Note on orderings on ideals and some cardinal coefficients

Piotr Borodulin-Nadzieja, Barnabás Farkas

Abstract

This is a leftover note containing some facts and proofs which were excluded from [2]. We present here several facts concerning some orderings on ideals on ω and cardinal invariants connected to these orderings.

1 Orderings on ideals

All unexplained terminology is in [2] and [1]. Recall some classical partial orderings on the family of ideals (on ω).
(RB) Rudin-Blass order: $\mathcal{I} \leq_{\mathrm{RB}} \mathcal{J}$ if there is a finite-to-one $f: \omega \rightarrow \omega$ such that $A \in \mathcal{I} \Leftrightarrow f^{-1}[A] \in \mathcal{J}$,
(RK) Rudin-Keisler order: $\mathcal{I} \leq_{\mathrm{RK}} \mathcal{J}$ if there is an $f: \omega \rightarrow \omega$ such that $A \in \mathcal{I} \Leftrightarrow$ $f^{-1}[A] \in \mathcal{J}$,
(KB) Katětov-Blass order: $\mathcal{I} \leq_{\text {KB }} \mathcal{J}$ if there is a finite-to-one $f: \omega \rightarrow \omega$ such that $A \in \mathcal{I} \Rightarrow f^{-1}[A] \in \mathcal{J}$,
(K) Katětov order: $\mathcal{I} \leq_{\mathrm{K}} \mathcal{J}$ if there is an $f: \omega \rightarrow \omega$ such that $A \in \mathcal{I} \Rightarrow f^{-1}[A] \in \mathcal{J}$.

Clearly we have the following diagram of implications between these orders:

Of course, we can use these orders for filters as well, for example $\mathcal{F} \leq_{\mathrm{RB}} \mathcal{G}$ iff $\mathcal{F}^{*} \leq_{\mathrm{RB}} \mathcal{G}^{*}$. Several deep results were proved about these partial orders (see e.g. [5]).

Definition 1.1 A filter \mathcal{F} on ω is feeble if there is a finite-to-one function $f: \omega \rightarrow \omega$ such that $f^{\prime \prime}[\mathcal{F}]$ is the Frechet filter Fin*, i.e. Fin $\leq_{\mathrm{RB}} \mathcal{F}^{*}$.

The theorem due to Jalali-Naini and Talagrand (see e.g. [9]) implies that every analytic filter is feeble, so there is a lot of non-trivial feeble filters.

Fact 1.2 If \mathcal{I} is an analytic P-ideal, then \mathcal{I}^{*} is feeble.
We investigate three orders stronger than the Katětov order:
$(\mathrm{pm}) \mathcal{I} \leq_{\mathrm{pm}} \mathcal{J}$ if there is a permutation $f: \omega \rightarrow \omega$ such that $A \in \mathcal{I} \Rightarrow f^{-1}[A] \in \mathcal{J}$,
(1-1) $\mathcal{I} \leq_{1-1} \mathcal{J}$ if there is a one-to-one $f: \omega \rightarrow \omega$ such that $A \in \mathcal{I} \Rightarrow f^{-1}[A] \in \mathcal{J}$,
(s.i.) $\mathcal{I} \leq_{\text {s.i. }} \mathcal{J}$ if there is a strictly increasing $f: \omega \rightarrow \omega$ such that $A \in \mathcal{I} \Rightarrow f^{-1}[A] \in \mathcal{J}$.

Clearly, $\mathcal{I} \leq_{\mathrm{pm}} \mathcal{J}$ means that \mathcal{I} can be permuted into \mathcal{J} (by f^{-1}). We can give alternative definitions of \leq_{1-1} and $\leq_{\text {s.i. }}$. Assume \mathcal{I} is an ideal on ω. Then we will use the following notations:

- For a set $X \in \mathcal{I}^{+}$let $\mathcal{I} \upharpoonright X=\{A \subseteq \omega: A \cap X \in \mathcal{I}\}$.
- For a set $X=\left\{x_{0}<x_{1}<\ldots\right\} \in[\omega]^{\omega}$, the copy of \mathcal{I} on X :

$$
\mathcal{I}(X)=\left\{A \subseteq \omega:\left\{n \in \omega: x_{n} \in A\right\} \in \mathcal{I}\right\} .
$$

Analogously we can define the copy of a filter on an infinite set X.

- For an injective sequence $\bar{x}=\left\langle x_{n}: n \in \omega\right\rangle \in \omega^{\omega}$, the copy of \mathcal{I} on \bar{x} :

$$
\mathcal{I}(\bar{x})=\left\{A \subseteq \omega:\left\{n \in \omega: x_{n} \in A\right\} \in \mathcal{I}\right\} .
$$

By the definitions both $\mathcal{I} \leq_{\text {pm }} \mathcal{J}$ and $\mathcal{I} \leq_{\text {s.i. }} \mathcal{J}$ implies $\mathcal{I} \leq_{1-1} \mathcal{J}$ which implies $\mathcal{I} \leq_{\text {KB }} \mathcal{J}$. What about other implications?

Proposition 1.3 The following hold for any ideal \mathcal{I} containing all finite sets:
(i) Fin $\leq_{\mathrm{pm}} \mathcal{J}$ and Fin $\leq_{\text {s.i. }} \mathcal{J}$ (so Fin $\leq_{1-1} \mathcal{J}$ as well).
(ii) $\mathcal{I} \leq_{\mathrm{pm}}$ Fin if and only if $\mathcal{J}=$ Fin.
(iii) If $\sqsubseteq \in\left\{\leq_{\mathrm{s} . \mathrm{i} .}, \leq_{1-1}, \leq_{\mathrm{KB}}, \leq_{\mathrm{K}}, \leq_{\mathrm{RB}}, \leq_{\mathrm{RK}}\right\}$ then $\mathcal{I} \sqsubseteq$ Fin if and only if \mathcal{I} is not tall.
(iv) If \mathcal{J} strictly extends Fin then $\mathcal{I} \leq_{1-1} \mathcal{J}$ if and only if $\mathcal{I} \leq_{p m} \mathcal{J}$.
(v) If \mathcal{J} strictly extends Fin and $\mathcal{I} \leq_{\text {s.i. }} \mathcal{J}$ then $\mathcal{I} \leq \leq_{\text {pm }} \mathcal{J}$.

Proof. Of these (i) and (ii) are trivial. (iii) is a consequence of the easy fact that if \mathcal{I} is not tall then $\mathcal{I} \leq_{\mathrm{RB}}$ Fin and if $\mathcal{I} \leq_{\mathrm{K}}$ Fin then \mathcal{I} is not tall.
We will prove (iv) which implies (v). Assume f shows $\mathcal{I} \leq_{1-1} \mathcal{J}$. We can modify f on an infinite element A of \mathcal{J} to be a permutation g such that $g \upharpoonright(\omega \backslash A) \equiv f \upharpoonright(\omega \backslash A)$ and $g[A]=f[A] \cup(\omega \backslash \operatorname{ran}(f))$. Then g shows $\mathcal{I} \leq{ }_{\mathrm{pm}} \mathcal{J}$.

Now we present an example of two ideals \mathcal{I}, \mathcal{J}, such that $\mathcal{I} \leq_{\mathrm{pm}} \mathcal{J}$ but $\mathcal{I} \not \mathbb{x}_{\text {s.i. }} \mathcal{J}$. It follows that the \leq_{pm} ordering is strictly stronger than s.i..

Example. Let (k_{n}) be a sequence of natural numbers such that $k_{1}=1$ and $k_{n+1} \geq n k_{n}$. Let f be the function defined by

$$
f\left(k_{n}+l\right)=k_{n+1}-(l+1)
$$

for $n \in \omega$ and $0 \leq l<k_{n+1}$. Loosely speaking f is the permutation inverting the order on intervals $\left[k_{n}, k_{n+1}\right)$. Denote $\mathcal{I}=f[\mathcal{Z}]$. Clearly, $\mathcal{I} \leq_{\mathrm{pm}} \mathcal{Z}$.
For a set $X \subseteq \omega$ let

$$
d_{*}(X)=\liminf _{n \rightarrow \infty} \frac{|X \cap n|}{n} .
$$

Of course $X \in \mathcal{Z}^{*}$ if and only if $d_{*}(X)=1$.
Proposition 1.4 If the ideal \mathcal{I} is defined as above then $\mathcal{I} \not \mathbb{\not}_{\text {s.i. }} \mathcal{Z}$.
Proof. Suppose a contrario that $P \subseteq \omega$ is a \mathcal{I}-intersection of f " $\left[\mathcal{Z}^{*}\right]$. Denote by $P_{n}=P \cap\left[k_{n}, k_{n+1}\right)$.

CLAIM. The function defined by

$$
g(n)=\frac{\left|P_{n}\right|}{\left|P \cap k_{n}\right|}
$$

is unbounded.
First, notice that there is an $\varepsilon>0$ such that for infinitely many n

$$
\frac{\left|P_{n}\right|}{k_{n}}>\varepsilon .
$$

Indeed, it is not hard to see that otherwise $I=f^{-1}[P] \in \mathcal{Z}$, and thus $f[\omega \backslash I] \in f^{\prime \prime}\left[\mathcal{F}^{*}\right]$ and $f[\omega \backslash I] \cap P=\emptyset$, so P cannot be an \mathcal{I}-intersection of $f^{\prime \prime}\left[\mathcal{Z}^{*}\right]$. Now, suppose for a contradiction that there is $C>0$ such that $g(n) \leq C$ for every n. Therefore,

$$
\varepsilon<\frac{\left|P_{n}\right|}{k_{n}} \leq \frac{C\left|P \cap k_{n}\right|}{k_{n}}
$$

for infinitely many n. So, there is $\varepsilon^{\prime}=\varepsilon / C$ such that for infinitely many n

$$
\frac{\left|P \cap k_{n}\right|}{k_{n}}>\varepsilon^{\prime} .
$$

Therefore

$$
\varepsilon^{\prime}<\frac{\left|P \cap k_{n+1}\right|}{k_{n+1}} \leq \frac{\left|P_{n}\right|+k_{n}}{k_{n+1}} \leq \frac{C\left|P \cap k_{n}\right|}{k_{n+1}}+\frac{1}{n} \leq \frac{C k_{n}}{k_{n+1}}+\frac{1}{n} \leq \frac{C+1}{n},
$$

for infinitely many n, a contradiction which proves the claim.
Now we are ready to construct a set $F \in \mathcal{Z}^{*}$ which will witness that P is not an \mathcal{I} intersection of $f^{\prime \prime}\left[\mathcal{Z}^{*}\right]$. There is a sequence l_{n} such that $g\left(l_{n}\right) \geq n$. Without loss of generality we will assume that $g(n) \geq n$. Let F_{n} be the first $\left|P \cap k_{n}\right|$ many elements of P_{n} and define

$$
F=\omega \backslash \bigcup_{n} f^{-1}\left[F_{n}\right] .
$$

We will show that $F \in \mathcal{Z}^{*}$ but $f[F] \notin \mathcal{Z}^{*}(P)$.
Notice that if $k_{n} \leq i<k_{n+1}$, then

$$
\frac{|F \cap i|}{i} \geq \frac{k_{n}+(n-2)\left|P \cap k_{n}\right|}{k_{n}+n\left|P \cap k_{n}\right|} \geq 1-\frac{2\left|P \cap k_{n}\right|}{k_{n}+n b_{n}} \geq 1-\frac{2}{1+n} .
$$

So, if $i>k_{n}$ then

$$
\frac{|F \cap i|}{i} \geq 1-\frac{2}{1+n}
$$

and thus $F \in \mathcal{Z}^{*}$.
Now, denote $X=f[F]$. We will show that for every n there is $k_{n} \leq x<k_{n+1}$ such that $x=p_{j}$ for some j and

$$
\frac{\left|\left\{i<j: p_{i} \in X\right\}\right|}{j}<\frac{1}{2} .
$$

Indeed, let $n>1$ and let x be the first element of $P_{n} \backslash F_{n}$. Since $x \in P$, there is $j \in \omega$ such that $x=p_{j}$. Then

$$
\frac{\left|\left\{i<j: p_{i} \in X\right\}\right|}{j} \leq \frac{\left|P \cap k_{n}\right|}{\left|P \cap k_{n}\right|+\left|F_{n}\right|} \leq \frac{\left|P \cap k_{n}\right|}{2\left|P \cap k_{n}\right|}=\frac{1}{2},
$$

so

$$
\frac{\left|\left\{i<n: p_{i} \in X\right\}\right|}{n}<\frac{1}{2}
$$

for infinitely many n. Hence, $X \notin \mathcal{Z}^{*}(P)$.

2 Characters of filters and orderings

The character of a filter \mathcal{F}, denoted by $\chi(\mathcal{F})$ is the minimal cardinality of a family generating \mathcal{F}. Similarly, the character of an ideal \mathcal{I} is the character of its dual filter. The following theorem reveals some properties of the characters of non-feeble filters.

Theorem 2.1 (R. C. Solomon [7] and P. Simon [unpublished]) If a filter has character less then \mathfrak{b} then it is feeble but there is a non-feeble filter generated by \mathfrak{b} sets.

Now, we present a natural way of associating cardinal coefficients to partial orders on ideals. However, we will focus only on few of them.

Definition 2.2 Let \mathcal{F} be a family with SFIP (or simply a filter) and assume that \mathcal{I} is an ideal. We say that $X=\left\{x_{0}<x_{1}<\ldots\right\} \in[\omega]^{\omega}$ is an \mathcal{I}-intersection of \mathcal{F} if $\omega \backslash F \in \mathcal{I}(X)$ for each $F \in \mathcal{F}$; and an injective sequence $\bar{x}=\left\langle x_{n}: n \in \omega\right\rangle \in \omega^{\omega}$ is a weak- \mathcal{I}-intersection of \mathcal{F} if $\omega \backslash F \in \mathcal{I}(\bar{x})$ for each $F \in \mathcal{F}$.

In other words, a set X is an \mathcal{I}-intersection of \mathcal{F} if every element of \mathcal{F} is in the copy of \mathcal{I}^{*} on X. Similarly, a set X is a weak $-\mathcal{I}$-intersection of \mathcal{F} if we can reorder the elements of X in such a way that elements of \mathcal{F} are in the copy of \mathcal{I}^{*} on the rearranged X. It is trivial to check that \mathcal{F} has an \mathcal{I}-intersection (a weak \mathcal{I}-intersection) iff $\mathcal{F}^{*} \leq_{\text {s.i. }} \mathcal{I}$ $\left(\mathcal{F}^{*} \leq_{1-1} \mathcal{I}\right)$.
Notice that in the case of \mathcal{I} generated by Fin and one infinite co-infinite set both of the above notions coincide with the notion of the pseudo-intersection of \mathcal{F}.

Definition 2.3 Let \sqsubseteq be a partial order on ideals. Then the \sqsubseteq-character of \mathcal{I} :

$$
\chi_{\sqsubseteq}(\mathcal{I})=\min \{\chi(\mathcal{J}): \mathcal{J} \nsubseteq \mathcal{I}\} .
$$

The \sqsubseteq-character number: $\mathfrak{p}(\sqsubseteq)=\sup \left\{\chi_{\sqsubseteq}(\mathcal{I}): \mathcal{I}\right.$ is an ideal on $\left.\omega\right\}$.
Of course, these cardinals are not necessarily defined. We will abbreviate our notation. For example, we will write $\chi_{\mathrm{pm}}(\mathcal{I})$ instead of $\chi_{\leq_{\mathrm{pm}}}(\mathcal{I})$ and $\mathfrak{p}(\mathrm{pm})$ instead of $\mathfrak{p}\left(\leq_{\mathrm{pm}}\right)$. Similarly we have $\chi_{1-1}(\mathcal{I})$ and $\mathfrak{p}(1-1)$, $\chi_{\text {s.i. }}(\mathcal{I})$ and $\mathfrak{p}($ s.i. $), \chi_{\mathrm{KB}}(\mathcal{I})$ and $\mathfrak{p}(\mathrm{KB})$, and so on.
Clearly, $\chi_{\text {s.i. }}(\mathcal{I})\left(\chi_{1-1}(\mathcal{I})\right)$ is the smallest cardinality of a family \mathcal{F} with SFIP but without a (weak-) \mathcal{I}-intersections. Furthermore $\chi_{\mathrm{pm}}($ Fin $)=1$, and if $\sqsubseteq \in\left\{\leq_{\text {s.i. }}, \leq_{1-1}, \leq_{\mathrm{KB}}, \leq_{\mathrm{K}}\right.$ $\left., \leq_{R B}, \leq_{R K}\right\}$ then $\chi_{\sqsubseteq}($ Fin $)=\mathfrak{p}$.
The cardinal $\mathfrak{p}(\mathrm{pm})$ is the smallest cardinal κ such that there is no ideal containing up to permutation all ideals generated by at most κ many elements.
The following facts are trivial consequences of the definitions:
Fact 2.4 For ideals \mathcal{I}, \mathcal{J} containing all finite sets the following facts hold
(i) If $\mathcal{I} \sqsubseteq \mathcal{J}$ and $\chi_{\sqsubseteq}(\mathcal{J})$ is well-defined, then $\chi_{\sqsubseteq}(\mathcal{I})$ is also well-defined and $\chi_{\sqsubseteq}(\mathcal{I}) \leq$ $\chi_{\sqsubseteq}(\mathcal{J})$.
(ii) If $\mathcal{I} \sqsubseteq_{0} \mathcal{J}$ implies $\mathcal{I} \sqsubseteq_{1} \mathcal{J}$ for each \mathcal{I} and $\chi_{\sqsubseteq_{1}}(\mathcal{J})$ is well-defined, then $\chi_{\sqsubseteq_{0}}(\mathcal{J})$ is also well-defined and $\chi \sqsubseteq_{0}(\mathcal{J}) \leq \chi \sqsubseteq_{1}(\mathcal{J})$.
(iii) $\chi_{\mathrm{K}}(\mathcal{I})$ is well-defined for each ideal \mathcal{I}, since otherwise \mathcal{I} would be $a \leq_{K}$-maximal ideal, which is impossible (since $\mathcal{I} \leq_{K} \mathcal{I} \times \mathcal{I}$, where " \times " stands for the Fubini product, see [5]). So, all the cardinal invariants mentioned above are well-defined.

Corollary 2.5 If \mathcal{I} strictly extends Fin, then $\mathfrak{p} \leq \chi_{\text {s.i. }}(\mathcal{I}) \leq \chi_{\mathrm{pm}}(\mathcal{I})=\chi_{1-1}(\mathcal{I})$ so $\mathfrak{p} \leq \mathfrak{p}($ s.i. $) \leq \mathfrak{p}(\mathrm{pm})=\mathfrak{p}(1-1)$. In a diagram for \mathcal{I} strictly extending Fin:

where one should read $a \rightarrow b$ as $a \leq b$.
In fact, Theorem 2.1 implies that for many ideals $\chi_{\mathrm{RB}}(\mathcal{I})=\chi_{\mathrm{RK}}(\mathcal{I}) \leq \omega$. In case of this orderings the following definition makes more sense:

$$
\chi_{\sqsupseteq}(\mathcal{I})=\min \{\chi(\mathcal{J}): \mathcal{J} \nsupseteq \mathcal{I}\} .
$$

E.g. Theorem 2.1 can be expressed as $\chi \geq_{\mathrm{RB}}($ Fin $)=\mathfrak{b}$. However, in what follows we will concentrate on $\chi_{\text {s.i. }}$ and $\chi_{p m}$.
We have an easy upper bound for $\chi_{\mathrm{pm}}(\mathcal{I})$ for analytic \mathcal{I}.
Proposition 2.6 If \mathcal{I} is an analytic ideal, then $\chi_{\mathrm{pm}}(\mathcal{I}) \leq \mathfrak{b}$.
We will see later that the assumption on definability of the ideal is necessary here.
Recall that for a tall ideal \mathcal{I} the coefficient $\operatorname{add}^{*}(\mathcal{I})$ denotes the minimal cardinality of a family in \mathcal{I}^{*} without a pseudo-intersection from \mathcal{I}^{*}. If $\mathfrak{p}<\operatorname{add}^{*}(\mathcal{I})$, then a filter witnessing \mathfrak{p} cannot have a weak- \mathcal{I}-intersection. Therefore

Proposition 2.7 If $\mathfrak{p}<\operatorname{add}^{*}(\mathcal{I})$ then $\chi_{\mathrm{pm}}(\mathcal{I})=\mathfrak{p}$.
It follows that under $\mathfrak{p}<\operatorname{add}^{*}(\mathcal{I})$ and $\mathfrak{p}<\mathfrak{b}$ there is a filter which is feeble but does not have a weak- \mathcal{I}-intersection.
We finish this section by an example of an ideal \mathcal{I} such that $\mathcal{I} \leq_{p m} \mathcal{Z}$ but $\mathcal{I} \not \leq_{\text {s.i. }} \mathcal{Z}$. The existence of this ideal implies that the property of possessing an \mathcal{I}-intersection is not closed under permutations and $\leq_{\text {s.i. }}$ is strictly stronger than \leq_{pm}.

Problem 2.8 Is it true that $\chi_{\mathrm{pm}}(\mathcal{I})=\chi_{\text {s.i. }}(\mathcal{I})$ for every ideal \mathcal{I} strictly extending Fin or at least, does it hold for a large family of ideals? Is $\mathfrak{p}(\mathrm{pm})=\mathfrak{p}$ (s.i.)?

3 Universal filters

It will be convenient to introduce the following notation.
Definition 3.1 A filter \mathcal{G} on ω is κ-universal if $\mathcal{F} \leq_{\mathrm{pm}} \mathcal{G}$ for every \mathcal{F} of character κ.
Clearly,

$$
\chi_{p m}(\mathcal{I})=\min \left\{\kappa: \mathcal{I}^{*} \text { is not } \kappa \text {-universal }\right\} .
$$

References

[1] A. Blass, Combinatorial cardinal characteristics of the continuum, Handbook of Set Theory, editors: M. Foreman, M. Magidor, and A. Kanamori, Springer Netherlands, 2010, pp 395-489
[2] P. Borodulin-Nadzieja, B. Farkas, On certain order on ideals and related cardinal coefficients, preprint.
[3] J. Brendle, S. Shelah, Ultrafilters on ω - their ideals and their cardinal characteristics, Trans. Amer. Math. Soc. 351 (1999), pp 2643-2674.
[4] F. Hernandez-Hernandez, M. Hrusak Cardinal invariants of P-ideals, Canad. J. Math. 59 (2007), no 3, pp 575-595.
[5] M. Hrusak Combinatorics of filters and ideals, preprint.
[6] D. Meza Alcantára, Ideals and filters on countable sets, PhD thesis.
[7] R.C. Solomon: Families of sets and functions, Czechoslovak Math. J. 27 (1977), pp 556559.
[8] S. Todorcevic, Analytic gaps, Fund. Math. 150 (1996), no. 1, 55-66.
[9] S. Todorcevic, Topics in topology, Lecture Notes in Math. 1652, Springer, Berlin, 1997.

