Note on orderings on ideals and some cardinal coefficients

Piotr Borodulin–Nadzieja, Barnabás Farkas

Abstract

This is a leftover note containing some facts and proofs which were excluded from [2]. We present here several facts concerning some orderings on ideals on ω and cardinal invariants connected to these orderings.

1 Orderings on ideals

All unexplained terminology is in [2] and [1]. Recall some classical partial orderings on the family of ideals (on ω).

- (RB) Rudin-Blass order: $\mathcal{I} \leq_{\text{RB}} \mathcal{J}$ if there is a finite-to-one $f: \omega \to \omega$ such that $A \in \mathcal{I} \Leftrightarrow f^{-1}[A] \in \mathcal{J}$,
- (RK) Rudin-Keisler order: $\mathcal{I} \leq_{\mathrm{RK}} \mathcal{J}$ if there is an $f: \omega \to \omega$ such that $A \in \mathcal{I} \Leftrightarrow f^{-1}[A] \in \mathcal{J}$,
- (KB) Katětov-Blass order: $\mathcal{I} \leq_{\mathrm{KB}} \mathcal{J}$ if there is a finite-to-one $f: \omega \to \omega$ such that $A \in \mathcal{I} \Rightarrow f^{-1}[A] \in \mathcal{J},$
 - (K) Katětov order: $\mathcal{I} \leq_{\mathrm{K}} \mathcal{J}$ if there is an $f: \omega \to \omega$ such that $A \in \mathcal{I} \Rightarrow f^{-1}[A] \in \mathcal{J}$.

Clearly we have the following diagram of implications between these orders:

Of course, we can use these orders for filters as well, for example $\mathcal{F} \leq_{\text{RB}} \mathcal{G}$ iff $\mathcal{F}^* \leq_{\text{RB}} \mathcal{G}^*$. Several deep results were proved about these partial orders (see e.g. [5]).

Definition 1.1 A filter \mathcal{F} on ω is feeble if there is a finite-to-one function $f: \omega \to \omega$ such that $f''[\mathcal{F}]$ is the Frechet filter Fin^{*}, i.e. Fin $\leq_{\text{RB}} \mathcal{F}^*$. The theorem due to Jalali–Naini and Talagrand (see e.g. [9]) implies that every analytic filter is feeble, so there is a lot of non-trivial feeble filters.

Fact 1.2 If \mathcal{I} is an analytic *P*-ideal, then \mathcal{I}^* is feeble.

We investigate three orders stronger than the Katětov order:

(pm) $\mathcal{I} \leq_{\text{pm}} \mathcal{J}$ if there is a permutation $f: \omega \to \omega$ such that $A \in \mathcal{I} \Rightarrow f^{-1}[A] \in \mathcal{J}$,

(1-1) $\mathcal{I} \leq_{1-1} \mathcal{J}$ if there is a one-to-one $f: \omega \to \omega$ such that $A \in \mathcal{I} \Rightarrow f^{-1}[A] \in \mathcal{J}$,

(s.i.) $\mathcal{I} \leq_{\text{s.i.}} \mathcal{J}$ if there is a strictly increasing $f: \omega \to \omega$ such that $A \in \mathcal{I} \Rightarrow f^{-1}[A] \in \mathcal{J}$.

Clearly, $\mathcal{I} \leq_{\text{pm}} \mathcal{J}$ means that \mathcal{I} can be permuted into \mathcal{J} (by f^{-1}). We can give alternative definitions of \leq_{1-1} and $\leq_{\text{s.i.}}$. Assume \mathcal{I} is an ideal on ω . Then we will use the following notations:

- For a set $X \in \mathcal{I}^+$ let $\mathcal{I} \upharpoonright X = \{A \subseteq \omega : A \cap X \in \mathcal{I}\}.$
- For a set $X = \{x_0 < x_1 < \dots\} \in [\omega]^{\omega}$, the copy of \mathcal{I} on X:

$$\mathcal{I}(X) = \{ A \subseteq \omega : \{ n \in \omega \colon x_n \in A \} \in \mathcal{I} \}.$$

Analogously we can define the copy of a filter on an infinite set X.

• For an injective sequence $\bar{x} = \langle x_n : n \in \omega \rangle \in \omega^{\omega}$, the copy of \mathcal{I} on \bar{x} :

 $\mathcal{I}(\bar{x}) = \{ A \subseteq \omega : \{ n \in \omega : x_n \in A \} \in \mathcal{I} \}.$

By the definitions both $\mathcal{I} \leq_{pm} \mathcal{J}$ and $\mathcal{I} \leq_{s.i.} \mathcal{J}$ implies $\mathcal{I} \leq_{1-1} \mathcal{J}$ which implies $\mathcal{I} \leq_{KB} \mathcal{J}$. What about other implications?

Proposition 1.3 The following hold for any ideal \mathcal{I} containing all finite sets:

- (i) Fin $\leq_{\text{pm}} \mathcal{J}$ and Fin $\leq_{\text{s.i.}} \mathcal{J}$ (so Fin $\leq_{1-1} \mathcal{J}$ as well).
- (ii) $\mathcal{I} \leq_{\text{pm}} \text{Fin if and only if } \mathcal{J} = \text{Fin.}$
- (*iii*) If $\sqsubseteq \in \{\leq_{s.i.}, \leq_{1-1}, \leq_{KB}, \leq_{K}, \leq_{RB}, \leq_{RK}\}$ then $\mathcal{I} \sqsubseteq$ Fin if and only if \mathcal{I} is not tall.
- (iv) If \mathcal{J} strictly extends Fin then $\mathcal{I} \leq_{1-1} \mathcal{J}$ if and only if $\mathcal{I} \leq_{pm} \mathcal{J}$.
- (v) If \mathcal{J} strictly extends Fin and $\mathcal{I} \leq_{\text{s.i.}} \mathcal{J}$ then $\mathcal{I} \leq_{\text{pm}} \mathcal{J}$.

Proof. Of these (i) and (ii) are trivial. (iii) is a consequence of the easy fact that if \mathcal{I} is not tall then $\mathcal{I} \leq_{\text{RB}}$ Fin and if $\mathcal{I} \leq_{\text{K}}$ Fin then \mathcal{I} is not tall.

We will prove (iv) which implies (v). Assume f shows $\mathcal{I} \leq_{1-1} \mathcal{J}$. We can modify f on an infinite element A of \mathcal{J} to be a permutation g such that $g \upharpoonright (\omega \setminus A) \equiv f \upharpoonright (\omega \setminus A)$ and $g[A] = f[A] \cup (\omega \setminus \operatorname{ran}(f))$. Then g shows $\mathcal{I} \leq_{\operatorname{pm}} \mathcal{J}$. Now we present an example of two ideals \mathcal{I} , \mathcal{J} , such that $\mathcal{I} \leq_{pm} \mathcal{J}$ but $\mathcal{I} \not\leq_{s.i.} \mathcal{J}$. It follows that the \leq_{pm} ordering is strictly stronger than s.i..

Example. Let (k_n) be a sequence of natural numbers such that $k_1 = 1$ and $k_{n+1} \ge n k_n$. Let f be the function defined by

$$f(k_n + l) = k_{n+1} - (l+1)$$

for $n \in \omega$ and $0 \leq l < k_{n+1}$. Loosely speaking f is the permutation inverting the order on intervals $[k_n, k_{n+1})$. Denote $\mathcal{I} = f[\mathcal{Z}]$. Clearly, $\mathcal{I} \leq_{\text{pm}} \mathcal{Z}$. For a set $X \subseteq \omega$ let

$$d_*(X) = \liminf_{n \to \infty} \frac{|X \cap n|}{n}.$$

Of course $X \in \mathbb{Z}^*$ if and only if $d_*(X) = 1$.

Proposition 1.4 If the ideal \mathcal{I} is defined as above then $\mathcal{I} \not\leq_{s.i.} \mathcal{Z}$.

Proof. Suppose a contrario that $P \subseteq \omega$ is a \mathcal{I} -intersection of $f''[\mathcal{Z}^*]$. Denote by $P_n = P \cap [k_n, k_{n+1})$.

CLAIM. The function defined by

$$g(n) = \frac{|P_n|}{|P \cap k_n|}$$

is unbounded.

First, notice that there is an $\varepsilon > 0$ such that for infinitely many n

$$\frac{|P_n|}{k_n} > \varepsilon.$$

Indeed, it is not hard to see that otherwise $I = f^{-1}[P] \in \mathcal{Z}$, and thus $f[\omega \setminus I] \in f^{"}[\mathcal{F}^*]$ and $f[\omega \setminus I] \cap P = \emptyset$, so P cannot be an \mathcal{I} -intersection of $f^{"}[\mathcal{Z}^*]$. Now, suppose for a contradiction that there is C > 0 such that $g(n) \leq C$ for every n. Therefore,

$$\varepsilon < \frac{|P_n|}{k_n} \le \frac{C|P \cap k_n|}{k_n}$$

for infinitely many n. So, there is $\varepsilon' = \varepsilon/C$ such that for infinitely many n

$$\frac{|P \cap k_n|}{k_n} > \varepsilon'.$$

Therefore

$$\varepsilon' < \frac{|P \cap k_{n+1}|}{k_{n+1}} \le \frac{|P_n| + k_n}{k_{n+1}} \le \frac{C|P \cap k_n|}{k_{n+1}} + \frac{1}{n} \le \frac{C}{k_{n+1}} + \frac{1}{n} \le \frac{C+1}{n},$$

for infinitely many n, a contradiction which proves the claim.

Now we are ready to construct a set $F \in \mathbb{Z}^*$ which will witness that P is not an \mathcal{I} intersection of $f^{"}[\mathbb{Z}^*]$. There is a sequence l_n such that $g(l_n) \geq n$. Without loss of
generality we will assume that $g(n) \geq n$. Let F_n be the first $|P \cap k_n|$ many elements of P_n and define

$$F = \omega \setminus \bigcup_n f^{-1}[F_n]$$

We will show that $F \in \mathbb{Z}^*$ but $f[F] \notin \mathbb{Z}^*(P)$.

Notice that if $k_n \leq i < k_{n+1}$, then

$$\frac{|F \cap i|}{i} \ge \frac{k_n + (n-2)|P \cap k_n|}{k_n + n|P \cap k_n|} \ge 1 - \frac{2|P \cap k_n|}{k_n + nb_n} \ge 1 - \frac{2}{1+n}.$$

So, if $i > k_n$ then

$$\frac{|F\cap i|}{i} \geq 1 - \frac{2}{1+n}$$

and thus $F \in \mathcal{Z}^*$.

Now, denote X = f[F]. We will show that for every *n* there is $k_n \leq x < k_{n+1}$ such that $x = p_j$ for some *j* and

$$\frac{|\{i < j \colon p_i \in X\}|}{j} < \frac{1}{2}.$$

Indeed, let n > 1 and let x be the first element of $P_n \setminus F_n$. Since $x \in P$, there is $j \in \omega$ such that $x = p_j$. Then

$$\frac{|\{i < j \colon p_i \in X\}|}{j} \le \frac{|P \cap k_n|}{|P \cap k_n| + |F_n|} \le \frac{|P \cap k_n|}{2|P \cap k_n|} = \frac{1}{2},$$

 \mathbf{SO}

$$\frac{|\{i < n \colon p_i \in X\}|}{n} < \frac{1}{2}$$

for infinitely many n. Hence, $X \notin \mathcal{Z}^*(P)$.

2 Characters of filters and orderings

The character of a filter \mathcal{F} , denoted by $\chi(\mathcal{F})$ is the minimal cardinality of a family generating \mathcal{F} . Similarly, the character of an ideal \mathcal{I} is the character of its dual filter. The following theorem reveals some properties of the characters of non-feeble filters.

Theorem 2.1 (R. C. Solomon [7] and P. Simon [unpublished]) If a filter has character less then \mathfrak{b} then it is feeble but there is a non-feeble filter generated by \mathfrak{b} sets.

Now, we present a natural way of associating cardinal coefficients to partial orders on ideals. However, we will focus only on few of them.

Definition 2.2 Let \mathcal{F} be a family with SFIP (or simply a filter) and assume that \mathcal{I} is an ideal. We say that $X = \{x_0 < x_1 < ...\} \in [\omega]^{\omega}$ is an \mathcal{I} -intersection of \mathcal{F} if $\omega \setminus F \in \mathcal{I}(X)$ for each $F \in \mathcal{F}$; and an injective sequence $\bar{x} = \langle x_n : n \in \omega \rangle \in \omega^{\omega}$ is a weak- \mathcal{I} -intersection of \mathcal{F} if $\omega \setminus F \in \mathcal{I}(\bar{x})$ for each $F \in \mathcal{F}$.

In other words, a set X is an \mathcal{I} -intersection of \mathcal{F} if every element of \mathcal{F} is in the copy of \mathcal{I}^* on X. Similarly, a set X is a weak- \mathcal{I} -intersection of \mathcal{F} if we can reorder the elements of X in such a way that elements of \mathcal{F} are in the copy of \mathcal{I}^* on the rearranged X. It is trivial to check that \mathcal{F} has an \mathcal{I} -intersection (a weak- \mathcal{I} -intersection) iff $\mathcal{F}^* \leq_{\text{s.i.}} \mathcal{I}$ $(\mathcal{F}^* \leq_{1-1} \mathcal{I}).$

Notice that in the case of \mathcal{I} generated by Fin and one infinite co–infinite set both of the above notions coincide with the notion of the pseudo-intersection of \mathcal{F} .

Definition 2.3 Let \sqsubseteq be a partial order on ideals. Then the \sqsubseteq -character of \mathcal{I} :

 $\chi_{\sqsubseteq}(\mathcal{I}) = \min\{\chi(\mathcal{J}) : \mathcal{J} \not\sqsubseteq \mathcal{I}\}.$

The \sqsubseteq -character number: $\mathfrak{p}(\sqsubseteq) = \sup\{\chi_{\sqsubset}(\mathcal{I}) : \mathcal{I} \text{ is an ideal on } \omega\}.$

Of course, these cardinals are not necessarily defined. We will abbreviate our notation. For example, we will write $\chi_{pm}(\mathcal{I})$ instead of $\chi_{\leq_{pm}}(\mathcal{I})$ and $\mathfrak{p}(pm)$ instead of $\mathfrak{p}(\leq_{pm})$. Similarly we have $\chi_{1-1}(\mathcal{I})$ and $\mathfrak{p}(1-1)$, $\chi_{s.i.}(\mathcal{I})$ and $\mathfrak{p}(s.i.)$, $\chi_{KB}(\mathcal{I})$ and $\mathfrak{p}(KB)$, and so on.

Clearly, $\chi_{\text{s.i.}}(\mathcal{I})$ ($\chi_{1-1}(\mathcal{I})$) is the smallest cardinality of a family \mathcal{F} with SFIP but without a (weak–) \mathcal{I} -intersections. Furthermore $\chi_{\text{pm}}(\text{Fin}) = 1$, and if $\sqsubseteq \in \{\leq_{\text{s.i.}}, \leq_{1-1}, \leq_{\text{KB}}, \leq_{\text{K}}\}$, $\leq_{\text{RB}}, \leq_{\text{RK}}\}$ then $\chi_{\sqsubseteq}(\text{Fin}) = \mathfrak{p}$.

The cardinal $\mathfrak{p}(pm)$ is the smallest cardinal κ such that there is no ideal containing up to permutation all ideals generated by at most κ many elements.

The following facts are trivial consequences of the definitions:

Fact 2.4 For ideals \mathcal{I} , \mathcal{J} containing all finite sets the following facts hold

- (i) If $\mathcal{I} \sqsubseteq \mathcal{J}$ and $\chi_{\sqsubseteq}(\mathcal{J})$ is well-defined, then $\chi_{\sqsubseteq}(\mathcal{I})$ is also well-defined and $\chi_{\sqsubseteq}(\mathcal{I}) \leq \chi_{\sqsubseteq}(\mathcal{J})$.
- (ii) If $\mathcal{I} \sqsubseteq_0 \mathcal{J}$ implies $\mathcal{I} \sqsubseteq_1 \mathcal{J}$ for each \mathcal{I} and $\chi_{\sqsubseteq_1}(\mathcal{J})$ is well-defined, then $\chi_{\sqsubseteq_0}(\mathcal{J})$ is also well-defined and $\chi_{\sqsubseteq_0}(\mathcal{J}) \le \chi_{\sqsubseteq_1}(\mathcal{J})$.
- (iii) $\chi_{K}(\mathcal{I})$ is well-defined for each ideal \mathcal{I} , since otherwise \mathcal{I} would be a \leq_{K} -maximal ideal, which is impossible (since $\mathcal{I} \leq_{K} \mathcal{I} \times \mathcal{I}$, where " \times " stands for the Fubini product, see [5]). So, all the cardinal invariants mentioned above are well-defined.

Corollary 2.5 If \mathcal{I} strictly extends Fin, then $\mathfrak{p} \leq \chi_{\text{s.i.}}(\mathcal{I}) \leq \chi_{\text{pm}}(\mathcal{I}) = \chi_{1-1}(\mathcal{I})$ so $\mathfrak{p} \leq \mathfrak{p}(\text{s.i.}) \leq \mathfrak{p}(\text{pm}) = \mathfrak{p}(1-1)$. In a diagram for \mathcal{I} strictly extending Fin:

where one should read $a \rightarrow b$ as $a \leq b$.

In fact, Theorem 2.1 implies that for many ideals $\chi_{\rm RB}(\mathcal{I}) = \chi_{\rm RK}(\mathcal{I}) \leq \omega$. In case of this orderings the following definition makes more sense:

$$\chi_{\square}(\mathcal{I}) = \min\{\chi(\mathcal{J}) : \mathcal{J} \not\supseteq \mathcal{I}\}.$$

E.g. Theorem 2.1 can be expressed as $\chi_{\geq_{\text{RB}}}(\text{Fin}) = \mathfrak{b}$. However, in what follows we will concentrate on $\chi_{s.i.}$ and χ_{pm} .

We have an easy upper bound for $\chi_{pm}(\mathcal{I})$ for analytic \mathcal{I} .

Proposition 2.6 If \mathcal{I} is an analytic ideal, then $\chi_{pm}(\mathcal{I}) \leq \mathfrak{b}$.

We will see later that the assumption on definability of the ideal is necessary here. Recall that for a tall ideal \mathcal{I} the coefficient $\mathsf{add}^*(\mathcal{I})$ denotes the minimal cardinality of a family in \mathcal{I}^* without a pseudo-intersection from \mathcal{I}^* . If $\mathfrak{p} < \mathsf{add}^*(\mathcal{I})$, then a filter witnessing \mathfrak{p} cannot have a weak- \mathcal{I} -intersection. Therefore

Proposition 2.7 If $\mathfrak{p} < \mathsf{add}^*(\mathcal{I})$ then $\chi_{pm}(\mathcal{I}) = \mathfrak{p}$.

It follows that under $\mathfrak{p} < \mathsf{add}^*(\mathcal{I})$ and $\mathfrak{p} < \mathfrak{b}$ there is a filter which is feeble but does not have a weak- \mathcal{I} -intersection.

We finish this section by an example of an ideal \mathcal{I} such that $\mathcal{I} \leq_{pm} \mathcal{Z}$ but $\mathcal{I} \not\leq_{s.i.} \mathcal{Z}$. The existence of this ideal implies that the property of possessing an \mathcal{I} -intersection is not closed under permutations and $\leq_{s.i.}$ is strictly stronger than \leq_{pm} .

Problem 2.8 Is it true that $\chi_{pm}(\mathcal{I}) = \chi_{s.i.}(\mathcal{I})$ for every ideal \mathcal{I} strictly extending Fin or at least, does it hold for a large family of ideals? Is $\mathfrak{p}(pm) = \mathfrak{p}(s.i.)$?

3 Universal filters

It will be convenient to introduce the following notation.

Definition 3.1 A filter \mathcal{G} on ω is κ -universal if $\mathcal{F} \leq_{pm} \mathcal{G}$ for every \mathcal{F} of character κ .

Clearly,

 $\chi_{pm}(\mathcal{I}) = \min\{\kappa \colon \mathcal{I}^* \text{ is not } \kappa - universal\}.$

References

- A. Blass, Combinatorial cardinal characteristics of the continuum, Handbook of Set Theory, editors: M. Foreman, M. Magidor, and A. Kanamori, Springer Netherlands, 2010, pp 395–489
- [2] P. Borodulin–Nadzieja, B. Farkas, On certain order on ideals and related cardinal coefficients, preprint.
- [3] J. Brendle, S. Shelah, Ultrafilters on ω their ideals and their cardinal characteristics, Trans. Amer. Math. Soc. 351 (1999), pp 2643-2674.
- [4] F. Hernandez-Hernandez, M. Hrusak Cardinal invariants of P-ideals, Canad. J. Math. 59 (2007), no 3, pp 575–595.
- [5] M. Hrusak Combinatorics of filters and ideals, preprint.
- [6] D. Meza Alcantára, Ideals and filters on countable sets, PhD thesis.
- [7] R.C. Solomon: Families of sets and functions, Czechoslovak Math. J. 27 (1977), pp 556-559.
- [8] S. Todorcevic, Analytic gaps, Fund. Math. 150 (1996), no. 1, 55–66.
- [9] S. Todorcevic, Topics in topology, Lecture Notes in Math. 1652, Springer, Berlin, 1997.