposition 3.7 we are done.

The class of spaces with tree �{bases is surprisingly wide. By the result due to Balcar,

Pelant and Simon (see [3]) even �! n ! has a tree �{base. This property is usually not

inherited by all closed subspaces, though. It is the reason why we have formulated The-

orem 3.11 in the above way. Nevertheless, it would be desirable to �nd some stronger

conditions implied by minimal generation, in particular to have a topological charac-

terization of the Koppelberg compacta. It could allow us to get rid of (arti�cial, in

principle) assumption of zero{dimensionality in the de�nition without referring to the

idea of inverse limits. We have not been able to exhibit any example of a space which

is not Koppelberg compact such that every closed subspace and every continuous image

of it has a tree �{base, but we believe the properties listed in Theorem 3.11 do not

characterize the Koppelberg compacta.

It is worth here to recall the idea of discretely generated topological spaces (formulated

by Dow, Tkachuk, Tkachenko and Wilson in [9]).
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De�nition 3.12 A topological space X is called discretely generated if for every subset

A � X we have

cl(A) =

[

fcl(D) : D � A and D is a discrete subspace of Xg:

Problem 3.13 Is every Koppelberg compactum discretely generated?

One may ask when a given Boolean algebra A has a proper minimal extension in a given

algebra B � A. If B = P (Stone(A)) then A can be extended minimally by a point of its

Stone space. On the other hand, in Section 5 we will consider only subalgebras of P (!).

In this case there do exist maximal minimally generated algebras, i.e. such subalgebras

of P (!) that no new subset of ! can extend them minimally. We present here a condition

under which we can extend a Boolean algebra A in P (Stone(A)) in quite a natural way.

Lemma 3.14 Let (A

n

)

n2!

be a disjoint sequence of clopen subsets of a Boolean space K

converging to p 2 K. Then we can extend A = Clopen(K) minimally by a set A of the

form A =

S

fA

n

: n 2 Tg, where T is an in�nite co{in�nite subset of !. In particular, if

B � A is a �{complete Boolean algebra, then we can extend A minimally by an element

of B.

Proof. Let Z =

S

n2!

A

2n

. Of course, Z does not belong to A as then either Z or Z

c

would belong to p. A(Z) splits the ultra�lter p but this is the only ultra�lter split by

A(Z).

Indeed, if q 6= p then we have B 2 q such that A

n

\B = ; for almost all n. Let then

A =

[

fA

n

: A

n

\B 6= ;g:

Since A \ Z 2 A either

� A \ Z 2 q but then (A \ Z) \ Z

c

= ; so q can be extended only by Z or

� (A \ Z)

c

2 q. Thus, B \ (A \ Z)

c

2 q and B \ (A \ Z)

c

\ Z = ; so we cannot

extend q by Z.

Proposition 3.15 If K is a Boolean space without isolated points and there is a G

�

point in K then A = Clopen(K) can be extended minimally by an open F

�

subset of K.

Proof. Assume p is a G

�

point in K. Enumerate by (U

n

)

n2!

a countable base of p. Let

A

0

= U

0

nU

1

. For n 2 ! let A

n+1

=

S

m�n

U

m

nU

n+1

. It is easy to check that (A

n

)

n2!

is

a disjoint sequence converging to p. By Lemma 3.14 we are done.

It is easy to see that usually we can �nd many sequences witnessing that a Boolean

algebra is minimally generated and these sequences can have di�erent sizes. By the length

of a minimally generated Boolean algebra A we mean the least ordinal demonstrating

the minimal generation of A.
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4. Measures on minimally generated Boolean algebras

We recall several measure theoretic de�nitions. For a wider background the reader is

referred to Fremlin's monograph [13].

De�nition 4.1 A measure � on a Boolean algebra A is said to be separable if there

exists a countable B � A such that for every A 2 A and " > 0 we have B 2 B such that

�(A M B) < ".

A Radon measure satisfying the analogous condition is called a measure of (Maharam)

type !. The following two de�nitions are not so well{known as the above one.

De�nition 4.2 A measure � on a compact space K is uniformly regular if the family

� is inner regular on the family of open subsets of K with respect to zero subsets of K

(i.e. for every open U � K and " > 0 there is a zero subset F � K such that F � U

and �(U n F ) < ").

Note that a measure � on a Boolean algebra A is uniformly regular if there is a countable

set A � A such that � is inner regular with respect to A. We say that A approximates

� from below.

Sometimes uniformly regular measures are called \strongly countably determined", see

[2] or [24] for further reading. The following simple modi�cation of the above de�nition

will be particularly useful.

De�nition 4.3 A measure � on a Boolean algebra A is weakly uniformly regular (w.u.r.,

for brevity) if there is a countable set A � A such that � is inner regular with respect to

the class fA n I : A 2 A, �(I) = 0g. We say that A weakly approximates � from below.

We can make this de�nition a little bit more understandable by switching to the topo-

logical point of view. A measure is weakly uniformly regular on Clopen(K), where K is

a Boolean space, if the corresponding measure on K is uniformly regular on its support.

It is clear that the following implications hold:

uniformly regular =) weakly uniformly regular

�

=) of Maharam type !

=) has a separable support

None of the above implications can be reversed. Consider the following examples:

(a) the usual 0{1 measure on the algebra Fin{Cofin(!

1

) is weakly uniformly regular

but not uniformly regular;

(b) if A is the algebra of Lebesgue measure on [0; 1] then the standard measure on

Stone(A) is of Maharam type !, its support is not separable, though, and thus it

is not w.u.r.;

(c) the usual product measure on 2

!

1

has a separable support but is not of Maharam

type ! (hence, is not w.u.r.).
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We ought to remark here that example (b) exhibits one more property of uniform regu-

larity. Notice that the Lebesgue measure on [0; 1] is uniformly regular but the measure

from example (b) is not, although these measures has the same measure algebra. Hence,

the uniform regularity of measure depends on its domain. This property plays no role

in our considerations as we discuss here only measures on Boolean algebras and their

Stone spaces.

Before we start an examination of measures on Koppelberg compacta, we prove a general

theorem concerning the connections between uniformly regular measures and separable

measures. Recall that if A is contained in some larger algebra B then every measure

� de�ned on A can be extended to some measure � de�ned on B. We say that A is

�{dense in B if

inff�(B M A) : A 2 Ag = 0

for every B 2 B. We will need the following theorem due to Plachky (see [22]).

Theorem 4.4 (Plachky) Let � be a measure on a Boolean algebra B containing an

algebra A. The algebra A is �{dense in B if and only if � is an extreme point of the set

f� : � is de�ned on B and �jA = �jAg:

We use Plachky's criterion to prove the following result.

Lemma 4.5 Let A be a Boolean algebra carrying a measure �. If A � B then there is

an extension of � to a measure � de�ned on B such that A is not �{dense in B if and

only if there is B 2 B with the property �

�

(B) < �

�

(B).

Proof. Assume that �

�

(B

0

) < �

�

(B

0

) for some B

0

2 B. It can be easily shown that the

formulas

�

0

(B) = �

�

(B \B

0

) + �

�

(B n B

0

);

�

00

(B) = �

�

(B \B

0

) + �

�

(B nB

0

)

de�ne extensions of � to measures on the algebra A(B

0

). In turn, �

0

, �

00

can be extended

to �

0

, �

00

on B. As �

0

6= �

00

it follows that � = 1=2(�

0

+ �

00

) is not an extreme extension,

so by Plachky's criterion A is not �{dense in B.

The converse is obvious.

Theorem 4.6 Let A be a Boolean algebra. Then A carries either a uniformly regular

measure or a measure which is not separable.

Proof. Suppose that there is no uniformly regular measure on A. We construct a

nonseparable measure � de�ned on A. Namely, we construct a sequence of countable

Boolean algebras fB

�

: � < !

1

g and a sequence of measures f�

�

: � < !

1

g such that for

every � < � < !

1

the following conditions are ful�lled:

10



� B

�

carries �

�

;

� B

�

� B

�

� A;

� �

�

extends �

�

;

� B

�

is not �

�

{dense in B

�

.

Assume that we have already constructed A

�

and �

�

. We can extend �

�

to a measure

� on A. By our assumption, the measure � is not uniformly regular so we can �nd an

element A such that

inff�(A n U) : U 2 B

�

, U � Ag > 0:

Set B

�+1

= B

�

(A) and use Lemma 4.5 to �nd a measure �

�+1

extending �

�

and such

that B

�

is not �

�+1

{dense in B

�+1

. At a limit step 
 set B




=

S

�<


A

�

and �




to

be the unique extension of all members of f�

�

: � < 
g. Finally, set B =

S

�<!

1

B

�

and take the unique extension of all constructed �

�

's for �. Every extension of � to a

measure � on A is not separable.

We turn now to the proper topic of this section. First, we will see how a measure behaves

when considered on a minimal extension of its domain.

Lemma 4.7 Let � be an atomless measure on a Boolean algebra A and let B be a

minimal extension of A. Then for every B 2 B we have �

�

(B) = �

�

(B).

Proof. Consider B 2 B and " > 0. We will show that �

�

(B)��

�

(B) < ". Assume that

(A

n

)

n<N

is a partition of 1

A

witnessing that � is atomless (for our "). From Lemma 3.3

we deduce that there is only one k < N such that A

k

\ B =2 A (we exclude the trivial

case of B 2 A). Since

X

k 6=n<N

�(A

n

\B) = �(B n A

k

) � �

�

(B) � �

�

(B) � �(B n A

k

) + ";

we conclude that the demanded inequality holds. As " was arbitrary, �

�

= �

�

on B.

The above lemma expresses the fact that minimal extensions do not enrich atomless

measures. This observation lies in the heart of the following facts.

Proposition 4.8 If B is minimally generated over A and � is a measure on B such

that �jA is atomless and uniformly regular then � is uniformly regular.

Proof. It is a direct consequence of Lemma 4.7.

Theorem 3.9 allows us to see the following theorem as a generalization (of course only

for the zero{dimensional case) of Theorem 9 of [7] (stating that every atomless measure

on a monotonically normal space is of countable Maharam type) and of Theorem 3.2(i)

of [27] (stating that every atomless measure on an ordered space is uniformly regular on

its support).

11



Theorem 4.9 Every measure � on a minimally generated Boolean algebra A is separa-

ble.

Proof. Assume a contrario that there is a measure � on A which is not separable.

Assume that the sequence (A

�

)

���

witnesses that A is minimally generated (where A

�

=

A) and let �

�

= �jA

�

for every �. Denote

� = minf� : �

�

is not separable on A

�

g

and notice that cf(�) is uncountable. Without loss of generality we can assume that �

�

is

atomless. If it is not then we can apply the Sobczyk{Hammer Decomposition Theorem

(see Theorem 5.2.7 in [6]), i.e. split �

�

into

�

�

= �

0

+

X

n2!

a

n

�

n

;

where �

0

is atomless and for n � 1 the measure �

n

is 0{1 valued. Of course

P

n2!

a

n

�

n

is separable so we can assume that �

�

= �

0

. Denote now

� = minf� : �

�

is atomlessg:

Of course � � �. Notice that cf(�) = @

0

. Indeed, if �(n) is the least ordinal such that

there is a partition of 1 into sets from A

�(n)

of �{measure < 1=n, then � on

S

n2!

A

�(n)

is atomless. Hence, � < �. But the measure �

�

on A

�

ful�ls the conditions of Lemma

4.7 so for every � > � the measure �

�

on A

�

is a separable, in particular so is � on A, a

contradiction.

In fact, using this method one can prove that every measure on a minimally generated

Boolean algebra is a countable sum of weakly uniformly regular measures.

The following corollary is proved directly in [18]. Recall that if we can map continuously

a topological space K onto f0; 1g

!

1

then there exists a measure of uncountable type on

K (by Fremlin's theorem, under MA

!

1

the above conditions are in fact equivalent, see

[12]). We should also remind here that a compact space K contains a copy of �! if and

only if it can be mapped continuously onto f0; 1g

c

. Now we can �nally formulate the

corollary.

Corollary 4.10 If A is a minimally generated Boolean algebra then A does not contain

an uncountable independent sequence. Therefore, Stone(A) cannot be mapped continu-

ously onto f0; 1g

!

1

and there is no copy of �! in Stone(A).

It is worth to point out here one more remark. Some axioms (such as CH) imply the

existence of examples of small Boolean algebras carrying nonseparable measures. By

Theorem 4.9 these examples turn out to be also examples of small but not minimally

generated Boolean algebras.

The following fact can be easily deduced from the proof of Theorem 4.9.

Corollary 4.11 Every atomless measure � on a minimally generated Boolean algebra

of length at most !

1

is uniformly regular.

12



We show that the above corollary cannot be strengthened in the obvious way.

Example 4.12 There is a Boolean algebra of length at most !

1

+! carrying an atomless

measure which is not uniformly regular.

Proof. Let A(!

1

) denote the Alexandrov compacti�cation of !

1

endowed with the

discrete topology, i.e. the space !

1

[f1g with the topology generated by f�g for � 2 !

1

and f1g[ (!

1

n I) for �nite sets I. Consider the algebra A = Clopen(A(!

1

)�C), where

C is the Cantor set.

Claim 1. The algebra A is minimally generated.

We can construct in a minimal way the algebra f0g � Clopen(C) in the �rst ! steps.

There are no obstacles (for the minimality of extensions) to repeat this construction for

f1g � Clopen(C) and proceed in this manner obtaining �nally (in !

1

steps) the algebra

generated by sets of the form f�g � K, where � 2 !

1

and K is a clopen subset of C.

Then we can add by minimal extensions all sets of the form (f1g [ !

1

)�K, where K

is a clopen subset of C. As a result, we obtain A.

Consider now the following measure � on A:

�(A) = �(A \ (f1g � C));

where � is the standard measure on C.

Claim 2. The measure � is atomless but not uniformly regular.

Indeed, suppose that there is a countable family A � A approximating � from below.

For every A 2 A of positive measure 1 2 �(A), where � : A(!

1

) � C ! A(!

1

) is the

projection to the �rst coordinate, so �(A) = !

1

n I

A

, where I

A

is �nite. Let

� = sup

[

fI

A

: A 2 Ag + 1:

Let B = (f1g [ (!

1

n f�g))� C. It is easily seen that

� B 2 A;

� �(B) = 1;

� there is no A 2 A such that �(A) > 0 and A � B (if �(A) > 0 and A 2 A then by

the de�nition of � we see that f�g � C � A).

From the above example we deduce that the length of a minimally generated algebra is

not necessarily a cardinal number. The above algebra A cannot be generated in !

1

steps

as then every atomless measure admitted by A should be uniformly regular. Anyway, the

following fact implies that the lengths of minimally generated algebras are limit ordinal

numbers.

Proposition 4.13 Let A be a minimally generated subalgebra of a Boolean algebra C.

Then the algebra A(B) is minimally generated for every B 2 C.
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Proof. Let (A

�

)

�2�

be such that A

�+1

= A

�

(A

�

) for every � < �, where (A

�

)

�2�

is

a sequence witnessing the minimal generation of A. We will construct a sequence of

minimal extensions generating B = A(B). Recall that an ordinal number � is called

even if it can be represented as � = 
 + 2n, where 
 is a limit ordinal or 0 and n 2 !.

For such ordinals let h(
 + 2n) = 
 + n.

Let B

0

= f0; 1; B; B

c

g. De�ne

B

�+1

=

�

B

�

(B \ A

h(�+2)

) if � is even;

B

�

(A

h(�+1)

) else:

At a limit step 
 we set B




=

S

�<


B

�

.

Our new sequence generates the demanded algebra in a minimal way. Let � be even.

Then B

�

is extended to B

�+1

by an element of the form B \ A, where A 2 A. The

following equality holds:

fC 2 B

�

: C \ (A \B) =2B

�

g = fC 2 A \B

�

: C \ A =2 A \B

�

g:

Since the latter is an ultra�lter in A \B

�

and this ultra�lter is the only one split by A,

using Lemma 3.4 we obtain that our extension is minimal.

Similar arguments work for the case of odd �.

We will show now that the property of admitting only w.u.r. measures is closed under

free products. By the result due to Sapounakis (see [27]) interval Boolean algebras

admit only w.u.r. measures. It follows that Koppelberg's example C mentioned on page

5 carries only w.u.r. measures (since it is a free product of interval algebras) but it is

not minimally generated. Therefore, every measure on a minimally generated algebra is

separable but there is a Boolean algebra admitting only w.u.r. measures which is not

minimally generated. Consequently, minimal generation cannot be characterized by any

measure theoretic property mentioned in this section.

Theorem 4.14 If every measure on a Boolean algebra A is w.u.r. and every measure

on B is w.u.r., then every measure on A�B is w.u.r.

Proof. For simplicity assume that the considered algebras are contained in P (X) for

some set X.

It is enough to show that we can weakly approximate from below all the rectangles since

every member of A �B is a �nite union of rectangles. Let � be a measure on A �B.

De�ne

�

1

(A) = �(A�X)

and for A 2 A

�

A

(B) = �(A�B):

By the assumption the measure �

1

is weakly uniformly regular so there is a countable

set A weakly approximating �

1

from below. For every A 2 A the measure �

A

is also

w.u.r. and has an approximating set B (A).

We will show that fA

0

�B

0

: A

0

2 A; B

0

2 B (A

0

)g weakly approximates � from below.

Indeed, consider A 2 A; B 2 B and " > 0. Then, by the de�nition we can �nd:
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� A

0

2 A such that �

1

(A n A

0

) <

"

2

and 9F �

1

(F ) = 0; A

0

n F � A;

� B

0

2 B(A

0

) such that �

A

0

(B nB

0

) < "=2 and 9G �

A

0

(G) = 0; B

0

nG � B.

Now �((A� B) n (A

0

�B

0

)) < " since

(A�B) n (A

0

�B

0

) = A

0

� (B nB

0

) [ (A n A

0

)�B

but

�(A

0

� (B nB

0

)) = �

A

0

(B nB

0

) < "=2

and

�((A n A

0

)�B) � �((A n A

0

)�X) = �

1

(A n A

0

) < "=2:

It su�ces to show that there exists an element H such that �(H) = 0 and (A

0

�B

0

)nH �

(A�B). Clearly, H = (F �X) [ (A

0

�G) is such an element.

We continue the measure theoretic examination of minimally generated Boolean algebras.

The existence of uniformly regular measures on such algebras follows from Theorem

4.6 and Theorem 4.9. Anyway, such measures can be easily constructed directly using

Theorem 3.10. Under certain conditions we can force these measures to have additional

properties.

Theorem 4.15 Let A be an atomless minimally generated Boolean algebra. Then A

carries an atomless uniformly regular measure �. Moreover, if any of the following

conditions is ful�lled then we can demand that � is strictly positive as well:

� if A carries a strictly positive measure;

� if A is c.c.c. and the Suslin Conjecture is assumed;

� if A is strongly c.c.c., i.e. it does not contain any uncountable set of pairwise

incomparable elements.

Proof. Let T � A be a tree as in Theorem 3.10.

We can easily �nd a countable dyadic tree T

0

� T . For an element A 2 T

0

put �(A) =

1=2

n

if A belongs to the n{th level of T

0

. In this way we obtain a measure de�ned on

the algebra generated by T

0

. It is atomless and uniformly regular, so by Lemma 4.7 its

extension to � de�ned on A will be uniformly regular as well.

Claim. If T can be assumed to be countable then A carries a strictly positive uniformly

regular measure.

Indeed, we can easily �nd a tree T

0

� T isomorphic to !

<!

such that every level of T

0

forms a maximal antichain in A and T

0

is dense in A. De�ne a strictly positive measure

� on T

0

. By a similar argument as before the extension of � to the measure � on A will

be uniformly regular. Clearly, � is strictly positive and the claim is proved.
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To complete the proof we show that the assumptions listed above imply that T can be

conceived as countable.

If A carries a strictly positive measure then, according to Fact 2.1, every tree contained

in A is countable, and so is T .

If A is c.c.c. then it does not contain neither an uncountable chain nor an uncount-

able antichain so every uncountable tree contained in A is Suslin. Hence, the Suslin

Conjecture implies that T is countable.

Finally, by the theorem of Baumgartner and Komj�ath, if A is strongly c.c.c. then it

contains a countable dense subalgebra B � A (see [5] for the details). Therefore, the

Stone space of A is separable and thus it supports a strictly positive measure (for the

proofs of the last implications we refer the reader to [28]).

It follows that in the class of Koppelberg compacta the property of having a strictly

positive measure is equivalent to separability. If the Suslin Conjecture is assumed these

properties are equivalent also to c.c.c. We can use these remarks to answer the question

which seems to be natural in the context of Theorem 4.9.

Theorem 4.16 There is a minimally generated Boolean algebra supporting a measure

which is not w.u.r.

Proof. Denote by B the algebra of Lebesgue measure on [0; 1]. Let A � B be a

minimally generated Boolean algebra such that for no B 2 B nA the extension A(B) is

minimal overA. Notice that according to the proof of Theorem 3.15 and the completeness

of B no p 2 K = Stone(A) is a G

�

point.

Since A carries a strictly positive measure the space K is separable (by Theorem 4.15).

Let fx

n

: n � 1g be dense in K. Consider the following measure:

� =

X

n�1

�

x

n

=2

n

:

It is not w.u.r. Otherwise, it would be uniformly regular because � is strictly positive.

But �

x

is uniformly regular only if x is G

�

and there are no such points in K. Therefore,

the measure �

x

1

is not uniformly regular and, accordingly, � is not w.u.r.

We �nish this section with a short analysis of the behavior of measures on other well{

known subclass of small Boolean algebras.

De�nition 4.17 A Boolean algebra A is retractive if for every epimorphism e : A! B

there is a monomorphism (lifting) m : B! A such that e �m = id

B

.

Notice that a Boolean algebra is retractive if and only if its Stone space K is co{retractive,

i.e. every closed subspace of K is a retract of K. J. Donald Monk showed that no retrac-

tive Boolean algebra contains an uncountable independent sequence. It is also known

that not every minimally generated algebra is retractive. In [20] Koppelberg gave an

example of a retractive but not minimally generated Boolean algebra. However, the con-

struction was carried out under CH. We present here an example of a retractive algebra
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which is not minimally generated and additionally carries a nonseparable measure. It

requires the following assumption:

cof(N ) = minfjAj : A � N 8N 2 N 9A 2 A N � Ag = !

1

;

whereN denotes the ideal of Lebesgue measure zero sets. Of course CH implies cof(N ) =

@

1

, on the other hand e.g. in the Sacks model c = @

2

and, nevertheless, cof(N ) = @

1

.

In the following theorem we simply take advantage of the construction carried out by

Plebanek in [23]. Recall that a Boolean space K is Corson compact if there exists a

point{countable family D of clopen subsets of K such that D separates points of K. For

our purposes it is important that the separable Corson compact spaces are metrizable

(see [1]).

Theorem 4.18 Assume cof(N ) = @

1

. Then there is a retractive Boolean algebra A

carrying a nonseparable measure and without a tree �{base.

Proof. The equality cof(N ) = @

1

implies the existence of a Corson compact space K

carrying a strictly positive nonseparable measure � such that for every nowhere dense

F � K the set F is metrizable (see [23]).

To verify the retractiveness of Boolean algebra A = Clopen(K) one needs only to check

if for every dense ideal I � A the algebra A=I is countable (see Theorem 4.3 (c) in [25]).

If an ideal I is dense then F = Stone(A=I) is a closed nowhere dense subspace of K.

Thus, it is metrizable. So A=I is countable.

Assume now for a contradiction that A has a tree �{base T . Since � is strictly positive,

by Fact 2.1, T has to be countable. Thus, K is separable and, since it is Corson compact,

K is metrizable. It follows that every measure on K is of countable Maharam type, a

contradiction.

On the other hand, as we have already mentioned, it is consistent to assume that small

Boolean algebras carry only separable measures. Combining Fremlin's theorem men-

tioned on page 12 and the fact that retractive algebras are small we obtain the following.

Theorem 4.19 If MA

!

1

holds then retractive algebras admit only separable measures.

It is not known if it is consistent to assume that every retractive Boolean algebra is

minimally generated (or, at least, has a tree �{base).

5. Connection to Efimov Problem

We recall the longstanding E�mov problem.

Problem 5.1 Is there an in�nite compact space which neither contains a nontrivial

convergent sequence nor a copy of �!?
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Such spaces (we call them E�mov spaces) can be constructed if certain set theoretic

axioms are assumed. The question if one can construct a E�mov space in ZFC is still

unanswered. For example, it is not known if Martin's Axiom implies the existence of

E�mov spaces.

Consider a sequence (r

n

)

n2!

and a subsequence (l

n

)

n2!

in a topological space X. We say

that K � X separates L = fl

n

: n 2 !g in R = fr

n

: n 2 !g if R \K = L. To make a

Boolean space E�mov we have to add many clopen sets to ensure that every sequence of

distinct points has a subsequence separated by a clopen set. On the other hand, if our

space is too rich, then it contains a sequence all of whose subsequences are separated

and, thus, it would contain a copy of �!.

By Corollary 4.10 minimal generation gives us a tool for constructing compact zero{

dimensional spaces without copies of �!. Fedor�cuk's E�mov space (see [11]) has been

constructed using simple extensions as well as the example presented by Dow in [8].

The �rst one requires CH, the latter a certain axiom connected to the notion of splitting

number. For another construction (using }) see also [20].

We consider compacti�cations of !. Notice at once that if there exists a E�mov space

then by taking the closure of countable discrete subspace we can obtain a compacti�ca-

tion of ! which is E�mov.

We will employ the idea of pseudo{intersection number. Write A �

�

B if A nB is �nite.

We say that P � X is a pseudo{intersection for a family P � P (X) provided for every

A 2 P we have P �

�

A. A family P is said to have strong �nite intersection property

(s�p for brevity) if every �nite subfamily has an in�nite intersection. The de�nition of

the pseudo{intersection number is as follows

p = minfjPj : P � [!]

!

has s�p but no X 2 [!]

!

is a pseudo{intersection for Pg:

The assumption p = c is equivalent to Martin's Axiom for �{centered families (see, e.g.,

[14]).

For a topological space X and a cardinal � we say that S � X is G

�

if there is a family

of open sets fU

�

: � 2 �g such that S =

T

�2�

U

�

. It is convenient to say that S is G

<�

if there is a � < � such that S is G

�

.

Theorem 5.2 There is a Koppelberg compacti�cation K of ! without a convergent se-

quence of distinct G

<p

points. In particular, if MA is assumed then K does not contain

a convergent sequence of distinct G

<c

points.

Proof. We will indicate a Koppelberg compacti�cation of ! without a convergent sub-

sequence of ! such that no point of its remainder is G

<p

. We �rst show two claims.

Claim 1. Let A be a subalgebra of P (!) cointaining the algebra Fin{Cofin. Then there

is a nontrivial convergent subsequence of ! in K = Stone(A) if and only if there is p 2 K

with an in�nite pseudo{intersection.

Indeed, assume that a sequence (n

k

)

k2!

converges to p. Thus, for every A 2 p we have

N = fn

0

; n

1

; :::g �

�

A and, consequently, N is a pseudo{intersection of p. Conversely,

an enumerated pseudo{intersection of p forms a subsequence of ! convergent to p.

Claim 2. Let A be an algebra minimally generated over Fin{Cofin with an ultra�lter

p with in�nite pseudo{intersection P . Then A(P ) is a minimal extension of A.
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It is so because for every A 2 A either A \ P 2 Fin or P �

�

A and, therefore, either

A \ P 2 A or A

c

\ P 2 A. By Lemma 3.3 we are done.

Let A � P (!) be a Boolean algebra minimally generated over Fin{Cofin such that A(A)

is not a minimal extension of A for any A 2 P (!) nA. By Claim 2 no p 2 K = Stone(A)

has an in�nite pseudo{intersection and by Claim 1 there is no convergent subsequence

of ! in K. Since no p 2 K n ! is a G

<p

point and K is Koppelberg compact, we are

done.

As a corollary we get the following theorem proved by Haydon in [15].

Corollary 5.3 (Haydon) There is a compact space which is not sequentially compact

but which carries no measure of uncountable type.

Proof. Let K be as in Theorem 5.2. Then the natural numbers form a sequence

witnessing that K is not sequentially compact. By Theorem 4.9 every measure on K

has a countable Maharam type.

In fact, as can easily be seen in the proof of Theorem 5.2, every Boolean algebra A

minimally generated over Fin{Cofin can be extended to B � P (!) such that Stone(B)

ful�lls the conditions of Theorem 5.2 and Corollary 5.3. Thus, we can produce a lot of

examples of such spaces.

Moreover, using Theorem 3.10 we can easily indicate tree algebras with the same property

as in the above theorems. In fact, tree algebras can be unexpectedly rich. By the theorem

already mentioned in Section 2 there is a tree algebra A dense in P (!)=Fin, i.e. such

that for every in�nite N � ! there is an in�nite set M �

�

N such that M 2 A.

Theorem 5.2 can be counterpointed by the following theorem. Let us say that a compact

space K is Grothendieck if C(K) is Grothendieck, i.e. if every weak

�

convergent sequence

in the space C

�

(K) weakly converges, which means that in a sense C

�

(K) does not

contain nontrivial convergent sequences of measures and, thus, there is no nontrivial

convergent sequences of points in K (as the convergence of (x

n

)

n2!

is equivalent to the

convergence of (�

x

n

)

n2!

). So, the notion of a Grothendieck space is a strengthening of

the property of not containing nontrivial convergent sequences.

De�nition 5.4 Let F be a family of subsets of a compact space K. We say that K

contains a copy of �! consisting of F sets if there is a disjoint sequence (F

n

)

n2!

of

elements of F such that for every T � ! there is A 2 Clopen(K) such that

A \

[

n2!

F

n

=

[

n2T

F

n

:

Denote by (*) the following assumption:

2

�

� c if � < c:

Recall that (*) implies that c is regular and that MA implies (*). We prove the following

theorem.
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Theorem 5.5 There is a Grothendieck space not containing copies of �! consisting of

G

�

sets. Moreover, if (*) is assumed then there is a Grothendieck space without copies

of �! consisting of G

<c

sets.

Thus, although it is not known if one can construct a E�mov space under MA, some

sorts of E�mov spaces can be, nevertheless, indicated: either if we admit the existence

of a convergent sequence of G

c

points or if we admit �! to be embeddable but only in

such a way that natural numbers are mapped on G

c

sets.

In fact, our construction has a slightly stronger property. We say that a Boolean algebra

A has the Subsequential Completeness Property (SCP, for brevity) if for every disjoint

sequence in A there is an in�nite co{in�nite subset T � ! such that (A

n

)

n2T

has a least

upper bound in A. A compact space K has SCP if Clopen(K) has SCP. Haydon showed

that the spaces with SCP are Grothendieck (see [15]).

De�nition 5.6 Let A be a Boolean algebra. Let R = fF

n

: n 2 !g be a set of �lters on

A and let L = fF

n

: n 2 Tg for some T � !. We say that A 2 A separates L in R if

� A 2 F

n

for n 2 T ;

� A

c

2 F

n

for n =2 T .

The algebra A separates L in R if there is A 2 A separating L in R.

Notice that a sequence (F

n

)

n2!

of closed sets in Stone(A) is a copy of �! if and only if

every subsequence of (F

n

)

n2!

is separated in (F

n

)

n2!

by A.

Thus, the assertion that K does not contain copies of �! consisting of clopen sets has

a simple algebraic interpretation. It means that for every pairwise disjoint sequence

(A

n

)

n2!

from A = Clopen(K) the algebra A contains a least upper bound of (A

n

)

n2T

for some in�nite co{in�nite T � ! but there is also N � ! such that (A

n

)

n2N

is non{

separated in (A

n

)

n2!

by A.

The construction proceeds as follows, in the spirit of Haydon's construction from [15].

Consider a Boolean algebra A and a sequence (F

n

)

n2!

of �lters on A. We will say that

a sequence (p

n

)

n2!

is an extension of (F

n

)

n2!

in A if p

n

is an extension of F

n

to an

ultra�lter in A for every n 2 !. We will use the following trivial observation.

Fact 5.7 Let R be a sequence of �lters on a Boolean algebra A with a subsequence L

separated in R by A. If R

0

and L

0

are extensions of R and L in A then L

0

is still separated

in R

0

by A.

Before we prove Theorem 5.5 we have to show the following lemma.

Lemma 5.8 Let A � P (X) be a Boolean algebra. Assume that f(L

�

; R

�

) : � < � < cg is

such that R

�

is a nontrivial sequence in Stone(A) and L

�

is its subsequence no separated

in R

�

by A for every � < �. Let (A

n

)

n2!

be a disjoint sequence in A. Then there is

an in�nite, co{in�nite � � ! and a collection f(L

0

�

; R

0

�

) : � < � < cg such that for

every � < � and n 2 ! we have: R

0

�

(n) is an extension of R

�

(n) to an ultra�lter

in A(

S

n2�

A

n

), L

0

�

is the corresponding subsequence of R

0

�

and A(

S

n2�

A

n

) does not

separate L

0

�

in R

0

�

.
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Proof. For � � ! denote

A

�

=

[

n2�

A

n

:

Consider the algebras A(A

�

) for � � !. Fix � < � and n 2 !. We de�ne R

�

�

(n) in the

following way. If A

�

does not split the ultra�lter F = R

�

(n) then R

�

�

(n) is the unique

extension of F in A(A

�

). If A

�

splits F then let R

�

�

(n) be de�ned as the extension of F

by A

c

�

. L

�

�

(n) = R

�

�

(m) if L

�

(n) = R

�

(m).

Consider an almost disjoint family � of in�nite subsets of ! of cardinality c. We show

that there is � 2 � such that no L

�

�

is separated in R

�

�

by A(A

�

). Suppose otherwise;

then, by a cardinality argument, there are � < �, �; � 2 � and U

1

; U

2

2 A such that

� 6= � and

Z

�

= (A

�

\ U

1

) [ (A

c

�

\ U

2

) separates L

�

�

in R

�

�

and

Z

�

= (A

�

\ U

1

) [ (A

c

�

\ U

2

) separates L

�

�

in R

�

�

:

Set

A = (A

�\�

\ U

1

) [ (A

c

�\�

\ U

2

);

and notice that A 2 A (as � \ � is �nite). It su�ces to show that the set A separates

L

�

in R

�

.

Consider F = L

�

(n) for some � < � and n 2 !. We show that A 2 F . Denote

F

�

= L

�

�

(n) and F

�

= L

�

�

(n). Obviously, Z

�

2 F

�

and Z

�

2 F

�

. It means that either

Z

1

�

= (A

�

\ U

1

) 2 F

�

or Z

2

�

= (A

c

�

\ U

2

) 2 F

�

and either Z

1

�

= (A

�

\ U

1

) 2 F

�

or

Z

2

�

= (A

c

�

\ U

2

) 2 F

�

. To show that A 2 F we have to consider three cases. We will

repeatedly use basic properties of ultra�lters.

1. If Z

1

�

2 F

�

and Z

2

�

2 F

�

or Z

2

�

2 F

�

and Z

1

�

2 F

�

then both U

1

, U

2

belong to F and,

since either A

�\�

2 F or A

c

�\�

2 F , A 2 F .

2. If Z

2

�

2 F

�

and Z

2

�

2 F

�

then the set A

�\�

cannot belong to F (because then ; 2 F

�

),

so A

c

�\�

2 F but U

2

2 F and, therefore, A 2 F .

3. Assume that Z

1

�

2 F

�

and Z

1

�

2 F

�

. Notice �rst that in this case F

�

;F

�

have to be

unique extensions of F (by A

�

, A

�

respectively). Therefore, F has a unique extension

in A(A

�

; A

�

) and Z

1

�

\ Z

1

�

= A

�\�

\ U

1

belongs to this extension. But A

�\�

\ U

1

2 A

and, again, A 2 F .

Similar methods are used to prove that for every element F of R

�

not belonging to L

�

we have A =2 F . Hence, A separates L

�

in R

�

, a contradiction.

It follows that there is � 2 � such that A(A

�

) does not separate L

0

�

= L

�

�

in R

0

�

= R

�

�

for � < �; � is in�nite and co{in�nite.

Proof. (of Theorem 5.5) Let � : c ! c � c be a surjection such that if �(�) = (
; �)

then 
 � � and �(0) = (0; 0). We construct an increasing sequence of Boolean algebras

(A

�

)

�2c

each of size less than c. For every � < c �x
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� an enumeration fA

�

�

: � < cg of disjoint sequences in A

�

;

� an enumeration fS

�

�

: � < cg of disjoint sequences of G

�

sets in Stone(A

�

).

Let A

0

= Clopen(2

!

). Fix R

0

0

(0) to be an extension of S

0

0

in A

0

and L

0

0

(0) to be some

non{separated subsequence.

Assume that A

�

is constructed and we have a family f(L

�

�

(�); R

�

�

(�)) : (�; �) = �(�); � <

�g of sequences of ultra�lters and their non{separated subsequences. Let �(�) = (
; �).

De�ne R




�

(�) to be an extension of S




�

in A

�

. Fix a subsequence L




�

(�) non{separated

by A

�

(such a subsequence exists since jA

�

j < c). Apply Lemma 5.8 to the sequence A




�

and to f(L

�

�

(�); R

�

�

(�)) : (�; �) = �(�); � � �g to produce A

�+1

. Let L

�

�

(�+ 1) = L

0

�

�1

(�;�)

and R

�

�

(�+ 1) = R

0

�

�1

(�;�)

for every pair (�; �) such that there is � � � and �(�) = (�; �).

On a limit step � take A

�

=

S

�<�

A

�

. Set R

�

�

(�) to be the unique extension of all R

�

�

(�)

and L

�

�

(�) to be the unique extension of all L

�

�

(�) for � < � and pair (�; �) such that

there is � < � and �(�) = (�; �). It is easy to see that in this way the limit steps preserve

the property that L

�

�

is non{separated in R

�

�

.

Finally, let A =

S

�<c

A

�

and K = Stone(A). We demonstrate that K satis�es all the

required conditions.

Indeed, it is easy to see that K has SCP (and, therefore, is Grothendieck). If A =

fA

n

: n 2 !g is a disjoint sequence in A then there is � < c such that A

n

2 A

�

for

every n. It is then enumerated as A

�

�

for some � and, thus,

S

n2N

A

n

is added at step

�

�1

(�; �), for some in�nite N .

Similarly, consider a disjoint sequence (F

n

)

n2!

of closed G

�

sets together with �xed

countable bases. Since the co�nality of c is uncountable all elements of these bases

appear in A

�

for some � < c. The sequence (F

n

j A

�

)

n2!

is labeled as R

�

�

for some �.

From that point using Fact 5.7 we bother to keep L

�

�

not separated in R

�

�

. Therefore,

(F

n

)

n2!

is not a copy of �!.

If we assume (*) then for every � < c the set of disjoint sequences of closed sets in A

�

is of cardinality c. Therefore, for every � < c we can think about fS

�

�

: � < cg as being

an enumeration of disjoint sequences of closed sets in A

�

. Since (*) implies also that c is

regular, the above proof shows that K does not contain copies of �! consisting of G

<c

sets.

By Argyros's theorem (see [16]), every Boolean algebra with SCP contains an indepen-

dent sequence of size !

1

, so K from the above theorem is not Koppelberg compact and,

what is more important, under CH �! is embeddable in K. Therefore, one cannot hope

that the above example will turn out to be a E�mov space in ZFC.
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