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Abstract

We present several naturally defined σ–ideals which have Borel bases but, unlike
for the classical examples, these bases are not of bounded Borel complexity. We
investigate set-theoretic properties of such σ–ideals.

1 Introduction

Consider the σ–ideal of subsets of the plane consisting of sets which for all ε > 0 can
be covered by an open set whose all vertical sections have measure less than ε. It seems
natural to suppose that this ideal has similar properties to those of the ideal of null sets,
e.g. Gabriel Mokobodzki conjectured that under Martin’s Axiom the additivity of this
ideal equals continuum (see [9], Problem 32Rd). It turned out to be not true. Cichoń
and Pawlikowski proved in [6] that the additivity of this ideal, called there Mokobodzki
ideal, equals ω1 in ZFC.

In the same paper Cichoń and Pawlikowski considered also σ–ideals of subsets of [0, 1]2

which can be covered by Borel sets whose every vertical section is small (i.e. of Lebesgue
measure 0 or meager). These ideals also have additivity ω1. Cichoń and Pawlikowski
observed one more interesting property: these ideals do not have Borel bases of bounded
Borel complexity (although, clearly, they have Borel bases). In other words, Mα (M
for each α, where M is such an ideal and Mα is the σ–ideal generated by M∩ Σ0

α.

In this paper we consider certain modifications of Mokobodzki ideals, e.g. the σ–ideal of
subsets of the plane which are small not only on vertical sections but also on horizontal
ones or which are small in every direction. In Section 3 we prove that such σ-ideals also
do not have Borel bases of bounded Borel complexity.

A set A is in Mokobodzki ideal if its every section is small. One can ask if it is possible to
change every to almost every and still having a σ-ideal with bases of unbounded Borel
complexity. It can be done if we interpret the word “almost” correctly. Notice that
ideals of sets whose almost every (with respect to Lebesgue measure or with respect to
Baire category) section is small (Lebesgue null or meager, respectively) are the ideals
of null or meager subsets of the real plane, and therefore they have bases of bounded
Borel complexity (e.g. consisting of Π0

2 or Σ0
2 sets, respectively). However, in Section
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4 we prove that every can be changed to almost every with respect to a σ-ideal having
property (M).

In Section 5 we investigate set-theoretic properties of the σ–ideals considered in the
paper. In the last section we present a remark concerning ideals with property (M)
and we state some open questions. Facts proved in the two last sections indicate that
Mokobodzki ideals and other ideals considered here differ from Null and Meager in
many aspects.

Acknowledgements. The authors would like to thank Jacek Cichoń for introducing
them to the notion of Mokobodzki ideal, Piotr Zakrzewski for valuable suggestions, and
an anonymous referee for the careful examination of the paper and for helpful comments.

2 Preliminaries

All terminology which is not explained here, can be found e.g. in [11] and [5]. By
Σ0
α(X), Π0

α(X), Borel(X), Σ1
1(X) and Π1

1(X) we mean the families of, respectively, Σ0
α,

Π0
α, Borel, analytic and coanalytic subsets of a Polish space X. Usually, X will be

known from the context and we omit it. By π1 : X × Y → X and π2 : X × Y → Y we
denote the projections on the first and on the second coordinates, i.e. π1(x, y) = x and
π2(x, y) = y for every (x, y) ∈ X × Y . For A ⊆ X × Y define a vertical section of A
at a point x as Ax = {y ∈ Y : (x, y) ∈ A} and a horizontal section of A at a point y as
Ay = {x ∈ X : (x, y) ∈ A}. In the paper we use several times the fact that if A and f
are Borel and f |A is injective, then f(A) is Borel (see [11, 15.1]).

Let I be a σ–ideal on Y and J be a σ–ideal on X. The Fubini product J ⊗ I is the
σ–ideal on X × Y generated by the family {B ∈ Borel(X × Y ) : {x : Bx /∈ I} ∈ J }.
We say that a σ–ideal I is Σ0

α–on–Π0
α if {x : Bx ∈ I} ∈ Π0

α for every B ∈ Σ0
α(X ×X).

Let A be a Σ0
α subset of [0, 1]2. By [11, 22.22] the set {x : Ax is non-meager} is Σ0

α.
Then {x : Ax is meager} = {x : Ax is non-meager}c is Π0

α. Using [11, 22.25] we obtain
that {x : Ax is not null} is Σ0

α. Hence {x : Ax is null} is Π0
α. This shows that the ideals

Meager and Null are Σ0
α–on–Π0

α for every α < ω1. In a similar way we define properties
Borel–on–Borel, Π1

1–on–Σ1
1 etc. Note that the ideals Meager and Null are Π1

1–on–Σ1
1 (see

[11, 29.22 and 29.26]).

Let J be a σ-ideal. A family B ⊆ J is called a base of J if any set of J is contained in
some set from B. If there is a base of J consisting of Borel or Σ0

α sets, then we say that
J has a Borel or Σ0

α base, respectively. For an ordinal number α ≤ ω1, by Jα we denote
the σ–ideal generated by J ∩Σ0

α. Note that if J has a Borel base, then J =
⋃
α<ω1

Jα.

Let I be a σ–ideal of subsets of an uncountable Polish space X. We say that A ⊆ X2 is
in the σ–idealM(I) if there is a Borel set B ⊇ A such that Bx ∈ I for every x ∈ X. We
write Mα(I) instead of (M(I))α. We will say that a σ–ideal J with a Borel base has
the complex Borel base property if for every α < ω1 we have Jα ( J . In [6] the authors
mentioned that M(Null) and M(Meager) have the complex Borel base property.

For a σ–ideal I of subsets of X2 and a family of functions F ⊆ XX define a σ–ideal
M(F , I) on X2 in the following way: Y ⊆ X2 belongs toM(F , I) whenever Y ∈M(I)
and Y can be covered by a Borel set B ⊆ X2 such that {x : (x, f(x)) ∈ B} ∈ I
for every f ∈ F . As before, Mα(F , I) = (M(F , I))α. Note that if F = ∅, then
M(F , I) = M(I); if F consists of all constant functions f ≡ y, then {x : (x, f(x)) ∈
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B} = {x : (x, y) ∈ B} = By which means that all horizontal sections By of B are in I;
if F is a family of all linear mappings, thenM(F , I) consists of all subsets of real plane
which can be covered by Borel set I-small in every direction, etc. Hence, Mα(F , I)
seems to be a natural generalization ofMα(I). In Section 3 we discuss the properties of
such σ–ideals and we show that, under natural assumptions on F , they have the complex
Borel base property.

One of the well–known uniformization theorems states that if every nonempty section of
a Borel set A ⊆ X2 is not in I (where X is an uncountable Polish space and I is a Borel–
on–Borel ideal), then A has a Borel uniformization, i.e. a Borel function f : π1[A]→ X
such that f(x) ∈ Ax for every x ∈ π1[A] [11, 18.6]. Recently, Petr Holický proved a
theorem which gives an information about the Borel class of this uniformization. Here
we state a simplified version of Holický’s result needed for our purposes. It immediately
follows from [10, Theorem 3.3] and [10, Theorem 3.4]. Recall that a function f : X → Y
is Σ0

α–measurable if for every E ∈ Σ0
1(Y ), the set f−1[E] ∈ Σ0

α(X). The graph of Σ0
α–

measurable function belongs to Π0
α(X × Y ) if X and Y are Polish (see, e.g. [12] §31,

VII, Thm 1).

Theorem 2.1 (Holický) Suppose X is an uncountable Polish space. Let I be a σ–
ideal of subsets of X which is Σ0

α-on-Π0
α for some 2 ≤ α < ω1 and which contains all

singletons. Let A ⊆ X2 be such that Ax /∈ I for every x ∈ π1[A]. If A is of class Σ0
α,

then there is a Borel function F : {0, 1}ω ×X → X such that:

∀x ∈ {0, 1}ω (y 7→ F (x, y) is a Σ0
α-measurable uniformization of A)

∀y ∈ X (x 7→ F (x, y) is continuous and 1-1).

In particular, there is a Σ0
α–measurable uniformization of A.

The following theorem was proved in [6]. We repeat here its proof since we slightly
modify its conclusion and we will use a similar argument later.

Theorem 2.2 (Cichoń, Pawlikowski, Lemma 2.3 in [6]) Assume I is a σ–ideal of
subsets of an uncountable Polish space X such that X /∈ I. For every α < ω1 there is a
Π0
α set A ⊆ X2 such that for every M ∈Mα(I) there is x ∈ X such that ∅ 6= Ax ⊆M c

x.
If, additionally, I is Σ0

α-on-Π0
α, then we can assume that Acx ∈ I for every x ∈ π1[A].

Proof. Let α < ω1. By [11, 22.3] there is a universal set U ⊆ X ×X2 for the pointclass
Σ0
α(X2), i.e. for every E ⊆ X2 such that E ∈ Σ0

α there is x ∈ X with E = Ux. Put
A = {(x, y) ∈ X2 : (x, x, y) /∈ U}. Clearly, A is a Π0

α subset of X2. Let M ∈ Mα(I).
There is E ∈ Σ0

α ∩Mα(I) such that M ⊆ E. Since U is universal for Σ0
α(X2), there is

x0 ∈ X with E = Ux0 . Since Ax0 = X \ U(x0,x0) = X \ (Ux0)x0 = Ec
x0

, then Acx0
∈ I.

Now assume that I is Σ0
α–on–Π0

α. Then the set {x : Acx ∈ I} is Π0
α. Define

A′ = A ∩ ({x : Acx ∈ I} ×X).

Of course A′ is Π0
α. Fix x ∈ X such that Ux ∈Mα(I) and notice that Ax = {y : (x, x, y) /∈

U} and U(x,x) ∈ I. Therefore Acx ∈ I and Ax = A′x. Consequently, for any M ∈ Mα(I)
there is x ∈ X such that A′x ⊆M c

x. Thus, we can assume without loss of generality that
Acx ∈ I for every x ∈ π1[A].
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3 Ideals M(F , I)
In this section (X, ·) stands for an uncountable Polish group. One can e.g. think about
the group X = R with the addition or X = 2ω with the standard additive operation.
Let I be either the σ–ideal of meager subsets of X or a σ–ideal of null subsets of X with
respect to a right–invariant σ–finite measure on X.

We do not consider I in more general setting, since we will need many particular prop-
erties of the above ideals: Fubini property, ccc, right–invariance, Σ0

α–on–Π0
α for each

α < ω1. Zakrzewski’s result from [15] implies that in the case X = 2ω the ideals Null and
Meager are the only σ–ideals satisfying the above properties. This and other well–known
results (see [8]) suggest that in case of arbitrary Polish group, if I satisfy the above
properties then it is at least isomorphic to one of the above ideals.

If I is an ideal of null sets, then we will additionally assume that the measure is σ–finite,
since we will need the following property: every Borel function f : B → X, where B ⊆ X
is I–positive and Borel, is continuous on an I–positive Σ0

3 subset of B. This property is
satisfied under the above condition (see [11], Thm. 17.12) and in the case I is the ideal
of meager subsets.

For the functions f , g : X → X let (f · g)(x) = f(x) · g(x).

A family of functions F ⊆ XX is ubiquitous with respect to an ideal I (or I–ubiquitous)
if for every Borel function g : X → X there is a Borel set B /∈ I and a function f ∈ F
such that f |B = g|B. The family of continuous functions is a natural example of Null–
and Meager–ubiquitous family (it follows from Luzin Theorem [11, 17.12] and Nikodym
Theorem [11, 8.38]). On the other hand, there are families of Borel functions f : R→ R
which are closed under the addition but are not ubiquitous neither with respect to Null
nor to Meager ideals: the empty family, the constant functions, the linear functions.
Note that also the family of polynomials is not ubiquitous neither with respect to Null
nor to Meager: e.g. the exponential function cannot equal to a polynomial on a set of
with an accumulation point (as zeros of a holomorphic function must be isolated).

We will show that if a family F of Borel functions is left shift invariant and is not I–
ubiquitous, then any Π0

α set with large sections and a big projection on x–axis have a
uniformization with a graph of class Σ0

α+2 witnessing that F is not I–ubiquitous.

Lemma 3.1 Assume that A is a Borel subset of X2 such that Ax /∈ I for every x ∈
π1[A] /∈ I. For each Borel mapping h : X → X we can find a Borel set B ⊆ π1[A] with
B /∈ I and y ∈ X such that y · h(x) ∈ Ax for every x ∈ B.

Proof. Define ϕ : X2 → X2 by ϕ(x, y) = (x, y · (h(x))−1). Then for every x

(ϕ[A])x = ({(x, y · (h(x))−1) : (x, y) ∈ A})x = {y · (h(x))−1 : y ∈ Ax} = Ax · (h(x))−1.

Since I is right invariant, then

(ϕ[A])x ∈ I iff Ax ∈ I

and, thus, (ϕ[A])x /∈ I for every x ∈ π1[A] /∈ I. The set ϕ[A] is Borel because ϕ is a
Borel one–to–one mapping. By the Fubini property of I there is y ∈ X such that

B = (ϕ[A])y ∈ Borel \ I.

Let x ∈ B. Then (x, y) ∈ ϕ[A] and, therefore, (x, y · h(x) · (h(x))−1) ∈ ϕ[A] but this
means that (x, y · h(x)) ∈ A. So, y · h(x) ∈ Ax for every x ∈ B.
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Lemma 3.2 Let 3 ≤ α < ω1. Assume A ⊆ X2 is a Π0
α set such that Ax /∈ I for every

x ∈ π1[A] /∈ I. Then, for a Borel function h : X → X there is a countable collection B
of pairwise disjoint Borel sets and a uniformization f : π1[A]→ X of A such that

(i) π1[A] \
⋃
B ∈ I,

(ii) for every B ∈ B there is yB ∈ X such that f |B = yB · h,

(iii) f is Σ0
α+1–measurable (and, consequently, its graph is Π0

α+1).

Proof. Fix A ⊆ X2 and h : X → X as above. Since A ∈ Σ0
α+1, we can use Theorem 2.1

to fix a Σ0
α+1–measurable uniformization g : π1[A] → X of A. Use Lemma 3.1 to find a

Borel set B0 and y0 such that B0 ⊆ π1[A], B0 /∈ I and y0 ·h(x) ∈ Ax for each x ∈ B0. We
can assume that (y0 ·h)|B0 is continuous and B0 is Σ0

3 (more precisely, Π0
2 if I = Meager,

and Σ0
2 if I = Null), shrinking B0 if needed.

Assume now that we have constructed a family of pairwise disjoint Σ0
3 sets {Bξ : ξ < β}

and a family of points {yξ : ξ < β} such that Bξ ⊆ π1[A], Bξ /∈ I, yξ · h(x) ∈ Ax for each
x ∈ Bξ, (yξ · h)|Bξ is continuous and Bξ is Σ0

3 .

If Y = π1[A] \
⋃
ξ<β Bξ /∈ I, then use Lemma 3.1 to find a Borel set Bβ and a point

yβ such that Bβ ⊆ π1[A ∩ (Y × X)] = Y ∩ π1[A], Bβ /∈ I, yβ · h(x) ∈ Ax for each
x ∈ Bβ, (yβ · h)|Bβ is continuous and Bβ is Σ0

3. Since I is ccc, there is β < ω1 such that
π1[A] \

⋃
ξ<β Bξ ∈ I. Let B = {Bξ : ξ < β}. Define f : π1[A] → X in the following way.

Let f(x) = yξ · h(x) if x ∈ Bξ and let f(x) = g(x) for x ∈ π1[A] \
⋃
B.

We have to verify that f defined in this way is Σ0
α+1–measurable. Indeed, for every ξ < β

the function hξ : Bξ → X defined by hξ(x) = yξ ·h(x) is continuous on Bξ. So, for E ∈ Σ0
1

we have

f−1[E] =
⋃
ξ<β

(h−1
ξ [E] ∩Bξ) ∪ (g−1[E] \

⋃
B)

which is a countable union of Σ0
α+1 sets, so a Σ0

α+1 set.

Now we will use the above lemmas to prove thatM(F , I) has the complex base property
under certain assumptions on F .

Theorem 3.3 Let F ⊆ XX be a family of Borel functions which is not I-ubiquitous.
Assume that F is left shift invariant, i.e. for any f ∈ F and y ∈ X the function
x 7→ y · f(x) belongs to F . Then Mα+2(F , I) \Mα(I) 6= ∅ for every 3 ≤ α < ω1.

Proof. Let 3 ≤ α < ω1. Let A be a Π0
α set whose existence is guaranteed by Theorem

2.2.

Let h be a Borel function witnessing that F is not I-ubiquitous, i.e. there is no an
I–positive Borel set on which h equals to a function from F .

Use Lemma 3.2 for A and h to find a Σ0
α+1–measurable uniformization f : π1[A] → X

of A and a countable collection B of pairwise disjoint Borel sets satisfying conditions
(i)–(iii) of Lemma 3.2.
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Suppose that graph(f) /∈Mα+2(F , I). Then, by the definition ofMα+2(F , I), for every
C ∈ Σ0

α+2 with C ⊇ graph(f) there is g ∈ F such that {x : g(x) ∈ Cx} /∈ I. Since
graph(f) ∈ Σ0

α+2, there is g ∈ F with

{x : g(x) ∈ graph(f)x} = {x : g(x) = f(x)} /∈ I.

Let B′ = {x : g(x) = f(x)}. There is B ∈ B with B′ ∩ B /∈ I. Since f |B = (yB · h)|B,
we have g|(B′ ∩B) = (yB ·h)|(B′ ∩B), and therefore (y−1

B · g)|(B′ ∩B) = h|(B′ ∩B). As
F is left shift invariant, y−1

B · g ∈ F , but this contradicts our assumption on h. Hence,
graph(f) ∈Mα+2(F , I).

By the choice of A for every M ∈ Mα(I) there is x ∈ π1[A] such that f(x) /∈ Mx. So,
the graph of f is in Mα+2(F , I) \Mα(I).

Since Mα(F , I) ⊆Mα(I) for every 3 ≤ α < ω1, the following corollary holds.

Corollary 3.4 Consider I and F as in the above theorem. Then for every 3 ≤ α < ω1

we have Mα(F , I) (Mα+2(F , I). In particular, Mα(I) (Mα+2(I).

Corollary 3.5 If J is one of the following ideals of subsets of R2, then Jα ( Jα+2 for
every 3 ≤ α < ω1:

(1) the ideal of sets A such that A can be covered by a Borel set whose all vertical
sections are null (meager);

(2) the ideal of sets A such that A can be covered by a Borel set whose all vertical and
horizontal sections are null (meager);

(3) the ideal of sets A such that A can be covered by a Borel set which is null (meager)
in every direction;

(4) the ideal of sets A such that A can be covered by a Borel set which is null (meager)
on vertical sections and on graphs of polynomials.

Proof. Consider X = R with addition. Put F(1) = ∅, let F(2) be the family of constant
functions, F(3) - the family of linear mappings and F(4) - the family of polynomials. Then
J =M(F(i),Null) (or J =M(F(i),Meager)). The result follows from Corollary 3.4.

Note that in fact, one can prove that Mα(J ) ( Mα+2(J ) assuming only that J is a
σ–ideal with a Borel base, containing all singletons, and which is Σ0

α-on-Π0
α and Σ0

α+1-
on-Π0

α+1. To see this, use Theorem 2.1 to find a Σ0
α+1–measurable unformization f of

Π0
α set A from Theorem 2.2, and note that graph(f) ∈Mα+2(J ) \Mα(J ).

4 Fubini products

Notice that M(I) can be seen as {∅} ⊗ I. Fubini products of null or meager ideals
have bases of bounded Borel complexity (e.g. Null ⊗ Null, Null ⊗Meager, see e.g. [2]),
so we cannot replace {∅} by Null or Meager if we want to obtain a σ–ideal with the
complex Borel base property. However, we will show that a σ–ideal of the form J ⊗Null
(J ⊗Meager) has the complex Borel base property if J has property (M) and a Borel
base.
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Definition 4.1 We will say that an ideal J of subsets of a Polish space X has property
(M) if there is a Borel function f : X → [0, 1] such that f−1[{x}] /∈ J for every x ∈ [0, 1].

Notice that every uncountable Polish space X can play the role of [0, 1] in the above
theorem, since such X is Borel isomorphic to [0, 1].

Let X be an uncountable Polish space and let C ⊆ X be a set homeomorphic with the
Cantor space {0, 1}ω. Since {0, 1}ω is homeomorphic with {0, 1}ω × {0, 1}ω, there is a
continuous bijection g : C → {0, 1}ω × {0, 1}ω and for every x ∈ {0, 1}ω the preimage
g−1[{0, 1}ω × {x}] is uncountable. Then f = π2 ◦ g witnesses that σ-ideal of countable
subsets has property (M). Using a similar argument and the Silver Theorem [11, 35.20]
one can show that ideals generated by an coanalytic equivalence relation with uncount-
able many equivalence classes (i.e. ideals of sets which can be covered by countably many
equivalence classes) have property (M). By [7] the same holds for the ideal of subsets of
the plane which can be covered by countably many lines. There are other σ–ideals with
property (M): ideals on Polish spaces with a Σ0

2 base which are not ccc (see [13]), some
ideals defined by translations (see [3] and [14]). For the further discussion on property
(M) see [1], [3] and [4].

Theorem 4.2 Let I be a σ–ideal of subsets of an uncountable Polish space X. Suppose
I has a Borel base, is Σ0

α-on-Π0
α for each α < ω1 and contains all singletons. If a σ–ideal

J of subsets of X has property (M) then there is β < ω1 such that (J ⊗I)α ( (J ⊗I)α+2

for each α > β.

Proof. Let f : X → X be a Borel function witnessing (M) for J , i.e. such that

f−1[{x}] /∈ J for every x ∈ X.

Let γ be such that f is Σ0
γ–measurable. Fix γ < β < ω1 such that γ + β = β (e.g.

β = γ ·ω) and notice that if α > β then γ+α = α. Let β ≤ α < ω1 and let U ⊆ X×X2

be universal for Σ0
α(X2). Define H : X3 → X3 by H(x, y, z) = (f(x), y, z) and let

V = H−1[U ]. Clearly V ∈ Σ0
γ+α = Σ0

α. Consider A = {(x, y) ∈ X2 : (x, x, y) /∈ V }, a Π0
α

set.

Since I is Σ0
α–on–Π0

α, the set A′ = A ∩ ({x : Acx ∈ I} ×X) is also Π0
α. By Theorem 2.1,

the set A′ has a uniformization with a graph C of class Π0
α+1. Clearly C ∈Mα+2(I).

We will show that C /∈ (J ⊗ I)α by proving that C * E for E ∈ Σ0
α(X2) ∩ (J ⊗ I).

Of course E = Ux for some x ∈ X. So, E = Vt for each t ∈ f−1[{x}]. Notice that
Ct ∩ Et = ∅ since Et = (Vt)t = V(t,t) = X \ At. By the definition of Fubini product
{t ∈ f−1[{x}] : Et /∈ I} ∈ J . As f−1[{x}] /∈ J , we have also that {t ∈ f−1[{x}] : Et ∈
I} /∈ J . Moreover, if t ∈ f−1[{x}] and Et ∈ I then Act = Et ∈ I. Hence there is t
such that (A′t) ∩ Et = ∅ and A′t ⊇ Ct 6= ∅. Therefore C \ E 6= ∅, which means that
C /∈ (J ⊗I)α. SinceMα+2(I) ⊆ (J ⊗I)α+2, it follows that C ∈ (J ⊗I)α+2 \ (J ⊗I)α.

In [6], the σ-idealsM(Null) andM(Meager) are called Mokobodzki σ-ideals. The results
presented here and in the previous section indicate how we can generalize the definition
of a Mokobodzki ideal.
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Let (X, ·) be an uncountable Polish group. We say that Y ⊆ X2 belongs to a σ–ideal
M(F , I,J ) on X2 if Y ∈ J ⊗I and Y can be covered by a Borel set B ⊆ X2 such that

{y ∈ X : {x ∈ X : (x, y · f(x)) ∈ B} /∈ I} ∈ J

for every f ∈ F . We say that a σ–ideal is a generalized Mokobodzki ideal if it is of the
form M(F , I,J ) for I = Null or I = Meager, a family of Borel functions F ⊆ XX

containing constants which is left shift invariant and is not I–ubiquitous, and a σ–ideal
J with property (M). Loosely speaking, a generalized Mokobodzki ideal is a σ–ideal
consisting of sets C which are null (meager) along all functions from F and which have
null (meager) vertical section Cx for J –almost every x. By combining proofs of Theorem
3.3 and Theorem 4.2 it is possible to show that all generalized Mokobodzki ideals have
the complex Borel base property. We decided to prove it in less general cases for the
sake of clarity.

5 Set-theoretic properties

In this section we explore some properties of the ideals considered in the previous sections.
First, we show that they have property (M). As before, throughout this section we assume
that X is an uncountable Polish space.

Proposition 5.1 If I is a σ–ideal of subsets of X such that X /∈ I and F ⊆ XX ,
then M(F , I) has property (M). Also, if a σ–ideal J has property (M), then J ⊗ I has
property (M).

Proof. Consider the function π1(x, y) = x. Then π−1
1 [{x}] = {x} ×X /∈ M(F , I). To

prove the second part of the theorem consider g = f ◦ π1, where f : X → X witnesses
that J has property (M).

Notice, that this means that the ideals from the previous sections are very far from
being ccc. Notice also that the above proposition together with Theorem 4.2 allows us
to produce easily a lot of examples of σ–ideals with the complex Borel base property.
In particular, Fubini products of Null or Meager ideals with ideals from Proposition 5.1
have the complex Borel base property.

In [6, 2.4] it was proved that if I is a proper σ–ideal of subsets of X, then M(I) has
additivity ω1. The proof uses Theorem 2.2, Kondo–Adisson and Sierpiński theorems.

In fact, it seems that the essential reason for the equality add(M(I)) = ω1 lies in the fact
thatM(I) is an union of sequences of ω1 strictly increasing σ–ideals, I ∈ {Null,Meager}.
More generally, the following fact holds.

Proposition 5.2 Suppose that I has a Borel base and there are σ–ideals Iα with I =⋃
α<κ Iα and Iα ( Iα+1 for every α < κ. Then add(I) ≤ κ. In particular, if I has the

complex Borel base property, then add(I) = ω1.

Proof. For every α < κ take Aα ∈ Iα+1 \ Iα and consider a set A =
⋃
α<κAα. If A is in

I, then we could find Borel B ∈ I with B ⊇ A, but there would be α < κ with B ∈ Iα.
This would contradict the fact that Aα ⊆ B and Aα /∈ Iα.

The second part of the statement follows easily.
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As a corollary we obtain that the ideals from Theorem 4.2 and Theorem 3.3 (and, all
generalized Mokobodzki ideals) have additivity ω1. In fact, every σ–ideal containing all
singletons is a union of a strictly increasing sequence of its proper sub–σ–ideals.

Indeed, let I be such an ideal. Define by cofσ(I) the minimal cardinality of a family
A ⊆ I such thatA σ–generates I. Clearly, ω < cofσ(I) ≤ cof(I). Let {Bξ : ξ < cofσ(I)}
be a family witnessing cofσ(I) and let Iξ be the σ–ideal generated by {Bα : α < ξ}.
Notice that the sequence (Iξ)ξ<cofσ(I) is increasing and does not stabilise. Let cofin(I) =
min{κ : I =

⋃
α<κ Iα where (Iα) is a strictly increasing sequence of σ–ideals which are

proper subideals of I}. It is well–defined by the remark above. Clearly cofin(I) is regular
(and is not smaller than the cofinality of cofσ(I)). Moreover, an argument as in the proof
of Proposition 5.2 implies that add(I) ≤ cofin(I). If I has the complex base property
then cofin(I) = ω1. It is interesting how this coefficient behaves in other situations. In
the last section we pose one of the natural questions in this context.

We will turn now to classical ideal invariants. Some cardinal coefficients ofM(F , I) are
inherited from the ideal I.

Proposition 5.3 If I is a σ–ideal of subsets of X, I has a Borel base, and F ⊆ XX ,
then

(i) cov(M(F , I)) = cov(I);

(ii) non(M(F , I)) = non(I).

Proof. Suppose that the family {Aξ : ξ < κ} ⊆ I covers X. We may assume that each
Aξ is Borel. Then {Aξ ×Aη : ξ, η < κ} ⊆ M(F , I) and it covers X2. On the other hand
if {Zξ : ξ < κ} ⊆ M(F , I) covers X2 and x ∈ X, then {(Zξ)x : ξ < κ} ⊆ I and it covers
X.

If Z /∈ I, then {x} × Z /∈ M(F , I) and |{x} × Z| = |Z|, where x ∈ X. On the other
hand, if |Z| < non(I) for Z ⊆ X2, then |π1[Z]| < non(I) and |π2[Z]| < non(I). So, there
is a Borel B ∈ I such that π1[Z]∪π2[Z] ⊆ B. Therefore, Z ⊆ B×B and Z ∈M(F , I).

The assumption that I has a Borel base in part (i) of the assertion of Proposition 5.3
is needed. To see this, let {Bξ : ξ < ω1} be a collection of pairwise disjoint Bernstein
sets in [0, 1] which covers [0, 1]. Define I as the σ-ideal of subsets of [0, 1] which can be
covered by countably many sets Bξ. Then cov(I) = ω1. ButM(I) consists of sets with
countable sections, hence cov(M(I)) = c and consistently cov(M(I)) > cov(I).

In the case of ideals defined in Section 4 we can apply the following fact.

Proposition 5.4 (folklore) If I and J are σ–ideals of subsets of X with Borel bases
then

non(J ⊗ I) = max{non(I), non(J )} and

cov(J ⊗ I) = min{cov(I), cov(J )}.
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Proof. Let Z, Y witness non(J ) and non(I) respectively. Then Z × Y /∈ J ⊗ I and
|Z×Y | = max{non(I), non(J )}. If Z witnesses non(J ⊗I) then |π1[Z]| ≥ non(J ) and
|π2[Z]| ≥ non(I). Therefore, non(J ⊗ I) = max{non(I), non(J )}.
Assume that {Aξ : ξ < κ} ⊆ J covers X. Then, {Aξ × X : ξ < κ} ⊆ J ⊗ I and it
covers X2. A similar argument for I shows that cov(J ⊗ I) ≤ min{cov(I), cov(J )}.
On the other hand, if cov(J ⊗ I) ≤ cov(J ) and {Zξ : ξ < cov(J ⊗ I)} covers X2,
then there is x ∈ X such that (Zξ)x ∈ I for every ξ < κ. As (Zξ)x covers X, we have
cov(J ⊗ I) ≥ min{cov(I), cov(J )}.

Let I be a σ–ideal on a Polish space X. Recall that H ⊆ X is an I–hull of a set A ⊆ X
if H is Borel and for every Borel B ⊆ H either B ∈ I or B ∩ A 6= ∅. We say that a
σ–ideal I on X has the hull property if every subset of X has an I–hull.

Proposition 5.5 If I is a Borel–on–Borel σ–ideal on X, then M(I) does not possess
the hull property.

Proof. Consider A = V × X, where V ⊆ X is a Bernstein set. Assume H ⊇ A is a
Borel set and consider L = {x ∈ X : Hx /∈ I}. Notice that L is Borel. Since V ⊆ L, the
set L has to be co–countable. In particular, there is x ∈ L \ V and the set {x} ×Hx is
an M(I)–positive Borel subset of H disjoint with A.

6 Additional remarks and open questions

It is well known that every Borel function on [0, 1]2 is nice on a big domain (of Baire
class 1 on a set of Lebesgue measure 1, continuous on a co–meager set). However, in [2]
it is proved that this is not the case if instead of Null or Meager ideals we would consider
M(Null) or M(Meager). More precisely, for every α ≥ 2 there is a Borel function
g : [0, 1]2 → [0, 1] such that for every Borel set M ∈ M(Null) (or M(Meager)) we can
find x ∈ [0, 1] such that the function gx|M c

x is not Σ0
α-measurable (here gx(y) = g(x, y)).

On the other hand (see [2]), these pathological points can be covered by null and meager
sets, i.e. for every M as above, the set

{x : gx|M c
x is not Σ0

α-measurable} ∈ Null ∩Meager.

The following notion is motivated by the above considerations.

Let X be an uncountable Polish space. Let J , I be σ–ideals of subsets of X. We say
that J is I–thin if for each 2 ≤ α < ω1 there is a Borel function g : X2 → X such
that for all M ∈ Mα(I) and C ∈ J there is t0 ∈ X \ C such that gt0|(X \Mt0) is not
Σ0
α-measurable. Using the notion of thinness, the theorems cited above can be stated in

this form: {∅} is Null–thin and Meager–thin, whereas Null and Meager are not. We show
the following.

Proposition 6.1 Every σ–ideal with property (M) is I–thin for every σ–ideal I that is
Σ0
α–on–Π0

α for all α > α0.
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Proof. Let I be a Borel–on–Borel σ–ideal on X and let J be a σ–ideal on X with the
property (M). Assume that 2 ≤ α < ω1. Let f : X → X be a Borel function witnessing
(M) for J . Let U ⊆ X × X2 be universal for Σ0

α(X2). As in the proof of Theorem
4.2 define H : X3 → X3 by H(x, y, z) = (f(x), y, z), let V = H−1[U ] and consider
A = {(x, y) ∈ X2 : (x, x, y) /∈ V }. Notice that A is Borel, and thus the set

A′ = A ∩ {(t, y) : Act ∈ I}

is Σ0
γ for some γ < ω1.

Let F : {0, 1}ω ×X → X be a function from Theorem 2.1 for the set A′ and the ordinal
γ. Define G : {0, 1}ω ×X → X2 by

G(c, x) = (x, F (c, x)).

Consider a Borel subset D of {0, 1}ω such that D /∈ Σ0
α({0, 1}ω) and let

D̃ = G[D × π1[A
′]].

Notice that since G is one–to–one and Borel, the set D̃ is Borel. Clearly D̃ ⊆ A′. Let
g : X2 → {x0, x1} be the characteristic function of D̃, where x0 and x1 are distinct points
of X. Let M ∈ Mα(I) ∩ Σ0

α and C ∈ J . There is x ∈ X such that Ux = M . So, for
every t ∈ f−1[{x}] we have At = M c

t and, therefore, t ∈ π1[A
′]. Since f−1[{x}] \ C 6= ∅,

there is t0 ∈ X \ C with

(gt0 |(X \Mt0))
−1 [{x1}] = (X \Mt0) ∩ D̃t0 = D̃t0 = G[D × {t0}].

Since c 7→ G(c, t0) is continuous and one-to-one, the set G[D × {t0}] is homeomorphic
to D. Hence gt0|(X \Mt0) is not Σ0

α-measurable.

We finish with a list of open questions.

Problem 6.2 Suppose X is an uncountable Polish space and I is a σ–ideal of subsets
of X.

(i) Is it true that Mα(I) ( Mα+1(I) or even Mα(F , I) ( Mα+1(F , I) for every
α < ω1, I ∈ {Null,Meager} and every family F as in Theorem 3.3?

(ii) Is it provable in ZFC that for every I containing all singletons we have add(I) =
cofin(I)?

(iii) Does there exist I with the hull property and the complex Borel base property?

(iv) Let K([0, 1]2) stand for the set of all nonempty compact subsets of [0, 1]2 with the
Vietoris topology. What is the complexity of the set {K ∈ K([0, 1]2) : K ∈ M(I)}
for I ∈ {Null,Meager}? Is it Π1

1-complete?
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