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Abstract

This is a leftover note containing some facts and proofs which were excluded
from [2]. We present here several facts concerning some orderings on ideals on ω

and cardinal invariants connected to these orderings.

1 Orderings on ideals

All unexplained terminology is in [2] and [1]. Recall some classical partial orderings on
the family of ideals (on ω).

(RB) Rudin-Blass order: I ≤RB J if there is a finite–to–one f : ω → ω such that
A ∈ I ⇔ f−1[A] ∈ J ,

(RK) Rudin-Keisler order: I ≤RK J if there is an f : ω → ω such that A ∈ I ⇔
f−1[A] ∈ J ,

(KB) Katětov-Blass order: I ≤KB J if there is a finite–to–one f : ω → ω such that
A ∈ I ⇒ f−1[A] ∈ J ,

(K) Katětov order: I ≤K J if there is an f : ω → ω such that A ∈ I ⇒ f−1[A] ∈ J .

Clearly we have the following diagram of implications between these orders:

I ≤KB J - I ≤K J

I ≤RB J

6

- I ≤RK J

6

Of course, we can use these orders for filters as well, for example F ≤RB G iff F∗ ≤RB G∗.
Several deep results were proved about these partial orders (see e.g. [5]).

Definition 1.1 A filter F on ω is feeble if there is a finite-to-one function f : ω → ω
such that f ′′[F ] is the Frechet filter Fin∗, i.e. Fin ≤RB F∗.
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The theorem due to Jalali–Naini and Talagrand (see e.g. [9]) implies that every analytic
filter is feeble, so there is a lot of non–trivial feeble filters.

Fact 1.2 If I is an analytic P–ideal, then I∗ is feeble.

We investigate three orders stronger than the Katětov order:

(pm) I ≤pm J if there is a permutation f : ω → ω such that A ∈ I ⇒ f−1[A] ∈ J ,

(1-1) I ≤1−1 J if there is a one–to–one f : ω → ω such that A ∈ I ⇒ f−1[A] ∈ J ,

(s.i.) I ≤s.i. J if there is a strictly increasing f : ω → ω such that A ∈ I ⇒ f−1[A] ∈ J .

Clearly, I ≤pm J means that I can be permuted into J (by f−1). We can give alternative
definitions of ≤1−1 and ≤s.i.. Assume I is an ideal on ω. Then we will use the following
notations:

• For a set X ∈ I+ let I ↾ X = {A ⊆ ω : A ∩ X ∈ I}.

• For a set X = {x0 < x1 < . . . } ∈ [ω]ω, the copy of I on X:

I(X) = {A ⊆ ω : {n ∈ ω : xn ∈ A} ∈ I}.

Analogously we can define the copy of a filter on an infinite set X.

• For an injective sequence x̄ = 〈xn : n ∈ ω〉 ∈ ωω, the copy of I on x̄:

I(x̄) = {A ⊆ ω : {n ∈ ω : xn ∈ A} ∈ I}.

By the definitions both I ≤pm J and I ≤s.i. J implies I ≤1−1 J which implies I ≤KB J .
What about other implications?

Proposition 1.3 The following hold for any ideal I containing all finite sets:

(i) Fin ≤pm J and Fin ≤s.i. J (so Fin ≤1−1 J as well).

(ii) I ≤pm Fin if and only if J = Fin.

(iii) If ⊑ ∈ {≤s.i.,≤1−1,≤KB,≤K,≤RB,≤RK} then I ⊑ Fin if and only if I is not tall.

(iv) If J strictly extends Fin then I ≤1−1 J if and only if I ≤pm J .

(v) If J strictly extends Fin and I ≤s.i. J then I ≤pm J .

Proof. Of these (i) and (ii) are trivial. (iii) is a consequence of the easy fact that if I
is not tall then I ≤RB Fin and if I ≤K Fin then I is not tall.

We will prove (iv) which implies (v). Assume f shows I ≤1−1 J . We can modify f on
an infinite element A of J to be a permutation g such that g ↾ (ω \ A) ≡ f ↾ (ω \ A)
and g[A] = f [A] ∪ (ω \ ran(f)). Then g shows I ≤pm J .
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Now we present an example of two ideals I, J , such that I ≤pm J but I �s.i. J . It
follows that the ≤pm ordering is strictly stronger than s.i..

Example. Let (kn) be a sequence of natural numbers such that k1 = 1 and kn+1 ≥ n kn.
Let f be the function defined by

f(kn + l) = kn+1 − (l + 1)

for n ∈ ω and 0 ≤ l < kn+1. Loosely speaking f is the permutation inverting the order
on intervals [kn, kn+1). Denote I = f [Z]. Clearly, I ≤pm Z.

For a set X ⊆ ω let

d∗(X) = lim inf
n→∞

|X ∩ n|

n
.

Of course X ∈ Z∗ if and only if d∗(X) = 1.

Proposition 1.4 If the ideal I is defined as above then I �s.i. Z.

Proof. Suppose a contrario that P ⊆ ω is a I–intersection of f”[Z∗]. Denote by
Pn = P ∩ [kn, kn+1).

CLAIM. The function defined by

g(n) =
|Pn|

|P ∩ kn|

is unbounded.

First, notice that there is an ε > 0 such that for infinitely many n

|Pn|

kn

> ε.

Indeed, it is not hard to see that otherwise I = f−1[P ] ∈ Z, and thus f [ω \ I] ∈ f”[F∗]
and f [ω \ I] ∩ P = ∅, so P cannot be an I–intersection of f”[Z∗]. Now, suppose for a
contradiction that there is C > 0 such that g(n) ≤ C for every n. Therefore,

ε <
|Pn|

kn

≤
C|P ∩ kn|

kn

for infinitely many n. So, there is ε′ = ε/C such that for infinitely many n

|P ∩ kn|

kn

> ε′.

Therefore

ε′ <
|P ∩ kn+1|

kn+1

≤
|Pn| + kn

kn+1

≤
C|P ∩ kn|

kn+1

+
1

n
≤

C kn

kn+1

+
1

n
≤

C + 1

n
,

3



for infinitely many n, a contradiction which proves the claim.

Now we are ready to construct a set F ∈ Z∗ which will witness that P is not an I–
intersection of f”[Z∗]. There is a sequence ln such that g(ln) ≥ n. Without loss of
generality we will assume that g(n) ≥ n. Let Fn be the first |P ∩ kn| many elements of
Pn and define

F = ω \
⋃

n

f−1[Fn].

We will show that F ∈ Z∗ but f [F ] /∈ Z∗(P ).

Notice that if kn ≤ i < kn+1, then

|F ∩ i|

i
≥

kn + (n − 2)|P ∩ kn|

kn + n|P ∩ kn|
≥ 1 −

2|P ∩ kn|

kn + nbn

≥ 1 −
2

1 + n
.

So, if i > kn then

|F ∩ i|

i
≥ 1 −

2

1 + n

and thus F ∈ Z∗.

Now, denote X = f [F ]. We will show that for every n there is kn ≤ x < kn+1 such that
x = pj for some j and

|{i < j : pi ∈ X}|

j
<

1

2
.

Indeed, let n > 1 and let x be the first element of Pn \ Fn. Since x ∈ P , there is j ∈ ω
such that x = pj. Then

|{i < j : pi ∈ X}|

j
≤

|P ∩ kn|

|P ∩ kn| + |Fn|
≤

|P ∩ kn|

2|P ∩ kn|
=

1

2
,

so

|{i < n : pi ∈ X}|

n
<

1

2

for infinitely many n. Hence, X /∈ Z∗(P ).

2 Characters of filters and orderings

The character of a filter F , denoted by χ(F) is the minimal cardinality of a family
generating F . Similarly, the character of an ideal I is the character of its dual filter.
The following theorem reveals some properties of the characters of non-feeble filters.
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Theorem 2.1 (R. C. Solomon [7] and P. Simon [unpublished]) If a filter has character
less then b then it is feeble but there is a non-feeble filter generated by b sets.

Now, we present a natural way of associating cardinal coefficients to partial orders on
ideals. However, we will focus only on few of them.

Definition 2.2 Let F be a family with SFIP (or simply a filter) and assume that I
is an ideal. We say that X = {x0 < x1 < . . . } ∈ [ω]ω is an I-intersection of F if
ω \ F ∈ I(X) for each F ∈ F ; and an injective sequence x̄ = 〈xn : n ∈ ω〉 ∈ ωω is a
weak–I–intersection of F if ω \ F ∈ I(x̄) for each F ∈ F .

In other words, a set X is an I–intersection of F if every element of F is in the copy of
I∗ on X. Similarly, a set X is a weak–I–intersection of F if we can reorder the elements
of X in such a way that elements of F are in the copy of I∗ on the rearranged X. It
is trivial to check that F has an I–intersection (a weak–I–intersection) iff F∗ ≤s.i. I
(F∗ ≤1−1 I).

Notice that in the case of I generated by Fin and one infinite co–infinite set both of the
above notions coincide with the notion of the pseudo-intersection of F .

Definition 2.3 Let ⊑ be a partial order on ideals. Then the ⊑-character of I:

χ⊑(I) = min{χ(J ) : J 6⊑ I}.

The ⊑-character number: p(⊑) = sup{χ⊑(I) : I is an ideal on ω}.

Of course, these cardinals are not necessarily defined. We will abbreviate our notation.
For example, we will write χpm(I) instead of χ≤pm

(I) and p(pm) instead of p(≤pm).
Similarly we have χ1−1(I) and p(1 − 1), χs.i.(I) and p(s.i.), χKB(I) and p(KB), and so
on.

Clearly, χs.i.(I) (χ1−1(I)) is the smallest cardinality of a family F with SFIP but without
a (weak–)I–intersections. Furthermore χpm(Fin) = 1, and if ⊑ ∈ {≤s.i.,≤1−1,≤KB,≤K

,≤RB,≤RK} then χ⊑(Fin) = p.

The cardinal p(pm) is the smallest cardinal κ such that there is no ideal containing up
to permutation all ideals generated by at most κ many elements.

The following facts are trivial consequences of the definitions:

Fact 2.4 For ideals I, J containing all finite sets the following facts hold

(i) If I ⊑ J and χ⊑(J ) is well-defined, then χ⊑(I) is also well-defined and χ⊑(I) ≤
χ⊑(J ).

(ii) If I ⊑0 J implies I ⊑1 J for each I and χ⊑1
(J ) is well-defined, then χ⊑0

(J ) is
also well-defined and χ⊑0

(J ) ≤ χ⊑1
(J ).

(iii) χK(I) is well–defined for each ideal I, since otherwise I would be a ≤K–maximal
ideal, which is impossible (since I �K I × I, where “×” stands for the Fubini
product, see [5]). So, all the cardinal invariants mentioned above are well–defined.

5



Corollary 2.5 If I strictly extends Fin, then p ≤ χs.i.(I) ≤ χpm(I) = χ1−1(I) so
p ≤ p(s.i.) ≤ p(pm) = p(1 − 1). In a diagram for I strictly extending Fin:

χs.i.(I) - χpm(I) = χ1−1(I) - χKB(I) - χK(I)

p

6

χRB(I)

6

- χRK(I)

6

where one should read a → b as a ≤ b.

In fact, Theorem 2.1 implies that for many ideals χRB(I) = χRK(I) ≤ ω. In case of this
orderings the following definition makes more sense:

χ⊒(I) = min{χ(J ) : J 6⊒ I}.

E.g. Theorem 2.1 can be expressed as χ≥RB
(Fin) = b. However, in what follows we will

concentrate on χs.i. and χpm.

We have an easy upper bound for χpm(I) for analytic I.

Proposition 2.6 If I is an analytic ideal, then χpm(I) ≤ b.

We will see later that the assumption on definability of the ideal is necessary here.

Recall that for a tall ideal I the coefficient add
∗(I) denotes the minimal cardinality of

a family in I∗ without a pseudo–intersection from I∗. If p < add
∗(I), then a filter

witnessing p cannot have a weak–I–intersection. Therefore

Proposition 2.7 If p < add
∗(I) then χpm(I) = p.

It follows that under p < add
∗(I) and p < b there is a filter which is feeble but does not

have a weak–I–intersection.

We finish this section by an example of an ideal I such that I ≤pm Z but I �s.i. Z.
The existence of this ideal implies that the property of possessing an I–intersection is
not closed under permutations and ≤s.i. is strictly stronger than ≤pm.

Problem 2.8 Is it true that χpm(I) = χs.i.(I) for every ideal I strictly extending Fin
or at least, does it hold for a large family of ideals? Is p(pm) = p(s.i.)?

3 Universal filters

It will be convenient to introduce the following notation.

Definition 3.1 A filter G on ω is κ–universal if F ≤pm G for every F of character κ.

Clearly,

χpm(I) = min{κ : I∗ is not κ−universal}.
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