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1 Introduction

In this dissertation we explore properties of �nite measures on Polish spaces

and on a certain class of Boolean algebras. The thesis basically consists of

two rather independent parts, of which the �rst is contained in Borodulin-

Nadzieja, Plebanek [6] and the other in Borodulin-Nadzieja [7].

Although most of the results presented here concern measures, the meth-

ods used are more of set theoretic and topological provenience. It is essen-

tially because the questions motivating our considerations come from these

�elds.

For example Chapter 2 inspired by problems posed by David Fremlin can

be seen as an attempt to answer, how complicated the structure of Borel sub-

sets of [0; 1] can be. Chapter 3 investigates the class of minimally generated

Boolean algebras, a well{known tool for constructing peculiar small compact

spaces. And again, by examining measures on this class of Boolean algebras

we hope to understand minimal generation better, and thus to understand

better small compact spaces.

Even problems from \pure" measure theory sometimes turn out to be

undecidable within the standard set theoretic axioms. Perhaps this is the

case of Problem (FN) formulated in Chapter 2, which has a positive answer

under CH. One can have an impression that in other models of set theory

the answer can be negative or, at least, the problem requires some subtle

set theoretic techniques. Anyway, Chapter 2 proves that the set theoretic

approach solve the problem partially.

The main results of the thesis are:

� Theorem 2.2.1, which points out a condition su�cient for the countable

compactness of measure. It is used in following sections, but it might

be of independent interest (it is cited by Fremlin in [17]);

� Theorem 2.4.1, stating that a measure de�ned on an uncountable prod-

uct of Baire spaces is regularly monocompact if only it is inner regular

with respect to zero sets;

� Theorem 2.5.2(a), which says that every measure on a sub{�{algebra of

Borel[0; 1] is an image of regularly monocompact measure and Theorem

2.5.2(b), which considerably generalizes one of Fremlin's theorems;
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� the proof of Fremlin's Theorem 2.6.2, which says that every measure

on a sub{�{algebra of Borel[0; 1] is weakly{�{favourable; our proof has

the advantage of showing directly the winning strategy;

� Theorem 3.2.7, which is a kind of dichotomy, connecting the existence

of nonseparable measures with the existence of uniformly regular mea-

sures;

� Theorem 3.2.10, which says that measures on minimally generated

Boolean algebras are \small". Combined with Theorem 3.2.17 it gives

quite precise description of measures on this class of Boolean algebras;

� Theorem 4.1.2 and Theorem 4.1.5, demonstrating that even under Mar-

tin's Axiom some E�mov{like spaces can be constructed.

The thesis is divided into three chapters. Chapter 2 discusses problems

related to countably compact measures. In Section 2.1 we introduce basic

facts and de�nitions. Section 2.2 provides two useful facts, used in the fol-

lowing sections. In Sections 2.3, 2.4 and 2.5 we present several theorems

partially answering an open problem posed by Fremlin. Section 2.6 explores

the connections between countably compact measures and in�nite games.

Chapter 3 is devoted to the study of minimally generated Boolean al-

gebras, the notion introduced by Sabine Koppelberg. Section 3.1 provides

mainly an overview of known results. Moreover, the reader will �nd here

some lemmas useful for the following section. Section 3.2 contains an exten-

sive analysis of measures on minimally generated Boolean algebras.

Chapter 4 is closely related to the previous one. We use minimally gen-

erated Boolean algebras to construct compact spaces with additional prop-

erties. In Section 4.1 we discuss the E�mov problem and in Section 4.2 a

problem motivated by the theory of Banach spaces.

Each of chapters is preceded by a short introduction containing a more

detailed description of its content. Also, we �nish every chapter with a brief

discussion of open problems and of the signi�cance of the presented results.

We use the standard set theoretic, topological and measure theoretic no-

tation. For any unexplained terminology the reader is referred to [34, 25, 5].

It is worth noticing that all measures here are �nite even if it is not stated

explicitly. When de�ned on a Boolean algebra a measure is assumed to be

�nitely additive, not necessarily �{additive. Some authors prefer to use the

name \charge" or \�nitely additive measure" instead of \measure" in such
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case. We decided to call it \measure" since we consider such functions only

on Boolean algebras, and thus we can \extend" each of them uniquely to the

�{additive measure on the Stone space (see Section 3.2). It is always clear

from the context which type of measure is meant.
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2 On compactness of measures on Polish spaces

In this chapter, based on [6], we present some results concerning countably

compact measures. Most of them were born in an attempt to answer the

following question, posed by David Fremlin in [24, 26].

(FN) Let � be a measure de�ned on a �{algebra � � Borel(X), where X

is a Polish space. Is � countably compact?

Section 2.1 contains basic de�nitions and several historical remarks. We

show here some lemmas useful for the following sections and, for complete-

ness, two classical theorems: Ryll{Nardzewski's result establishing the con-

nection between countably compact measures and perfect measures and Mar-

czewski's example of a sub{�{algebra of Borel[0; 1] carrying a measure of

Maharam type c.

In Section 2.2 we give two technical results helpful for constructing count-

ably compact families. The following sections discuss properties of �nite

measures � de�ned on � � Borel(X), where X is Polish.

So in Section 2.3 we prove that a measure � like in Problem (FN) is

countably compact under the additional assumption that � is inner regular

with respect to closed sets from �. David Fremlin remarked (in a private

communication) that the above result in fact follows from the theorem due

to Aldaz & Render [1]. Our proof of 2.3.2 has the advantage that it also

gives a description of a countably compact family which approximates the

measure in question. In the following sections, building on the same idea,

we obtain a common generalization of the above result and Fremlin's theo-

rem. Fremlin proved that every !

1

{generated sub{�{algebra of Borel[0; 1] is

countably compact. We show that the assumption of !

1

{generation can be

considerably weakened here (see Corollary 2.4.3, and Corollary 2.5.2).

In [22] Fremlin introduced the in�nite game related to regularity prop-

erties of measures. It allowed to distinguish new interesting subclasses of

perfect measures: weakly{�{favourable and �{favourable (see Section 2.6

for de�nitions and details). Fremlin proved that every measure as in Prob-

lem (FN) is weakly{�{favourable. It is not known if it is �{favourable. In

Section 2.5 we show that every such measure is \an image" of some regu-

larly monocompact measure; this result is based on a theorem from Section

2.4 on measures de�ned on uncountable products of Polish spaces. Regular

monocompactness is a slightly weaker property than countable compactness

but it is stronger than �{favourableness. Unfortunately, it is not clear if it
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is preserved by inverse{measure{preserving functions.

Finally, in Section 2.6 we give an alternate proof of the result mentioned

above, stating that every � as in question is weakly{�{favourable. Our proof

is much simpler and, in a sense, more natural than the original one.

2.1 Preliminaries

In this section we consider only �nite and �{additive measures; concerning

regularity properties of measures we follow the terminology of Fremlin [22]

(note that some properties have di�erent names in other sources!). If K is a

family of sets, then we say that K is

countably compact if every sequence (A

n

)

n2!

from K with the �nite

intersection property satis�es

T

n2!

A

n

6= ;;

monocompact if

T

n2!

A

n

6= ; whenever (A

n

)

n2!

is a decreasing se-

quence of nonempty elements from K.

If (X;�; �) is a measure space and K � �, then � is said to be inner

regular with respect to K if

�(A) = supf�(K) : K � A;K 2 Kg;

for every A 2 � (sometimes we say in this case that K approximates � on

�). A measure � is countably compact (regularly monocompact) if it is in-

ner regular with respect to some family K � � which is countably compact

(monocompact, respectively). Every countably compact measure is mono-

compact; [22] provides an example of a monocompact but not countably

compact measure.

It is a nontrivial result due to Pachl [42] that a countably compact mea-

sure � de�ned on some � remains countably compact when restricted to

any sub{�{algebra �

0

� �, see also Fremlin [21]. It is worth recalling that

both proofs of Pachl's result use some external characterizations of countable

compactness | it is not clear how to explicitly de�ne a suitable countably

compact family inside �

0

.

If (X;�; �) and (Y;A; �) are measure spaces and f : X ! Y is a measur-

able function, then we say that f is inverse{measure{preserving if �(A) =

�(f

�1

[A]) for A 2 A. It can be derived from Pachl's results (see e.g. the
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lemma below) that if there is a such function and � is countably compact,

then so is �.

Assume that (X;�; �) is a measure space and consider a function f : X !

Y . Then we can consider a measure �

0

de�ned on �

0

= fE � Y : f

�1

[E] 2 �g

such that �

0

(E) = �(f

�1

[E]) for every E 2 �

0

. We call �

0

the image of �

and denote it by �f

�1

.

Consider now a function f : X ! Y and a measure space (Y;�; �). The

algebra � induces a �{algebra �

0

= ff

�1

[E] : E 2 �g on X, and we can

de�ne on �

0

a measure �

0

by �

0

(f

�1

[E]) = �(E), which might be called the

preimage of �. It will be useful to note the following simple fact.

Lemma 2.1.1 Let �

0

be the preimage of � (as described above).

(a) If � is inner regular with respect to some K, then �

0

is inner regular

with respect to C = ff

�1

[K] : K 2 Kg.

(b) If �

0

is inner regular with respect to some C � �

0

, then � is inner

regular with respect to K = fE 2 �: f

�1

[E] 2 Cg:

(c) The measure �

0

is countably compact (respectively, regularly mono-

compact) if and only if � is countably compact (respectively, regularly mono-

compact).

Proof. (a) For a given set f

�1

[E] 2 �

0

and " > 0 we can �nd K 2 K such

that K � E and �(E nK) < ". Since f

�1

[E]n f

�1

[K] � f

�1

[E nK], we have

" > �(E nK) = �

0

(f

�1

[E nK]) � �

0

(f

�1

[E] n f

�1

[K]):

(b) Let E 2 � and " > 0. We can �nd a set C 2 C such that C � f

�1

[E]

and �

0

(C) > �

0

(E) � ". Then the set K 2 K such that C = f

�1

[K] is a

subset of E and we have �(K) = �

0

(C) > �

0

(f

�1

[E]) � " = �(E)� ". This

shows that � is inner regular with respect to K.

(c) It is easy to check that K is countably compact or monocompact if

and only if C has an analogous property (here, K and C are as in (b)).

The class of countably compact measures was introduced by Marczewski

[40] under the name compact measures. In the abstract setting (i.e. without

referring to topology), such a notion singles out measures which are nice in

the sense that they resemble the Lebesgue measure. It is well{known that,

for a Polish space X, every �nite measure on Borel(X) is inner regular with

respect to compact sets, so is countably compact. On the other hand, the
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Lebesgue measure restricted to a non{measurable subset V is usually not

countably compact (e.g. if V is a Vitali set).

The research of Marczewski was continued by Ryll{Nardzewski, who in-

troduced a slightly weaker notion of quasi{compact measures (see [51]). It

turned out that quasi{compactness is equivalent to perfectness, a notion in-

troduced few years earlier by Gnedenko and Kolmogorov.

There are many equivalent ways in which the de�nition of a perfect mea-

sure is formulated in the literature. We will say that a measure (X;�; �) is

perfect if for every measurable function f : X ! [0; 1] there is a Borel subset

B of f [X] such that �f

�1

(B) = 1. In fact, we can see perfectness as a reg-

ularity property: if (X;�; �) is perfect, then for every measurable function

f : X ! [0; 1] the measure �f

�1

is inner regular with respect to Borel subsets

of [0; 1].

We present here one of the results of Ryll{Nardzewski from [51]. The

following theorem implies that every countably compact measure is perfect

and, moreover, indicates that perfectness is more a local property, while

compactness refers to the whole �{algebra. It is worth mentioning that the

following proof is well{known although it is not the original one from [51].

We use here the powerful tool of a characteristic function of a family of sets

(sometimes called a Marczewski function) introduced by Marczewski in [38].

Theorem 2.1.2 (Ryll{Nardzewski) A measure � on a �-algebra � is per-

fect if and only if it is countably compact on every �{generated �

0

� �.

Proof. We can replace [0; 1] in the de�nition of perfect measure by any

uncountable Polish space. Here, we will replace it by f0; 1g

!

.

Assume that a measure (X;�; �) is perfect and � is �{generated. We will

show that � is countably compact. Fix a sequence of generators fE

n

: n 2 !g

of �. Consider the following function f : X ! f0; 1g

!

:

f(x) = (�

E

0

(x); �

E

1

(x); : : :):

Notice that � = ff

�1

[B] : B 2 Borelf0; 1g

!

g. Because � is perfect, there is

B 2 Borelf0; 1g

!

such that B � f [X] and �f

�1

(B) = 1. The measure �f

�1

is countably compact on Borelf0; 1g

!

(as every Borel measure is countably

compact). Combining these facts and Lemma 2.1.1, we conclude that � is

countably compact on �.

Assume now that a measure (X;�; �) is countably compact on every

�{generated �

0

� �. To check that � is perfect consider an arbitrary mea-

surable function f : X ! f0; 1g

!

. Let �

0

= ff

�1

[B] : B 2 Borelf0; 1g

!

g. It
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is easy to see that �

0

forms a �{generated sub{�{algebra of �. Therefore,

� is countably compact on �

0

. Denote by K the countably compact class

approximating � on �

0

.

We will show that there is a Borel set B � f [X] such that �f

�1

(B) = 1.

For n 2 ! denote C

n

= fx 2 f0; 1g

!

: x(n) = 1g. Fix " > 0 and for n 2 !

�nd K

0

n

;K

1

n

2 K such that

K

0

n

� f

�1

[C

n

] and �(f

�1

[C

n

] nK

0

n

) < "=2

n+1

;

K

1

n

� f

�1

[C

c

n

] and �(f

�1

[C

c

n

] nK

1

n

) < "=2

n+1

:

Let

K

"

=

\

n2!

K

0

n

[K

1

n

:

Consider the set B

"

= f [K

"

]. It is easy to check that �f

�1

(B

"

) � �(K

"

) �

1� ". Of course B

"

� f [X]. We show that B

"

is closed. Let y 2 f0; 1g

!

be

a condensation point of B

"

. There is T � ! such that

fyg =

\

n2T

C

n

\

\

n2T

c

C

c

n

:

Since y is a condensation point of B

"

, the family

K

y

= fK

0

n

: n 2 Tg [ fK

1

n

: n 2 T

c

g

has the �nite intersection property. As K is countably compact, there is

x 2

T

K

y

. Obviously, x 2 K

"

and f(x) = y. Therefore, y 2 B

"

and,

consequently, B

"

is closed.

Let B =

S

n2!

B

1=n

. It is Borel, �f

�1

(B) = 1 and B � f [X]. Thus, � is

perfect.

Musia l [41] gave an example of a perfect measure which is not countably

compact (the same result was announced earlier by Vinokurov). Under some

mild set theoretic assumption there are even perfect measures which are not

countably compact, and are of countable Maharam type (i.e. the underlying

L

1

space is separable, see also Section 3.2), see Plebanek [46].

An extensive list of publications concerning countably compact and per-

fect measures can be found in Ramachandran's article [48] (see also [37]).

This subject has been quite intensively studied up to the seventies but it has

not been attracting so much attention over next years.
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In 2000 Fremlin published the paper [22], where he explores several other

subclasses of perfect measures. It was kind of turning point in the sense

that some new areas for investigation have been opened. Fremlin's paper

presents several subtle results on properties of measures related to in�nite

games. Most of them require advanced set theoretic techniques. We discuss

some of his ideas in Section 2.6.

In [24, 26] Fremlin asked explicitly the following natural question.

(FN) Let � be a measure de�ned on a �{algebra � � Borel[0; 1]. Is �

countably compact?

As we mentioned above every Borel measure on a Polish space is countably

compact. It is also of countable Maharam type (see Section 3.2 for more

details on the notion of Maharam types). Measures de�ned on some � �

Borel(X), however, can be more complicated as the following theorem shows.

The proof presented below is not the original one by Marczewski (see [38])

but it is also well{known.

Theorem 2.1.3 (Marczewski) The family of Borel subsets of [0; 1] con-

tains a �{independent family of size c. This family generates a �{algebra �

which carries a measure � of Maharam type c.

Proof. Denote C = f0; 1g

!

. We will look for the family with the desired

properties in C

!

instead of [0; 1]. We can do so without loss of generality

since these two spaces are Borel isomorphic. Denote this isomorphism by

� : [0; 1] ! C

!

. For a c 2 C let

Z

c

= fx 2 C

!

: 9n x(n) = cg:

Consider disjoint sequences (s

n

)

n2!

, (t

n

)

n2!

of elements of C. Notice that if

x = (s

0

; s

1

; s

2

; : : :), then

x 2

\

n2!

Z

s

n

\

\

n2!

Z

c

t

n

:

Therefore, the family fZ

c

: c 2 Cg is �{independent. Of course, it is of

cardinality c. It consists of Borel sets since for every c 2 C the formula

\9n x(n) = c" is Borel (�

0

1

, in fact).

Let � be the �{algebra generated by the family fZ

c

: c 2 Cg. There is a

measure �

0

such that �

0

(Z

c

) = 1=2 for every c 2 C. Indeed, consider a family

of probability spaces (C

!

;�

c

; �

c

), where �

c

= �(fZ

c

g) and �

c

(Z

c

) = 1=2.
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Enumerate C = fc

�

: � < cg. Let � be the product measure on

Q

�<c

C

!

, i.e.

measure de�ned by

�(

Y

�<�

C

!

� A�

Y

�>�

C

!

) = �

c

�

(A)

for every � 2 c. Consider � = f(c; c; : : :) : c 2 C

!

g. Notice that � is

homeomorphic to C

!

. Since fZ

c

: c 2 Cg is �{independent, �

�

(�) = 1. Fix

�

0

= �j�.

For s; t 2 C such that s 6= t we have

�

0

(Z

s

4 Z

t

) = �

0

(Z

s

\ Z

c

t

) + �

0

(Z

t

\ Z

c

s

) = 1=2:

We see that fZ

c

: c 2 Cg cannot be approximated by less than c many sets

and, therefore, �

0

is of Maharam type c. The measure � = �

0

�

�1

ful�lls the

desired properties.

The above measure � cannot be extended to Borel[0; 1] but, nevertheless,

it is countably compact since the family fZ

c

: c 2 Cg is countably compact

itself and it can be easily extended to a countably compact family approxi-

mating � with respect to �.

If � is a measure on � � Borel[0; 1], then it is perfect, so countably

compact whenever � is countably generated. In [24] Fremlin, based on his

previous papers [19, 22] proved the following nontrivial generalization of this

remark.

Theorem 2.1.4 (Fremlin) If a �{algebra � � Borel(X), where X is a Pol-

ish space, is generated by !

1

sets, then every �nite measure on � is countably

compact.

It follows that under CH the problem FN has a positive solution. It is not

known if FN can be resolved in ZFC. Let us remark that, under CH there is �

built from Borel subsets of [0; 1]

2

and a single non Borel set � � [0; 1]

2

, which

carries a perfect measure which is not countably compact, see Plebanek [46].

If (X;�; �) is a measure space, then we denote by �

�

the corresponding

outer measure. We repeatedly use the fact that �

�

is upward continuous, i.e.

�

�

(

S

n

Z

n

) = lim�

�

(Z

n

) for an arbitrary sequence Z

1

� Z

2

� : : : � X. It

will be convenient to single out the following simple observation.
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Lemma 2.1.5 Let (X;�; �) be a measure space and let (Z

n

)

n

be an increas-

ing sequence of arbitrary subsets of X with the union Z. For every E 2 �

and " > 0 there is a set F 2 � with �(E nF ) < ", and a number m 2 ! such

that whenever A 2 �, A � F , then �

�

(A \ Z

m

) = �

�

(A \ Z).

Proof. Let E 2 � and " > 0. Since outer measure is upward continuous

we can �nd a number m such that �

�

(Z

m

) > �

�

(Z) � ". Let F

1

� E be a

measurable hull of the set E \Z

m

and F

2

be a measurable kernel of E \Z

c

.

Then for F = F

1

[F

2

we have �(E nF ) < ", and �

�

(A\Z

m

) = �(A\F

1

) =

�

�

(A \ Z) for every measurable A � F .

Given any measure space (X;�; �), we say that a sequence (E

n

)

n2!

of

measurable sets is �{centred if �(

T

k<n

E

k

) > 0 for every n.

2.2 Countably compact measures

We present in this section two auxiliary results on countably compact mea-

sures. A measure is countably compact if it is approximated by a countably

compact family. We show that if we change this de�nition by replacing the

countable compactness by slightly weaker conditions on approximating fam-

ily, we will obtain the same class of measures. The �rst theorem is used

directly in the proof of Theorem 2.3.1 below, while the second is related to

game{theoretic properties of measures that are mentioned in Section 2.6.

Theorem 2.2.1 Let (X;�; �) be a measure space and suppose that C � � is

a family such that the intersection of every �{centred sequence (F

n

)

n2!

from

C is not empty.

If � is inner regular with respect to C, then � is countably compact.

Proof. Let

b

� be the completion of � with respect to �, and denote by A the

measure algebra of �. For A 2 � we write A_ for the corresponding element

of A. Let � : A!

b

� be a lifting; i.e. � is a Boolean homomorphism such that

�(a)_ = a for every a 2 A (see Fremlin's survey [18] for details).

We shall consider the family C

0

de�ned as follows

C

0

=

(

\

k2!

F

k

: F

k

2 C; F

k+1

� F

k

\ �(F

k

_) for every k

)

:

12



Let us check that � is inner regular with respect to C

0

. Take any set

F 2 C and " > 0. We de�ne a sequence of sets F

k

from C in the following

way. Put F

1

= F ; if F

k

is given, choose F

k+1

2 C so that

F

k+1

� F

k

\ �(F

k

_) and �((F

k

\ �(F

k

_)) n F

k+1

) <

"

2

k

:

Then the set H =

T

k2!

F

k

is in C

0

and we have �(F nH) � ". As � is inner

regular with respect to C, it is also inner regular with respect to C

0

.

Now it remains to check that C

0

is countably compact. Consider any

centred sequence (C

n

)

n2!

of sets from C

0

. Every set C

n

can be written as

C

n

=

T

1

k2!

F

k

n

, where the sets F

k

n

2 C are as in the de�nition of C

0

. Then

\

n2!

C

n

=

\

n�1

\

k;m<n

F

k

m

:

Observe that for every n

\

k;m<n

�(F

k

m

_) �

\

k;m<n

F

k

m

\ �(F

k

m

_) �

\

k;m<n

F

k+1

m

�

\

m<n

C

m

6= ;:

Hence

�

 

(

\

k;m<n

F

k

m

)_

!

=

\

k;m<n

�(F

k

m

_) 6= ;;

which means that �(

T

k;m<n

F

k

m

) > 0. As the family of all F

k

m

is �{centred,

by our assumption on C we get

T

n2!

C

n

6= ;. This completes the proof.

Proposition 2.2.2 Let (X;�; �) be any measure space and let �

+

= fA 2

� : �(A) > 0g. Suppose that there is a function � : �

+

! �

+

such that

(i) �(A) � A for every A 2 �

+

;

(ii) if A

n

2 �

+

and the sequence (�(A

n

))

n2!

is �{centred, then

T

n2!

A

n

6=

;.

Then the measure � is countably compact.

13



Proof. For any E 2 �

+

we let T (E) be the family of all �nite unions of sets

from f�(A) : A 2 �

+

; A � Eg. Moreover we put

C =

(

\

k2!

B

k

: B

k+1

2 T (B

k

) for every k

)

:

CLAIM 1. � is inner regular with respect to C.

Note �rst that �(E) = supf�(B) : B 2 T (E)g for every E 2 �

+

. Indeed,

by (i) E is a countable union, modulo a null set, of sets of the form �(A),

so �(E) is approximated by �(B) for B 2 T (E). This implies in a standard

way that � is inner regular with respect to C.

CLAIM 2. If B

n

2 T (E

n

) and the sequence (B

n

)

n2!

is �{centred, then

T

n2!

E

n

6= ;.

This is so since if we write B

n

= �(A

n;1

)[�(A

n;2

)[ : : :[�(A

n;k

n

) for every

n, then there is a function ' satisfying '(n) � k

n

such that the sequence of

sets �(A

n;'(n)

) is �{centred, and the claim follows from (ii).

Now take a �{centred sequence (B

n

)

n2!

from C. Write B

n

=

T

k2!

B

k

n

as in the de�nition of C. Then all the sets B

k

n

, where n 2 !, k � 1, are

�{centred, and by Claim 2

T

n2!

B

n

6= ;. By Claim 1 and Lemma 2.2.1 � is

a countably compact measure.

2.3 Closed-regular measures

We denote by N the Baire space !

!

. Recall that for every Polish space X

and every B 2 Borel(X), B is analytic, i.e. is a continuous image of N (or

is empty); see e.g. Kechris [32].

Theorem 2.3.1 If � is any �{algebra of subsets of N and a measure �

de�ned on � is inner regular with respect to closed subsets from �, then � is

countably compact.

Proof. For any n 2 ! and  2 !

n

de�ne

V ( ) = fx 2 N : x(k) �  (k) for all k < ng:

14



Consider the family C of those closed sets F belonging to � for which there

is a function � : ! ! ! such that for every n

�

�

(V (�jn) \ F ) = �(F ):

We shall prove that C �{approximates � and that every �{centred sequence

from C has a nonempty intersection; in view of Lemma 2.2.1 this will imply

that � is countably compact.

Take any E 2 � and " > 0. We construct inductively a function � 2 N

such that for every n

�

�

(V (�jn) \ E) > �(E)�

"

2

If � is de�ned on n, then from the fact that outer measure is upward contin-

uous and that the sequence V (�bm)\E converges to V (�)\E as m goes to

in�nity we deduce that there exists m such that

�

�

(V (�bm) \ E) > �(E)�

"

2

;

and so we can set �(n) = m.

For every n we can choose a measurable hull M

n

2 � of V (�jn) \ E, so

that E �M

1

� : : : It follows that for M =

T

n2!

M

n

we have �(EnM) � "=2.

Now take any closed set F 2 � such that F �M and �(M nF ) < "=2. Then

�(E n F ) < "; for any n we have F �M

n

, so �(F ) = �

�

(F \ V (�jn)), which

means that F is in our class C.

Now consider any �{centered sequence (F

n

)

n2!

from C. Denote by � a

function ! ! ! witnessing that F

0

2 C. For every n, �(

T

k�n

F

k

) > 0, so

�

�

�

\

k�n

F

k

\ V (�jn)

�

> 0:

Thus we can choose x

n

2

T

k�n

F

k

such that x

n

(k) � �(k) for every k < n.

It follows that the sequence x

n

contains a subsequence converging to some

x 2 N . Every F

k

is closed and contains almost all x

n

's, so x 2 F

k

and

therefore

T

k2!

F

k

6= ;.

Corollary 2.3.2 If � is any �-algebra of subsets of a Polish space X and

the measure � de�ned on � is inner regular with respect to closed subsets

from �, then � is countably compact.
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Proof. Take a continuous surjection g : N ! X, and consider the �{algebra

�

0

= fg

�1

[E] : E 2 �g: It follows from Lemma 2.1.1 that the measure �

0

on �

0

given by �

0

(g

�1

[E]) = �(E) is inner regular with respect to closed sets

from �

0

. By the above theorem �

0

is countably compact, and hence � is

countably compact by 2.1.1.

As we mentioned earlier, the above result in fact follows from the ex-

tension theorem due to Aldaz & Render [1]; see also Fremlin [25], 432D.

Namely, if � is a measure as in Corollary 2.3.2, then � admits an extension

to a Borel measure b� (which is countably compact), so in particular � is

countably compact as the restriction of b�.

2.4 Measures on N

�

Let � be any cardinal number. In the product space N

�

the family of all

closed sets depending on countably many coordinates will be denoted by

Zero(N

�

); such sets are often called zero sets. Recall that a set A � N

�

depends on coordinates in I � � if for every x 2 A and y 2 N

�

, x(�) = y(�)

for all � 2 I implies y 2 A. We shall write A � I to indicate that A depends

on coordinates in I. Recall that the �{algebra Baire(N

�

) generated by

Zero(N

�

), which is called the �{algebra of Baire sets, is equal to the product

of Borel �{algebras on N . Similar remarks apply to uncountable products of

arbitrary Polish spaces; see Wheeler [55] for general background on measures

on topological spaces, and Fremlin [23] for applications of sets depending on

few coordinates to measure theory.

If � is a measure on Baire(N

�

), then, using the fact that every measure

on a Polish space is inner regular with respect to compact sets, one can

check that � is countably compact. The following theorem gives a partial

generalization of this fact.

Theorem 2.4.1 Let � be any cardinal number and � any �{algebra of sub-

sets of N

�

. If a measure � de�ned on � is inner regular with respect to zero

subsets from �, then � is regularly monocompact.

Proof. We shall identify the space N

�

with !

�

and consider below partial

functions from � into !. By saying that � is a partial function on � we mean

that the domain of � is a �nite subset of � and the values of � are natural

numbers. For every partial function � on � de�ne

V (�) = fx 2 !

�

: � 2 Dom(�) =) x(�) � �(�)g:
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Moreover, for any � < � and m 2 ! put

C

�

(m) = V (< �;m >) = fx 2 !

�

: x(�) � mg:

For an arbitrary set Y � !

�

and any E 2 �, we introduce the following

de�nitions.

(a) We call a partial function � Y {thick if �

�

(Y \ V (�)) = �

�

(Y ).

(b) We call a countable set I � � good for E if for every partial function �

on I and � 2 I, there is an extension of � to an E \V (�){thick partial

function on dom(�) [ f�g.

We shall consider the family K of sets F with the following properties:

(i) F 2 Zero(!

�

) \ �;

(ii) �(F ) > 0;

(iii) there is a countable set I � � such that F � I and I is good for F .

We �rst show that � is inner regular with respect to K using the following

claim.

CLAIM 1. Let E 2 � depend on coordinates in a countable set I � �. For

every " > 0 there is a set F 2 �\Zero(!

�

) with F � E, �(E nF ) < ", such

that for every function � de�ned on a �nite set J � I and � 2 I,

(�) there is m such that �

�

(F \ V (�) \ C

�

(m)) = �

�

(F \ V (�)):

To prove this claim note that, for a �xed partial function � on I and any

� 2 I,

V (�) \ C

�

(m) % V (�) as m!1;

so by Lemma 2.1.5 there is F � E with �(E nF ) < " (which can be taken to

be a zero set) such that (*) is satis�ed. We have countably many pairs (�; �)

to consider, so repeating this argument we see that there is F such that (*)

holds for every partial function on I and every � 2 I. This proves the claim.

Let A 2 � and " > 0 be given. We �rst �nd a measurable zero set F

0

and a countable I

0

� � such that F

0

� I

0

, F

0

� A, and �(A nF

0

) < "=2. We
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next apply the Claim to E = F

0

, I = I

0

(and "/4 in place of ") to obtain

a measurable zero set F

1

� F

0

and a countable I

1

� I

0

such that F

1

� I

1

,

�(F

0

n F

1

) < "=4 and (*) holds for F = F

1

and any partial function � on I

0

and � 2 I

0

.

Continuing in the same manner we get a decreasing sequence of zero sets

F

n

2 � and an increasing sequence I

n

of countable sets such that �(F

n�1

n

F

n

) < "=2

n+1

, F

n

� I

n

, and (*) holds whenever � is a partial function on

I

n�1

and � 2 I

n�1

.

Finally we put F =

T

n2!

F

n

and I =

S

n2!

I

n

. Then �(A n F ) � " and

F � I. Moreover, I is good for F : If J � I is �nite, � : J ! !, � 2 I, then

J [ f�g � I

n

for some n, so there is m such that

�

�

(F

n+1

\ V (�) \ C

�

(m)) = �

�

(F

n+1

\ V (�))

and hence

�

�

(F \ V (�) \ C

�

(m)) = �

�

(F \ V (�)):

In particular, we can extend any partial function � to an F \ V (�){thick

function by letting �(�) = m. This shows that � is regular with respect to

K.

Now it remains to verify that K is a monocompact class. Let (F

n

)

n2!

be

a decreasing sequence of sets from K. Then for every n there is a countable

set I

n

� � such that F

n

� I

n

and I

n

is good for F

n

. Enumerate elements of

I =

S

n2!

I

n

as I = f�

k

: k 2 !g and write T

k

= f�

j

: j < kg for every k.

CLAIM 2. There is a function � : I ! ! such that for every n and every k

its restriction � j(T

k

\ I

n

) is F

n

{thick.

We de�ne values of � by induction. Suppose that � is de�ned on T

k

so

that � j(T

k

\ I

n

) is F

n

{thick for every n. There is a natural number p such

that for every n > p there is j � p such that T

k+1

\ I

n

� T

k+1

\ I

j

.

For a given j � p such that �

k

2 I

j

there is m

j

such that the F

j

{thick

function � j(T

k

\ I

j

) can be extended to an F

j

{thick function assuming the

value m

j

at �

k

. We let �(�

k

) be the maximum of these numbers m

j

(where

j � p).

In this way we have extended � to T

k+1

so that � j(T

k+1

\ I

j

) is F

j

{thick

for every j � p. For any n > p we have T

k+1

\ I

n

� T

k+1

\ I

j

, where j � p.

It follows that � j(T

k+1

\ I

n

) is F

j

{thick (as the restriction of a thick function

is thick). Therefore, � j(T

k+1

\ I

n

) is also F

n

{thick (since F

n

� F

j

). This

veri�es the claim.
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Using Claim 2 we can check that

T

n2!

F

n

6= ;. For every n the function

� j(T

n

\ I

n

) is F

n

{thick. Since �(F

n

) > 0 there is x

n

2 F

n

such that x

n

(�) �

�(�) for � 2 T

n

\ I

n

. We can moreover assume that

x

n

(�) = 0 for � 2 (T

n

n I

n

) [ (� n I);

since F

n

is determined by I

n

� I. Now the sequence of x

n

(dominated by

�) has a subsequence converging to some x 2 !

�

. We have x

n

2 F

k

for all

n � k, so x 2 F

k

(as F

k

is closed). Finally, x 2

T

n2!

F

n

, and the proof is

complete.

Let us remark that if we could re�ne this argument to prove that the

measure in question is countably compact, then we would get the following

result: If a countable set I

j

is good for F

j

, j = 1; 2, then I

1

[ I

2

is good for

F

1

\ F

2

. This can be done in case � = !

1

.

Theorem 2.4.2 If � is any �{algebra of subsets of N

!

1

, then every measure

� de�ned on � which is inner regular with respect to zero subsets from � is

countably compact.

Proof. We modify the argument from the previous proof as follows. Consider

the family K of sets F with the following properties:

(i) F 2 Zero(!

�

) \ �;

(ii) �(F ) > 0;

(iii) there is an initial segment I of !

1

such that F � I and I is good for F .

Since every initial segment of !

1

is countable we can in a similar way

verify that � is again inner regular with respect to K. The main di�erence

is contained in the following claim.

CLAIM. If F;H 2 K and �(F \H) > 0, then F \H 2 K.

Indeed, let I and J be good for F and H, respectively. We can assume

that I � J , but in this case J is good for F \H, so F \H 2 K.

Now for any �{centred sequence (F

n

)

n2!

of sets from K we have a de-

creasing sequence H

n

= F

1

\F

2

\ : : :\ F

n

2 K, so by the previous argument

T

n2!

H

n

6= ;, and we are done.
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Corollary 2.4.3 Let X =

Q

�<�

X

�

, where every X

�

is a Polish space. If

� is a �{algebra of subsets of X and � is inner regular with respect to zero

sets from �, then � is regularly monocompact. If, moreover, � = !

1

, then �

is countably compact.

Proof. For every � choose a continuous surjection g

�

: N ! X

�

, and let

g =

Y

�<�

g

�

: N

�

! X:

Then for every Z 2 Zero(X) we have g

�1

[Z] 2 Zero(N

�

), so we can argue

as in Corollary 2.3.2.

2.5 Application to measures on Polish spaces

Our motivation for considering measures on uncountable products of Polish

spaces came from the following result.

Lemma 2.5.1 Let � be a measure on a �{algebra � � Borel(X), where X

is a Polish space. Suppose that fB

�

: 1 � � < �g is a family of analytic

subsets of X, and let F be a family of those sets E 2 � for which there is

� < � such that E � B

�

is closed in B

�

.

If � is inner regular with respect to F , then there is a measure b� de�ned

on some �{algebra

b

� of subsets of N

�

, which is inner regular with respect to

Zero(N

�

) \

b

�, and an inverse{measure{preserving function (N

�

;

b

�; b�) �!

(X;�; �).

Proof. We can assume that X = N . Every B

�

is an analytic subset of N , so

there is a closed set F

�

� N�N such that p[F

�

] = B

�

, where p : N�N ! N

is the projection onto the �rst coordinate.

Let �

�

: N

�

! N be the projection onto the �'s axis; we consider

� � N

�

, where

� = fx 2 N

�

: for every � � 1, if �

0

(x) 2 B

�

, then (�

0

(x); �

�

(x)) 2 F

�

g:

Let g : � ! N be �

0

restricted to �. We endow � with the �{algebra

�

0

= fg

�1

[E] : E 2 �g and the measure �

0

on �

0

given by �

0

g

�1

(E) = �(E).

With every E 2 F we can associate Z(E) 2 Zero(N

�

) as follows. Choose

� < � such that E � B

�

is closed; then p

�1

[E] \ F

�

is a closed subset of

N �N . Now let

Z(E) = fx 2 N

�

: (�

0

(x); �

�

(x)) 2 p

�1

[E] \ F

�

g:
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Note that

(i) g

�1

[E] = Z(E) \� for E 2 F ;

(ii) if E

1

; E

2

2 F are disjoint, then Z(E

1

) \ Z(E

2

) = ;.

Let �

00

be the �{algebra of subsets of N

�

generated by the family

Z(F) = fZ(E) : E 2 Fg;

and let �

00

(C) = �

0

(C \�) for C 2 �

00

. Then for E 2 F we have �

�1

0

[E] �

Z(E) and

(iii) �

00

(Z(E)) = �

0

(Z(E) \�) = �

0

(g

�1

[E]) = �(E):

Observe that, by (ii), (iii) and the F{regularity of �, for E 2 F we have

�

00

(N

�

n Z(E)) = supf�

00

(Z(F )) : F 2 F ; Z(F ) \ Z(E) = ;g:

This implies that �

00

is inner regular with respect to the closure of the family

Z(F) with respect to �nite unions and countable intersections. In particular,

�

00

is regular with respect to zero sets lying inside �

00

.

We �nally let (N

�

;

b

�; b�) be the completion of (N

�

;�

00

; �

00

). Since �

00

is

regularly monocompact by Theorem 2.4.1, so is the measure b�.

By (iii) and the F{regularity of �, �

0

: N

�

! N is a measure{preserving

function, and the proof is complete.

The above lemma, together with the result from Section 2.4 (and the

fact that countable compactness is preserved by images) gives the following

corollary.

Corollary 2.5.2 Let � be a measure on a �{algebra � � Borel(X), where

X is a Polish space.

(a) There is a regularly monocompact measure space (

b

X;

b

�; b�) and a inverse{

measure{preserving function (

b

X;

b

�; b�) �! (X;�; �).

(b) The measure � is countably compact provided there is a family fB

�

:

1 � � < !

1

g of analytic subsets of X such that � is regular with respect

to the family F of those E 2 � for which there is � < !

1

such that

E � B

�

is closed in B

�

.

Unfortunately, it is not known if regular monocompactness is preserved by

inverse{measure{preserving mappings (see Fremlin [22]), so one cannot write

in 2.5.2(a) that � is simply regularly monocompact. Note that Theorem 2.1.4

follows from 2.5.2(b).
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2.6 Measures and games

Let A be a family of sets. We de�ne the Banach{Mazur game on A in the

following way. The game �(A) has two players I and II who choose sets

A

n

; B

n

2 A respectively, so that A

1

� B

1

� A

2

� B

2

� : : :. The player II

wins if

T

n2!

A

n

6= ;.

Let (X;�; �) be any measure space and write �

+

= fE 2 � : �(E) > 0g.

In [22] Fremlin considered Banach{Mazur games on �

+

for various measure

spaces. Write �(�) for �(�

+

).

Fremlin [22] calls the measure � weakly �{favourable if Player II has a

winning strategy in �(�), and �{favourable if II has a winning tactic in this

game, where tactic is a function � : �

+

! �

+

such that II wins by playing

B

n

= �(A

n

) at each step. For such two classes of measure spaces we have

the following implications:

regularly monocompact =) �{favourable =) weakly �{favourable =)

perfect.

For instance, if � is inner regular with respect to a monocompact class K,

then II wins simply by choosing elements from K\�

+

. Fremlin [22] showed

that the class of weakly �{favourable measures is properly contained in the

class of perfect measures, and posed the question whether any of the �rst

two implications can be reversed.

Perhaps the most attractive question here is the following: does the class

of �{favourable measures di�er from the class of weakly{�{favourable mea-

sures?

It is highly nonintuitive that there is a family A such that Player II has a

winning strategy in �(A) but has no winning tactic. There is, essentially, one

example of such family (it is presented in [22]). The idea lying behind it can

be used to produce an example of a topology (even completely regular, see

[12]), which is weakly{�{favourable but not �{favourable. Unfortunately, it

cannot be used to construct a measure space for a �{�nite measure.

Note that we could consider a less restrictive game �

0

(�), in which the

players form a sequence of sets which is �{centred rather than decreasing.

We can use Proposition 2.2.2 to show that, contrary to the case of �(�), the

existence of winning tactic for Player II in �

0

(�) is a su�cient condition for

countable compactness.

Fact 2.6.1 Player II has a winning tactic in �

0

(�) if and only if � is count-

ably compact.
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Proof. Of course if � is countably compact, then Player II has a winning

tactic in �

0

(�). To see the opposite implication apply Proposition 2.2.2 to

the winning tactic � .

Fremlin showed in [22] that every weakly �{favourable measure de�ned

on a �{algebra � generated by !

1

sets is countably compact, and in [24]

he proved that � is weakly �{favourable whenever � is de�ned on some

� � Borel(X), where X is a Polish space. We show below how one can

apply some of the above ideas to prove the latter result; in fact our result is

in a sense stronger. Indeed, in the case of X = [0; 1] we are able to explicitly

construct a winning strategy for the second player. Fremlin's proof used

involved techniques and it does not show, what a winning strategy for Player

II looks like.

Theorem 2.6.2 (Fremlin) If � � Borel[0; 1], then every measure on � is

weakly �{favourable.

Proof. As in the proof of Theorem 2.4.1 we write

V ( ) = fx 2 N : x(k) �  (k) for all k < ng;

for any n 2 ! and  2 !

n

. We shall work in the space [0; 1]�N . Given V ( )

as above, we let G( ) = [0; 1] � V ( ). We denote by � : [0; 1] �N ! [0; 1]

the projection onto the �rst coordinate.

Every move A

n

of the �rst player is a Borel set, so we can �nd a closed set

F

n

� [0; 1]�N such that �[F

n

] = A

n

. The second player de�nes inductively

functions '

n

: ! ! ! such that for every n the set

Y

n

=

\

i�n

�[F

i

\G('

i

jn)]

satis�es �

�

(Y

n

) > 0, and for the n{th move chooses a set B

n

which is

a measurable hull of Y

n

. Player I is obliged to choose A

n+1

� B

n

, so

�

�

(�[F

n+1

] \ Y

n

) = �(A

n+1

) > 0, and it is easily seen that one can de-

�ne '

n+1

j(n+ 1) and '

i

(n) for i � n in such a way that Y

n+1

will be a set of

positive outer measure.

By following this strategy Player II wins: For every n choose t

n

2 Y

n

.

Then the sequence t

n

2 [0; 1] has a subsequence converging to some t. Fix k.

For every n > k there is y

n

such that y

n

2 V ('

k

jn) and (t

n

; y

n

) 2 F

k

. The

sequence of y

n

in turn has a subsequence that converges to some y. It follows

that (t; y) 2 F

k

since F

k

is closed and t = �(t; y) 2 �[F

k

] = A

k

. Finally,

t 2

T

k2!

A

K

. This �nishes the proof.
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It is unclear if the above construction can be improved to obtain a winning

tactic. Notice that if we can show that monocompactness is closed under

inverse{measure{preserving functions, then Corollary 2.5.2 would imply the

existence of winning tactic in the above case. However, it would not be clear,

what this tactic looks like.

2.7 Remarks

The problem (FN) which motivated most of the considerations presented in

Chapter 2 remains open: is it provable in ZFC that every measure de�ned

on sub{�{algebra of Borel[0; 1] is countably compact?

Monocompactness seems to be really close to countable compactness.

Hence, one can see Corollary 2.5.2 as a strong premise that the answer to

Problem FN is positive. On the other hand this impression may be illu-

sory; e.g. Pachl's reasoning (mentioned in Section 2.1) proving that count-

able compactness of measure is closed under images cannot be generalized

to monocompact measures. Anyway, Corollary 2.5.2 allows us to state the

following conjecture.

Conjecture 2.7.1 Every measure de�ned on a sub{�{algebra of Borel[0; 1]

is regularly monocompact.

Another interesting open problem in this subject was formulated in Sec-

tion 2.6: is every weakly{�{favourable measure �{favourable? The analysis

of the example from [22] mentioned in Section 2.6 leaded us to the following

considerations.

Let A be a family of subsets of some set X and let M be an ideal on X.

De�ne

�(A) = minfjA

0

j : A

0

� A; 8A 2 A 9A

0

2 A

0

A

0

� Ag

and

add(M) = minfjM

0

j : M

0

�M;

[

M

0

=2Mg:

Let B = fU 4M : U 2 U ; M 2 Mg. In [22] Fremlin proves that if U

is the family of open subsets and M is the ideal of meager subsets of [0; 1],

then B de�ned as above is weakly{�{favourable but not �{favourable. The

only property of U and M used in the proof that B is not �{favourable is
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the inequality �(U) < add(M). Thus, every weakly{�{favourable B such

that �(U) < add(M) is not �{favourable. Unfortunately, such B cannot be

a �{algebra for a �nite measure.

Problem 2.7.2 Assume that B is a weakly{�{favourable family of subsets

of some X and there is a family U � P (X) and an ideal M on X such that

B = fU 4M : U 2 U ; M 2 Mg and add(M) � �(U). Is B �{favourable?

A positive answer would imply that every weakly{�{favourable �nite

measure on [0; 1] is �{favourable. Indeed, suppose that a measure � is de�ned

on a �{algebra �. Denote by M the ideal of null sets. Let B = � nM and

let U be such that B = fU4M : U 2 U ; M 2 Mg. Then U is isomorphic to

the measure algebra of � (without the empty set). Hence, add(M) � �(U)

and, therefore, if � is weakly{�{favourable, then it is �{favourable.

Perhaps one can solve Problem 2.7.2 using methods similar to those used

in [28].
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3 Measures on minimally generated Boolean

algebras

In this chapter we study the notion of minimally generated Boolean alge-

bras, mainly from the measure theoretic point of view. Its essential part is

contained in [7].

Section 3.1 is devoted to the study of the Stone spaces of minimally gen-

erated algebras. We try to �nd their place among well{known classes of

topological spaces. We have not been able to give a topological character-

ization of compact spaces whose algebras of clopen subsets are minimally

generated. Most of the results contained in the section are direct applica-

tions of Koppelberg's theorems (repeated without proofs at the beginning of

the section), so we decided to call such spaces Koppelberg compacta. Quite

unexpectedly, it appeared that all monotonically normal spaces are Koppel-

berg compact. Also, we prove here a general fact about the existence of

minimal extensions of certain types. We use it in following sections.

The essential part of Chapter 3 presents several results on measures on

minimally generated algebras. It is done in Section 3.2. We show that

all measures admitted by such algebras are separable (in fact, they ful�ll a

certain stronger regularity condition). It sheds some new light on similar

results obtained for interval algebras and monotonically normal spaces (see

[52, 11] respectively).

Also, in Section 3.2 we prove that a Boolean algebra carries either a non-

separable measure or a measure which is uniformly regular. It is shown that

all measures on a free product A�B of Boolean algebras are weakly uniformly

regular if only all measures on A and B are weakly uniformly regular. The

section provides several results indicating that minimal generation cannot be

characterized by measure theoretic conditions, at least not in any natural

way. We point out that measures on retractive algebras can be nonseparable

if CH is assumed. The retractive algebras are the only well{known subclass

of small Boolean algebras which is not included in the class of minimally

generated algebras. Using the above results we present some new examples

of small (also, retractive) but not minimally generated Boolean algebras.

In Chapter 4 we show some applications of minimally generated Boolean

algebras. We use there some of the results proved in this chapter.
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3.1 Minimally generated Boolean algebras and their

Stone spaces

In this section we mainly overview known results concerning minimal gener-

ation and translate them to the language of topology.

First, let us �x some notation concerning Boolean algebras. Throughout

this section all "algebras" are Boolean algebras, even if it is not stated ex-

plicitly. We denote the Boolean operations like in algebras of sets ([,

c

, and

so on). Given a Boolean algebra A we denote by Stone(A) its Stone space,

i.e. the space of ultra�lters on A. A topological space is said to be Boolean

if it is compact and zero{dimensional.

If A is a family of subsets of X, then alg(A) is the subalgebra of P (X)

generated by A. If A is a Boolean algebra, then A(B) = alg(A[fBg). Recall

that in A(B) all elements are of the form (B \A

1

)[ (B

c

\A

2

), where A

1

, A

2

belong to A. By Fin(X) we denote the family of �nite subsets of X (write

Fin if X = !) and by Fin{Cofin(X) the algebra alg(Fin(X)).

Recall that A�B (A�B) is a free product (product) of Boolean algebras

A and B if it is the algebra of clopen subsets of the product (disjoint union,

respectively) of its Stone spaces.

For an algebra A it is convenient to say that a sequence (A

n

)

n2!

in A is

convergent to an ultra�lter p 2 Stone(A) if for every U 2 p we have A

n

� U

for almost all n. We say that a sequence (p

n

)

n2!

in Stone(A) is convergent

to p if for every U 2 p we have p

n

2 U for almost all n.

We say that a Boolean algebra is small if it does not contain an uncount-

able independent sequence.

Now, we de�ne the main notion of this section.

De�nition 3.1.1 We say that B is a minimal extension of A if A � B and

there is no algebra C such that A ( C ( B.

An algebra B is minimally generated over A if there is a continuous sequence

of algebras (A

�

)

���

, such that A

0

= A, A

�+1

is a minimal extension of A

�

for every � < � and A

�

= B.

Finally, a Boolean algebra is minimally generated if it is minimally generated

over f0; 1g.

Loosely speaking a Boolean algebra is minimally generated if it can be

generated by small, indivisible steps

The notion of minimally generated Boolean algebra was introduced by

Sabine Koppelberg in [33] although it was previously used implicitly by other

27



authors.

The study originated in [33] was continued in [35], where some interesting

counterexamples were indicated. In [36] one can �nd examples of forcing with

minimally generated algebras. Several papers by Lutz Heindorf are closely

related to the topic, see, e.g., [8]. This chapter presents a modest attempt to

deepen the knowledge about this class of Boolean algebras.

The notion of minimal extension corresponds to the idea of a simple

extension in the inverse limits setting. Indeed, many authors considering

problems similar to those presented in this paper prefer to use the language

of inverse limits (see e.g. [13, 15]).

De�nition 3.1.2 Let (X

�

)

�2�

be an inverse limit and let (f

��

)

�<�<�

be the

set of its bonding mappings. We say that X

�+1

is a simple extension of X

�

if there is exactly one point x

�

2 X

�

such that f

�1

(�)(�+1)

(x) is a singleton for

all x 6= x

�

and consists of two points if x = x

�

.

The connection can be explained by the following simple lemma. Indeed,

if an algebra B extends A minimally, then all ultra�lters in A but (possibly)

one has unique extensions in B. It is stated (in a slightly di�erent language)

in [33], but we prove it here for the reader's convenience.

Lemma 3.1.3 Let A � B. Then B extends A minimally if and only if the

set

U = fA 2 A : 9B 2 B A \B =2 Ag

is an ultra�lter on A and only this ultra�lter is split by B, i.e. only this

ultra�lter can be extended to two di�erent ultra�lters on B.

Proof. Let A � B. It is easy to check that if A

0

2 U and A

0

� A

1

, then

A

1

2 U . If B 2 BnA, then for every A 2 A either A\B =2 A or A

c

\B =2 A.

Therefore, if U is closed under �nite intersections, then it is an ultra�lter.

Assume that B extends A minimally. Consider A

0

, A

1

2 A and B

0

,

B

1

2 B such that A

0

\B

0

=2 A and A

1

\B

1

=2 A. Suppose that A

0

\A

1

=2 U .

Then C = A

0

\A

1

\B

0

\B

1

2 A. Hence, A

0

\B

0

nC =2 A and A

1

\B

1

nC =2 A

and A ( A(A

0

\B

0

nC) ( A(A

0

\B

0

nC;A

1

\B

1

nC) � B, a contradiction.

Thus, U is an ultra�lter.

Consider p 2 Stone(A) such that there is A 2 p n U . Then A \ B 2 A

and A n B 2 A for every B 2 B n A. Thus, either A \ B 2 p and then we

cannot extend p by B

c

or A n B 2 p but then we cannot extend p by B.

Consequently, U is the only ultra�lter split by B.
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It is easy to see that if B is not a minimal extension of A, then there

exist pairwise disjoint B

0

; B

1

; B

2

2 B nA. Therefore, if U is an ultra�lter on

A, then it can be extended to at least three ultra�lters on B.

This gives some idea how minimal extensions look like. The following

remark is a simple consequence of the de�nition and of Lemma 3.1.3 but it

simpli�es many considerations included in the next sections.

Proposition 3.1.4 Let B be a minimal extension of A. The following facts

hold:

� if B 2 B n A, then B = A(B);

� if we consider disjoint elements A

0

; A

1

of A and any element B of B,

then A

0

\B 2 A or A

1

\B 2 A.

Now we review some basic facts concerning minimally generated Boolean

algebras. The proofs of Proposition 3.1.5 and of Theorem 3.1.6 can be found

in [33].

Proposition 3.1.5 The class of minimally generated algebras is closed un-

der the following operations:

(a) taking subalgebras;

(b) homomorphic images;

(c) �nite products.

A Boolean algebra is called an interval algebra if it is generated by a

subset linearly ordered under the Boolean partial order. Similarly, an algebra

generated by a tree is called a tree algebra. Every tree algebra is embeddable

into some interval algebra. A Boolean algebra A is said to be superatomic

if every nontrivial homomorphic image of A has at least one atom. Recall

also that a topological space is said to be ordered if its topology is generated

by open intervals of some linear order (for Boolean spaces, if it is a Stone

space of some interval algebra, equivalently). A topological space X is called

scattered if for every closed subspace Y of X the isolated points of Y are

dense in Y (i.e. if it is a Stone space of some superatomic algebra, in the

case of Boolean spaces).
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Theorem 3.1.6 (Koppelberg [33]) The following classes are included in

the class of minimally generated Boolean algebras:

(a) subalgebras of interval algebras (and, thus, countable algebras, tree al-

gebras);

(b) superatomic algebras.

If a Boolean algebra contains an uncountable independent set, then it

cannot be minimally generated (see [33] or Theorem 3.2.10 in the next sec-

tion). The algebra C of clopen subsets of [0; 1)� ([0; 1) \Q), where [0; 1) is

endowed with the Sorgenfrey line topology, is an example of a small algebra

which is not minimally generated (see [35]). It also shows that a free prod-

uct of minimally generated Boolean algebras does not need to be minimally

generated.

We translate now Koppelberg's results to the language of topology. Most

of the following reformulations are trivial. Say that a topological space is

Koppelberg compact if it is Boolean and the algebra of its clopen subsets is

minimally generated.

Proposition 3.1.7 The class of Koppelberg compacta is closed under the

following operations:

(a) continuous images;

(b) taking closed subspaces;

(c) �nite disjoint unions.

Proof. Clearly, (a) and (c) are direct consequences of Proposition 3.1.5.

For Boolean algebras A;B let f : Stone(A) ! Stone(B) be a continuous

mapping. The set ff

�1

(B) : B 2 Bg forms a subalgebra of A, on the other

hand it is isomorphic to B. We conclude that the minimal generation of A

implies the minimal generation of B, by (a) of Proposition 3.1.5. The proof

of (b) is complete.

We translate in the same way Theorem 3.1.6. We �rst recall the notion of

monotonically normal spaces which has been intensively studied in a number

of papers over last years.

30



De�nition 3.1.8 A topological space X is monotonically normal if it is T

1

and for every open U � X and x 2 U we can �nd an open subset h(U; x)

such that x 2 h(U; x) � U and

� U � V implies h(U; x) � h(V; x) for every x 2 U ;

� h(x;X n fyg) \ h(y;X n fxg) = ; for x 6= y.

Theorem 3.1.9 A Boolean space K is Koppelberg compact if one of the

following conditions is ful�lled:

(a) K is metrizable;

(b) K is ordered;

(c) K is scattered;

(d) K is monotonically normal.

Proof. Of these (a), (b) and (c) are trivial since the ordered Boolean spaces

coincide with the Stone spaces of interval algebras and the class of scattered

Boolean spaces is exactly the class of Stone spaces of superatomic algebras.

To prove (d) recall Rudin's theorem (see [50]) stating that every compact

monotonically normal space is a continuous image of compact ordered space.

By (a) of Proposition 3.1.7 we are done.

The class of Koppelberg compact spaces is not included in any class men-

tioned in the above theorem, which is a trivial assertion in case of (a), (b)

and (c). Also, monotone normality and minimal generation are not equiv-

alent, even in the class of zero{dimensional spaces. Before exhibiting the

example recall that by the result due to Heindorf (see [31]) every subalge-

bra of an interval algebra is generated by a pseudo{tree (a subfamily which

is a pseudo{tree when considered as a partially ordered set under Boolean

ordering).

The example is following. Consider an algebra A = alg(Fin [ fA

�

: � 2

cg), where (A

�

)

�2c

is an almost disjoint family of subsets of !. It is clear that

A is minimally generated and that we cannot generate A by a pseudo{tree.

Therefore, A is not embeddable in an interval algebra and, by Rudin's result,

Stone(A) is not monotonically normal.

Anyway, the connection between the class of interval algebras, tree alge-

bras and minimal generation is stronger than just the inclusion. The proof

of following theorem can be found in [35].
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Theorem 3.1.10 (Koppelberg) If a Boolean algebra A is minimally gen-

erated, then A contains a dense tree subalgebra B such that A is minimally

generated over B.

The topological conclusion is as follows. Recall that two topological

spaces are co{absolute if the algebras of their regular open sets are isomor-

phic.

Theorem 3.1.11 Let K be Koppelberg compact. Then the following condi-

tions are ful�lled for every closed subspace F of K:

(a) F is co{absolute with an ordered space (i.e. its algebra of regular open

sets is isomorphic to the algebra of regular open sets of some ordered

space);

(b) F has a tree �{base.

Proof. Both implications for F = K are proved in [33]. By (b) of Proposition

3.1.7 we are done.

The class of spaces with tree �{bases is surprisingly wide. By the result

due to Balcar, Pelant and Simon [4] (see Section 4.2 for more details) even

�! n! has a tree �{base. This property is usually not inherited by all closed

subspaces, though. It is the reason why we have formulated Theorem 3.1.11

in the above way. Nevertheless, it would be desirable to �nd some stronger

conditions implied by minimal generation, in particular to have a topological

characterization of the Koppelberg compacta. It could allow us to get rid of

(arti�cial, in principle) assumption of zero{dimensionality in the de�nition

without referring to the idea of inverse limits. We have not been able to

exhibit any example of a space which is not Koppelberg compact such that

every closed subspace and every continuous image of it has a tree �{base,

but we believe the properties listed in Theorem 3.1.11 do not characterize

the Koppelberg compacta.

It is worth here to recall the idea of discretely generated topological spaces

(formulated by Dow, Tkachuk, Tkachenko and Wilson in [14]).

De�nition 3.1.12 A topological space X is called discretely generated if for

every subset A � X we have

cl(A) =

[

fcl(D) : D � A and D is a discrete subspace of Xg:
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Problem 3.1.13 Is every Koppelberg compactum discretely generated?

One may ask when a given Boolean algebra A has a proper minimal

extension in a given algebra B � A. If B = P (Stone(A)), then A can be

extended minimally by a point of its Stone space. On the other hand, in

Section 5 we will consider only subalgebras of P (!). In this case there do

exist maximal minimally generated algebras, i.e. such subalgebras of P (!)

that no new subset of ! can extend them minimally. We present here a

condition under which we can extend a Boolean algebra A in P (Stone(A))

in quite a natural way.

Lemma 3.1.14 Let (A

n

)

n2!

be a disjoint sequence of clopen subsets of a

compact space K converging to p 2 K. Then we can extend A = Clopen(K)

minimally by a set A of the form A =

S

fA

n

: n 2 Tg, where T is an in�nite

co{in�nite subset of !. In particular, if B � A is a �{complete Boolean

algebra, then we can extend A minimally by an element of B.

Proof. Let Z =

S

n2!

A

2n

. Of course, Z does not belong to A as then either

Z or Z

c

would belong to p. A(Z) splits the ultra�lter p but this is the only

ultra�lter split by A(Z).

Indeed, if q 6= p, then we have B 2 q such that A

n

\B = 0 for almost all

n. Let then

A =

[

fA

n

: A

n

\B 6= Og:

Since A \ Z 2 A either

� A \ Z 2 q but then (A \ Z) \ Z

c

= 0 so q can be extended only by Z

or

� (A \ Z)

c

2 q. Thus, B \ (A \Z)

c

2 q and B \ (A \ Z)

c

\Z = 0 so we

cannot extend q by Z.

Proposition 3.1.15 If K is a compact space without isolated points and

there is a G

�

point in K, then A = Clopen(K) can be extended minimally by

an open F

�

subset of K.

Proof. Assume p is a G

�

point in K. Enumerate by (U

n

)

n2!

a countable

base of p. Let A

0

= U

0

n U

1

. For n 2 ! let A

n+1

=

S

m�n

U

m

n U

n+1

. It is

easy to check that (A

n

)

n2!

is a disjoint sequence converging to p. By Lemma

3.1.14 we are done.
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It is easy to see that usually we can �nd many sequences witnessing

that a Boolean algebra is minimally generated and these sequences can have

di�erent sizes. By the length of a minimally generated Boolean algebra A we

mean the least ordinal demonstrating the minimal generation of A.

3.2 Measures on minimally generated Boolean alge-

bras

We recall several measure theoretic de�nitions. For a wider background the

reader is referred to Fremlin's monograph [25].

By a measure on a Boolean algebra we mean a �nitely additive function.

We also occasionally mention Radon measures on topological spaces. If X

is a topological space, then � is a Radon measure on X if it is a �{additive

measure de�ned on the �{algebra of Borel sets on X. We treat here only

�nite measures.

Let A be a Boolean algebra and let K be its Stone space. Recall that

every (�nitely additive) measure on A can be transferred to the algebra of

clopen subsets of K and then extended to the unique Radon measure.

A measure � on a Boolean algebra A is atomless if for every " > 0 there

is a �nite partition of 1 into elements of measure at most ". In [10] such

a measure is called "strongly continuous". Notice that there are di�erent

notions of atomlessness of measure, not necessarily equivalent to the above

one.

We say that a measure � on a topological space (a Boolean algebra) is

strictly positive if �(A) > 0 for every nonempty open set (nonempty element

of algebra) A. The following simple fact is proved in [35].

Fact 3.2.1 (Koppelberg) If a Boolean algebra A admits a strictly positive

measure, then all trees in A are countable.

In Chapter 2 we mentioned the notion of Maharam type without de�ning

it. We do it now.

De�nition 3.2.2 A measure � on a Boolean algebra A is said to be separable

if there exists a countable B � A such that for every A 2 A and " > 0 we

have B 2 B such that �(A M B) < ".
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A Radon measure satisfying the analogous condition is called a measure

of (Maharam) type !. The following two de�nitions are not so well{known

as the above one.

De�nition 3.2.3 A measure � on a Boolean algebra A is uniformly regular

if there is a countable set A � A such that � is inner regular with respect to

A (i.e., for every A 2 A and " > 0 there is B 2 A such that B � A and

�(A nB) < "). We say that A approximates � from below.

Sometimes such a measure is called "strongly countably determined", see

[3] or [47] for further reading. The following simple modi�cation of the above

de�nition will be particularly useful.

De�nition 3.2.4 A measure � on a Boolean algebra A is weakly uniformly

regular (w.u.r., for brevity) if there is a countable set A � A such that � is

inner regular with respect to the class fA n I : A 2 A, �(I) = 0g. We say

that A weakly approximates � from below.

We can make this de�nition a little bit more understandable by switching

to the topological point of view. A measure is weakly uniformly regular on

Clopen(K), where K is a Boolean space, if the corresponding measure on K

is uniformly regular on its support.

It is clear that the following implications hold:

uniformly regular =) weakly uniformly regular

�

=) of Maharam type !

=) has a separable support

None of the above implications can be reversed. Consider the following ex-

amples:

(a) the usual 0{1 measure on the algebra Fin{Cofin(!

1

) is weakly uni-

formly regular but not uniformly regular;

(b) if A is the algebra of Lebesgue measure on [0; 1], then the standard

measure on Stone(A) is of Maharam type !, its support is not separable,

though, and thus it is not w.u.r.;

(c) the usual product measure on 2

!

1

has a separable support but is not

of Maharam type ! (hence, is not w.u.r.).
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We ought to remark here that example (b) exhibits one more property of

uniform regularity. Notice that the Lebesgue measure on [0; 1] is uniformly

regular but the measure from example (b) is not, although these measures

has the same measure algebra. Hence, the uniform regularity of measure

depends on its domain. This property plays no role in our considerations as

we discuss here only measures on Boolean algebras and their Stone spaces.

Before we start an examination of measures on Koppelberg compacta,

we prove a general theorem concerning the connections between uniformly

regular measures and separable measures. Recall that if A is contained in

some larger algebra B, then every measure � de�ned on A can be extended

to some measure � de�ned on B. We say that A is �{dense in B if

inff�(B M A) : A 2 Ag = 0

for every B 2 B. We will need the following theorem due to Plachky (see

[43]).

Theorem 3.2.5 (Plachky) Let � be a measure on a Boolean algebra B

containing an algebra A. The algebra A is �{dense in B if and only if � is

an extreme point of the set

f� : � is de�ned on B and �jA = �jAg:

We use Plachky's criterion to prove the following result.

Lemma 3.2.6 Let A be a Boolean algebra carrying a measure �. If A � B,

then there is an extension of � to a measure � de�ned on B such that A is not

�{dense in B if and only if there is B 2 B with the property �

�

(B) < �

�

(B).

Proof. Assume that �

�

(B

0

) < �

�

(B

0

) for some B

0

2 B. It can be easily

shown that the formulas

�

0

(B) = �

�

(B \ B

0

) + �

�

(B nB

0

);

�

00

(B) = �

�

(B \ B

0

) + �

�

(B nB

0

)

de�ne extensions of � to measures on the algebra A(B

0

). In turn, �

0

, �

00

can

be extended to �

0

, �

00

on B. As �

0

6= �

00

it follows that � = 1=2(�

0

+ �

00

) is

not an extreme extension, so by Plachky's criterion A is not �{dense in B.

The converse is obvious.
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Theorem 3.2.7 Let A be a Boolean algebra. Then A carries either a uni-

formly regular measure or a measure which is not separable.

Proof. Suppose that there is no uniformly regular measure on A. We con-

struct a nonseparable measure � de�ned on A. Namely, we construct a

sequence of countable Boolean algebras fB

�

: � < !

1

g and a sequence of

measures f�

�

: � < !

1

g such that for every � < � < !

1

the following condi-

tions are ful�lled:

� B

�

carries �

�

;

� B

�

� B

�

� A;

� �

�

extends �

�

;

� B

�

is not �

�

{dense in B

�

.

Assume that we have already constructed A

�

and �

�

. We can extend �

�

to a

measure � on A. By our assumption, the measure � is not uniformly regular

so we can �nd an element A such that

inff�(A n U) : U 2 B

�

, U � Ag > 0:

Set B

�+1

= B

�

(A) and use Lemma 3.2.6 to �nd a measure �

�+1

extending

�

�

and such that B

�

is not �

�+1

{dense in B

�+1

. At a limit step  set B



=

S

�<

A

�

and �



to be the unique extension of all members of f�

�

: � < g.

Finally, set B =

S

�<!

1

B

�

and take the unique extension of all constructed

�

�

's for �. Every extension of � to a measure � on A is not separable.

We turn now to the proper topic of this section. First, we will see how a

measure behaves when considered on a minimal extension of its domain.

Lemma 3.2.8 Let � be an atomless measure on a Boolean algebra A and let

B be a minimal extension of A. Then for every B 2 B we have �

�

(B) =

�

�

(B).

Proof. Consider B 2 B and " > 0. We will show that �

�

(B)� �

�

(B) < ".

Assume that (A

n

)

n<N

is a partition of 1

A

witnessing that � is atomless (for

our "). From Lemma 3.1.3 we deduce that there is only one k < N such that

A

k

\B =2 A (we exclude the trivial case of B 2 A). Since

X

k 6=n<N

�(A

n

\B) = �(B n A

k

) � �

�

(B) � �

�

(B) � �(B n A

k

) + ";
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we conclude that the desired inequality holds. As " was arbitrary, �

�

= �

�

on B.

The above lemma expresses the fact that minimal extensions do not enrich

atomless measures. This observation lies in the heart of the following facts.

Proposition 3.2.9 If B is minimally generated over A and � is a measure

on B such that �jA is atomless and uniformly regular, then � is uniformly

regular.

Proof. It is a direct consequence of Lemma 3.2.8.

Theorem 3.1.9 allows us to see the following theorem as a generalization

(of course only for the zero{dimensional case) of Theorem 9 of [11] (stating

that every atomless measure on a monotonically normal space is of countable

Maharam type) and of Theorem 3.2(i) of [52] (stating that every atomless

measure on an ordered space is uniformly regular on its support).

Theorem 3.2.10 Every measure � on a minimally generated Boolean alge-

bra A is a sum of countably many weakly uniformly regular measures. Con-

sequently, measures on minimally generated algebras are separable.

Proof. Assume a contrario that there is a measure � on A which is not a

sum of w.u.r. measures. Assume that the sequence (A

�

)

���

witnesses that

A is minimally generated (where A

�

= A) and let �

�

= �jA

�

for every �.

Denote

� = minf� : �

�

is not a sum of w.u.r. measures on A

�

g

and notice that cf(�) is uncountable. Without loss of generality we can

assume that �

�

is atomless. If it is not then we can apply the Sobczyk{

Hammer Decomposition Theorem (see Theorem 5.2.7 in [10]), i.e. split �

�

into

�

�

= �

0

+

X

n2!

a

n

�

n

;

where �

0

is atomless and for n � 1 the measure �

n

is 0{1 valued. Of course

each �

n

is weakly uniformly regular, so we can assume that �

�

= �

0

. Denote

now

� = minf� : �

�

is atomlessg:
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Of course � � �. Notice that cf(�) = @

0

. Indeed, if �(n) is the least ordinal

such that there is a partition of 1 into sets from A

�(n)

of �{measure < 1=n,

then � on

S

n2!

A

�(n)

is atomless. Hence, � < �. But the measure �

�

on A

�

ful�ls the conditions of Lemma 3.2.8 so for every � > � the measure �

�

on

A

�

is a sum of w.u.r. measures, in particular so is � on A, a contradiction.

Since every w.u.r. measure is separable and a sum of countably many

separable measures is separable the second assertion follows.

The following corollary is proved directly in [33]. Recall that if we can

map continuously a topological space K onto f0; 1g

!

1

, then there exists a

measure of uncountable type on K (by Fremlin's theorem, under MA

!

1

the

above conditions are in fact equivalent, see [20]). We should also remind here

that a compact space K contains a copy of �! if and only if it can be mapped

continuously onto f0; 1g

c

. Now we can �nally formulate the corollary.

Corollary 3.2.11 If A is a minimally generated Boolean algebra, then A

does not contain an uncountable independent sequence. Therefore, Stone(A)

cannot be mapped continuously onto f0; 1g

!

1

and there is no copy of �! in

Stone(A).

It is worth to point out here one more remark. Some axioms (such as

CH) imply the existence of examples of small Boolean algebras carrying non-

separable measures. By Theorem 3.2.10 these examples turn out to be also

examples of small but not minimally generated Boolean algebras.

The following fact can be easily deduced from the proof of Theorem 3.2.10.

Corollary 3.2.12 Every atomless measure � on a minimally generated Boolean

algebra of length at most !

1

is uniformly regular.

We show that the above corollary cannot be strengthened in the obvious

way.

Example 3.2.13 There is a Boolean algebra of length at most !

1

+ ! car-

rying an atomless measure which is not uniformly regular.

Proof. Let A(!

1

) denote the Alexandrov compacti�cation of !

1

endowed

with the discrete topology, i.e. the space !

1

[ f1g with the topology gen-

erated by f�g for � 2 !

1

and f1g [ (!

1

n I) for �nite sets I. Consider the

algebra A = Clopen(A(!

1

)� C), where C is the Cantor set.
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CLAIM 1. The algebra A is minimally generated.

We can construct in a minimal way the algebra f0g � Clopen(C) in the

�rst ! steps. There are no obstacles (for the minimality of extensions) to

repeat this construction for f1g � Clopen(C) and proceed in this manner

obtaining �nally (in !

1

steps) the algebra generated by sets of the form

f�g �K, where � 2 !

1

and K is a clopen subset of C. Then we can add by

minimal extensions all sets of the form (f1g[!

1

)�K, where K is a clopen

subset of C. As a result, we obtain A.

Consider now the following measure � on A:

�(A) = �(A \ (f1g � C));

where � is the standard measure on C.

CLAIM 2. The measure � is atomless but not uniformly regular.

Indeed, suppose that there is a countable family A � A approximating

� from below. For every A 2 A of positive measure 1 2 �(A), where

� : A(!

1

) � C ! A(!

1

) is the projection to the �rst coordinate, so �(A) =

!

1

n I

A

, where I

A

is �nite. Let

� = sup

[

fI

A

: A 2 Ag+ 1:

Let B = (f1g [ (!

1

n f�g))� C. It is easily seen that

� B 2 A,

� �(B) = 1,

� there is no A 2 A such that �(A) > 0 and A � B (if �(A) > 0 and

A 2 A then by the de�nition of � we see that f�g � C � A).

From the above example we deduce that the length of a minimally gen-

erated algebra is not necessarily a cardinal number. The above algebra A

cannot be generated in !

1

steps as then every atomless measure admitted by

A should be uniformly regular. Anyway, the following fact implies that the

lengths of minimally generated algebras are limit ordinal numbers.

Proposition 3.2.14 Let A be a minimally generated subalgebra of a Boolean

algebra C. Then the algebra A(B) is minimally generated for every B 2 C.
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Proof. Let (A

�

)

�2�

be such that A

�+1

= A

�

(A

�

) for every � < �, where

(A

�

)

�2�

is a sequence witnessing the minimal generation of A. We will con-

struct a sequence of minimal extensions generating B = A(B). Recall that an

ordinal number � is called even if it can be represented as � = + 2n, where

 is a limit ordinal or 0 and n 2 !. For such ordinals let h( + 2n) =  + n.

Let B

0

= f0; 1; B; B

c

g. De�ne

B

�+1

=

�

B

�

(B \ A

h(�+2)

) if � is even;

B

�

(A

h(�+1)

) else:

At a limit step  we set B



=

S

�<

B

�

.

Our new sequence generates the desired algebra in a minimal way. Let

� be even. Then B

�

is extended to B

�+1

by an element of the form B \ A,

where A 2 A. We use Lemma 3.1.4. No element of A\B

�

can split B\A into

two elements not belonging to B

�

. This holds because B

�+1

\A is minimally

generated over B

�

\ A. Of course, B does not split B \ A, too. It implies

that no element of B

�

splits B \ A into two new elements, so our extension

is minimal.

Similar arguments work for the case of odd �.

We will show now that the property of admitting only w.u.r. measures is

closed under free products. By the result due to Sapounakis (see [52]) interval

Boolean algebras admit only w.u.r. measures. It follows that Koppelberg's

example C mentioned on page 30 carries only w.u.r. measures (since it is a

free product of interval algebras) but it is not minimally generated. There-

fore, every measure on a minimally generated algebra is a countable sum of

weakly uniformly regular measures but there is a Boolean algebra admitting

only w.u.r. measures which is not minimally generated. Consequently, min-

imal generation cannot be characterized by any measure theoretic property

mentioned in this section.

Theorem 3.2.15 If every measure on a Boolean algebra A is w.u.r. and

every measure on B is w.u.r., then every measure on A�B is w.u.r.

Proof. For simplicity assume that the considered algebras are contained in

P (X) for some set X.

It is enough to show that we can weakly approximate from below all the

rectangles since every member of A �B is a �nite union of rectangles. Let
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� be a measure on A�B. De�ne

�

1

(A) = �(A�X)

and for A 2 A

�

A

(B) = �(A�B):

By the assumption the measure �

1

is weakly uniformly regular so there is a

countable set A weakly approximating �

1

from below. For every A 2 A the

measure �

A

is also w.u.r. and has an approximating set B (A).

We will show that fA

0

�B

0

: A

0

2 A; B

0

2 B (A

0

)g weakly approximates

� from below. Indeed, consider A 2 A; B 2 B and " > 0. Then by the

de�nition we can �nd

� A

0

2 A such that �

1

(A n A

0

) <

"

2

and 9F �

1

(F ) = 0; A

0

n F � A,

� B

0

2 B(A

0

) such that �

A

0

(B nB

0

) < "=2 and 9G �

A

0

(G) = 0; B

0

nG �

B.

Now �((A�B) n (A

0

�B

0

)) < " since

(A�B) n (A

0

�B

0

) = A

0

� (B nB

0

) [ (A n A

0

)�B

but

�(A

0

� (B nB

0

)) = �

A

0

(B nB

0

) < "=2

and

�((A n A

0

)�B) � �((A n A

0

)�X) = �

1

(A n A

0

) < "=2:

It su�ces to show that there exists an element H such that �(H) = 0 and

(A

0

� B

0

) n H � (A � B). Clearly, H = (F � X) [ (A

0

� G) is such an

element.

We continue the measure theoretic examination of minimally generated

Boolean algebras. The existence of uniformly regular measures on such al-

gebras follows from Theorem 3.2.7 and Theorem 3.2.10. Anyway, such mea-

sures can be easily constructed directly using Theorem 3.1.10. Under certain

conditions we can force these measures to have additional properties.

Theorem 3.2.16 Let A be an atomless minimally generated Boolean alge-

bra. Then A carries an atomless uniformly regular measure �. Moreover,

if any of the following conditions is ful�lled, then we can demand that � is

strictly positive as well:
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� if A carries a strictly positive measure;

� if A is c.c.c. and the Suslin Conjecture is assumed;

� if A is strongly c.c.c., i.e. it does not contain any uncountable set of

pairwise incomparable elements.

Proof. Let T � A be a tree as in 3.1.10

We can easily �nd a countable dyadic tree T

0

� T . For an element A 2 T

0

put �(A) = 1=2

n

if A belongs to the n{th level of T

0

. In this way we obtain a

measure de�ned on the algebra generated by T

0

. It is atomless and uniformly

regular, so by Lemma 3.2.8 its extension to � de�ned on A will be uniformly

regular as well.

CLAIM. If T can be assumed to be countable, then A carries a strictly positive

uniformly regular measure.

Indeed, we can easily �nd a tree T

0

� T isomorphic to !

<!

such that

every level of T

0

forms a maximal antichain in A and T

0

is dense in A. De�ne

a strictly positive measure � on T

0

. By a similar argument as before the

extension of � to the measure � on A will be uniformly regular. Clearly, � is

strictly positive and the claim is proved.

To complete the proof we show that the assumptions listed above imply

that T can be conceived as countable.

If A carries a strictly positive measure then, according to Fact 3.2.1, every

tree contained in A is countable, and so is T .

If A is c.c.c., then it does not contain neither an uncountable chain nor

an uncountable antichain so every uncountable tree contained in A is Suslin.

Hence, the Suslin Conjecture implies that T is countable.

Finally, by the theorem of Baumgartner and Komj�ath, if A is strongly

c.c.c., then it contains a countable dense subalgebra B � A (see [9] for the

details). Therefore, the Stone space of A is separable and thus it supports a

strictly positive measure (for the proofs of the last implications we refer the

reader to [53]).

It follows that in the class of Koppelberg compacta the property of hav-

ing a strictly positive measure is equivalent to separability. If the Suslin

Conjecture is assumed these properties are equivalent also to c.c.c. We can

use these remarks to answer the question which seems to be natural in the

context of Theorem 3.2.10.
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Theorem 3.2.17 There is a minimally generated Boolean algebra support-

ing a measure which is not w.u.r.

Proof. Denote by B the algebra of Lebesgue measure on [0; 1]. Let A � B

be a minimally generated Boolean algebra such that for no B 2 B n A the

extension A(B) is minimal over A. Notice that according to the proof of

Theorem 3.1.15 and the completeness of B no p 2 K = Stone(A) is a G

�

point.

Since A carries a strictly positive measure the space K is separable (by

Theorem 3.2.16). Let fx

n

: n � 1g be dense in K. Consider the following

measure:

� =

X

n�1

�

x

n

=2

n

:

It is not w.u.r. Otherwise, it would be uniformly regular because � is strictly

positive. But �

x

is uniformly regular only if x is G

�

and there are no such

points in K. Therefore, the measure �

x

1

is not uniformly regular and, ac-

cordingly, � is not w.u.r.

We �nish this section with a short analysis of the behavior of measures

on other well{known subclass of small Boolean algebras.

De�nition 3.2.18 A Boolean algebra A is retractive if for every epimor-

phism e : A ! B there is a monomorphism (lifting) m : B ! A such that

e �m = id

B

.

Notice that a Boolean algebra is retractive if and only if its Stone space K

is co{retractive, i.e. every closed subspace of K is a retract of K. J. Donald

Monk showed that no retractive Boolean algebra contains an uncountable

independent sequence. It is also known that not every minimally generated

algebra is retractive. In [35] Koppelberg gave an example of a retractive but

not minimally generated Boolean algebra. However, the construction was

carried out under CH. We present here an example of a retractive algebra

which is not minimally generated and additionally carries a nonseparable

measure. It requires the following assumption:

cof(N ) = minfjAj : A � N 8N 2 N 9A 2 A N � Ag = !

1

;

where N denotes the ideal of Lebesgue measure zero sets. Of course CH

implies cof(N ) = @

1

, on the other hand e.g. in the Sacks model c = @

2

and,

nevertheless, cof(N ) = @

1

.
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In the following theorem we simply take advantage of the construction

carried out by Plebanek in [44]. Recall that a Boolean space K is Corson

compact if there exists a point{countable family D of clopen subsets of K

such that D separates points of K. For our purposes it is important that

separable Corson compacta are metrizable (see [2]).

Theorem 3.2.19 Assume cof(N ) = @

1

. Then there is a retractive Boolean

algebra A carrying a nonseparable measure and without a tree �{base.

Proof. The equality cof(N ) = @

1

implies the existence of a Corson compact

space K carrying a strictly positive nonseparable measure � such that for

every nowhere dense F � K the set F is metrizable (see [44]).

To verify the retractiveness of Boolean algebra A = Clopen(K) one needs

only to check if for every dense ideal I � A the algebra A=I is countable

(see Theorem 4.3(c) in [49]). If an ideal I is dense, then F = Stone(A=I)

is a closed nowhere dense subspace of K. Thus, it is metrizable. So A=I is

countable.

Assume now for a contradiction that A has a tree �{base T . Since � is

strictly positive, by Fact 3.2.1, T has to be countable. Thus, K is separa-

ble and, since it is Corson compact, K is metrizable. It follows that every

measure on K is of countable Maharam type, a contradiction.

On the other hand, as we have already mentioned, it is consistent to as-

sume that small Boolean algebras carry only separable measures. Combining

Fremlin's theorem mentioned on page 39 and the fact that retractive algebras

are small we obtain the following.

Theorem 3.2.20 If MA

!

1

holds, then retractive algebras admit only sepa-

rable measures.

It is not known if it is consistent to assume that every retractive Boolean

algebra is minimally generated (or, at least, has a tree �{base).

3.3 Remarks

The study of measures on minimally generated Boolean algebras is the es-

sential part of this section. The comparison of Theorem 3.2.10 and Theorem

3.2.17 indicates that our description of the behavior of measures on this class
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of Boolean algebras is quite precise. We have seen that the measure theo-

retic research can be used to prove some general theorems about minimally

generated Boolean algebras.

In Section 3.1 we asked if we can �nd a reasonable topological character-

ization of Koppelberg compact spaces (without referring to inverse limits).

On page 33 we asked several more detailed questions concerning this subject;

see e.g. Problem 3.1.13.
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4 Koppelberg compacta with additional prop-

erties

The aim of this chapter is to exhibit some applications of the notion of

minimally generated Boolean algebras. Section 4.1 is based on one of the

sections of [7], while the work presented in Section 4.2 is still in progress

and, thus, the section is not particularly conclusive.

Section 4.1 deals with the connection between Koppelberg compacta and

E�mov spaces, where by a E�mov space we mean a compact space that nei-

ther contains a nontrivial convergent sequence nor a copy of �!. It is not

known if such spaces can be constructed in ZFC. However, many construc-

tions of such spaces were carried out in several models of ZFC. Most of them

(see [13, 15, 16]) use, explicitly or not, the notion of minimally generated

Boolean algebra. Section 4.1 discusses this topic. We do not exhibit any new

E�mov space, but we try to locate potential E�mov spaces within the class

of Koppelberg compacta. We give here alternative and quite simple proof of

Haydon's theorem stating that there is a compact but not sequentially com-

pact space without a nonseparable measure. We �nish with a construction

of a E�mov{like space not involving minimally generated algebras.

In Section 4.2 we try to use the notion of Koppelberg compact space

for a construction of a peculiar Banach space. The motivation for this sec-

tion comes from the problem posed by Grzegorz Plebanek in [45]: is there

a Banach space with the Mazur property but without the Gellfand{Philips

property? We investigate a certain cardinal coe�cient connected to the �lter

of density 1 sets. It is shown that an assumption on this coe�cient implies a

positive answer to Plebanek's question. A space of continuous functions on

a certain Koppelberg compact space constitutes the desired example. Unfor-

tunately, it is unclear whether this assumption is consistent with ZFC. We

show that in Hechler's model there exists a Koppelberg compact space with

a slightly weaker property.

4.1 E�mov spaces

We recall the longstanding E�mov problem.

Problem 4.1.1 Is there an in�nite compact space which neither contains a

nontrivial convergent sequence nor a copy of �!?
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Such spaces (we call them E�mov spaces) can be constructed if certain

set theoretic axioms are assumed. The question if one can construct a E�mov

space in ZFC is still unanswered. For example, it is not known if Martin's

Axiom implies the existence of E�mov spaces.

Consider a sequence (r

n

)

n2!

and a subsequence (l

n

)

n2!

in a topological

space X. We say that K � X separates L = fl

n

: n 2 !g in R = fr

n

: n 2 !g

if R \ K = L. To make a Boolean space E�mov we have to add many

clopen sets to ensure that every sequence of distinct points has a subsequence

separated by a clopen set. On the other hand, if our space is too rich, then

it contains a sequence all of whose subsequences are separated and, thus, it

would contain a copy of �!.

By Corollary 3.2.11 minimal generation gives us a tool for constructing

compact zero{dimensional spaces without copies of �!. Fedor�cuk's E�mov

space (see [16]) has been constructed using simple extensions as well as the

example presented by Dow in [13]. The �rst one requires CH, the latter

a certain axiom connected to the notion of splitting number. For another

construction (using }) see also [35].

We consider compacti�cations of !. Notice at once that if there exists a

E�mov space, then by taking the closure of countable discrete subspace we

can obtain a compacti�cation of ! which is E�mov.

We will employ the idea of pseudo{intersection number. Write A �

�

B

if A n B is �nite. We say that P � X is a pseudo{intersection for a family

P � P (X) provided for every A 2 P we have P �

�

A. A family P is

said to have strong �nite intersection property (s�p for brevity) if every

�nite subfamily has an in�nite intersection. The de�nition of the pseudo{

intersection number is as follows

p = minfjPj : P � [!]

!

has s�p but no X 2 [!]

!

is a pseudo{intersection for Pg:

The assumption p = c is equivalent to Martin's Axiom for �{centered families

(see, e.g., [27]).

For a topological space X and a cardinal � we say that S � X is G

�

if there is a family of open sets fU

�

: � 2 �g such that S =

T

�2�

U

�

. It is

convenient to say that S is G

<�

if there is a � < � such that S is G

�

.

Theorem 4.1.2 There is a Koppelberg compacti�cation K of ! without a

convergent sequence of distinct G

<p

points. In particular, if MA is assumed,

then K does not contain a convergent sequence of distinct G

<c

points.
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Proof. We will indicate a Koppelberg compacti�cation of ! without a con-

vergent subsequence of ! such that no point of its remainder is G

<p

. We �rst

show two claims.

CLAIM 1. Let A be a subalgebra of P (!) containing the algebra Fin{Cofin.

Then there is a nontrivial convergent subsequence of ! in K = Stone(A) if

and only if there is p 2 K with an in�nite pseudo{intersection.

Indeed, assume that a sequence (n

k

)

k2!

converges to p. Thus, for every

A 2 p we have N = fn

0

; n

1

; :::g �

�

A and, consequently, N is a pseudo{

intersection of p. Conversely, an enumerated pseudo{intersection of p forms

a subsequence of ! convergent to p.

CLAIM 2. Let A be an algebra minimally generated over Fin{Cofin with

an ultra�lter p with in�nite pseudo{intersection P . Then A(P ) is a minimal

extension of A.

It is so because for every A 2 A either A \ P 2 Fin or P �

�

A and,

therefore, either A \ P 2 A or A

c

\ P 2 A. By Lemma 3.1.3 we are done.

Let A � P (!) be a Boolean algebra minimally generated over Fin{Cofin

such that A(A) is not a minimal extension of A for any A 2 P (!) n A. By

Claim 2 no p 2 K = Stone(A) has an in�nite pseudo{intersection and by

Claim 1 there is no convergent subsequence of ! in K. Since no p 2 K n! is

a G

<p

point and K is Koppelberg compact, we are done.

As a corollary we get the following theorem proved by Haydon in [29].

Corollary 4.1.3 (Haydon) There is a compact space which is not sequen-

tially compact but which carries no measure of uncountable type.

Proof. Let K be as in Theorem 4.1.2. Then the natural numbers form a

sequence witnessing that K is not sequentially compact. By Theorem 3.2.10

every measure on K has a countable Maharam type.

In fact, as can easily be seen in the proof of Theorem 4.1.2, every Boolean

algebra A minimally generated over Fin{Cofin can be extended to B �

P (!) such that Stone(B) ful�lls the conditions of Theorem 4.1.2 and Corol-

lary 4.1.3. Thus, we can produce a lot of examples of such spaces.

Moreover, using Theorem 3.1.10 we can easily indicate tree algebras with

the same property as in the above theorems. In fact, tree algebras can be
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unexpectedly rich. By the theorem already mentioned in Section 2 there is

a tree algebra A dense in P (!)=Fin, i.e. such that for every in�nite N � !

there is an in�nite set M �

�

N such that M 2 A.

Theorem 4.1.2 can be counterpointed by the following theorem. Let us

say that a compact space K is Grothendieck if C(K) is Grothendieck, i.e.

if every weak

�

convergent sequence in the space C

�

(K) weakly converges,

which means that in a sense C

�

(K) does not contain nontrivial convergent

sequences of measures and, thus, there is no nontrivial convergent sequences

of points in K (as the convergence of (x

n

)

n2!

is equivalent to the convergence

of (�

x

n

)

n2!

). So, the notion of a Grothendieck space is a strengthening of the

property of not containing nontrivial convergent sequences.

De�nition 4.1.4 Let F be a family of subsets of a compact space K. We

say that K contains a copy of �! consisting of F sets if there is a disjoint

sequence (F

n

)

n2!

of elements of F such that for every T � ! there is A 2

Clopen(K) such that

A \

[

n2!

F

n

=

[

n2T

F

n

:

Denote by (*) the following assumption:

2

�

� c if � < c:

Recall that (*) implies that c is regular and that MA implies (*). We prove

the following theorem.

Theorem 4.1.5 There is a Grothendieck space not containing copies of �!

consisting of G

�

sets. Moreover, if (*) is assumed, then there is a Grothendieck

space without copies of �! consisting of G

<c

sets.

Thus, although it is not known if one can construct a E�mov space under

MA, some sorts of E�mov spaces can be, nevertheless, indicated: either if we

admit the existence of a convergent sequence of G

c

points or if we admit �!

to be embeddable but only in such a way that natural numbers are mapped

on G

c

sets.

In fact, our construction has a slightly stronger property. We say that a

Boolean algebra A has the Subsequential Completeness Property (SCP, for

brevity) if for every disjoint sequence in A there is an in�nite co{in�nite

subset T � ! such that (A

n

)

n2T

has a least upper bound in A. A compact
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space K has SCP if Clopen(K) has SCP. Haydon showed that the spaces

with SCP are Grothendieck (see [29]).

De�nition 4.1.6 Let A be a Boolean algebra. Let R = fF

n

: n 2 !g be a

set of �lters on A and let L = fF

n

: n 2 Tg for some T � !. We say that

A 2 A separates L in R if

� A 2 F

n

for n 2 T ,

� A

c

2 F

n

for n =2 T .

The algebra A separates L in R if there is A 2 A separating L in R.

Notice that a sequence (F

n

)

n2!

of closed sets in Stone(A) is a copy of �!

if and only if every subsequence of (F

n

)

n2!

is separated in (F

n

)

n2!

by A.

Thus, the assertion that K does not contain copies of �! consisting of

Clopen sets has a simple algebraic interpretation. It means that for every

pairwise disjoint sequence (A

n

)

n2!

from A = Clopen(K) the algebra A con-

tains a least upper bound of (A

n

)

n2T

for some in�nite co{in�nite T � ! but

there is also N � ! such that (A

n

)

n2N

is non{separated in (A

n

)

n2!

by A.

The construction proceeds as follows, in the spirit of Haydon's construc-

tion from [29].

Consider a Boolean algebra A and a sequence (F

n

)

n2!

of �lters on A.

We will say that a sequence (p

n

)

n2!

is an extension of (F

n

)

n2!

in A if p

n

is

an extension of F

n

to an ultra�lter in A for every n 2 !. We will use the

following trivial observation.

Fact 4.1.7 Let R be a sequence of �lters on a Boolean algebra A with a

subsequence L separated in R by A. If R

0

and L

0

are extensions of R and L

in A then L

0

is still separated in R

0

by A.

Before we prove Theorem 4.1.5 we have to show the following lemma.

Lemma 4.1.8 Let A � P (X) be a Boolean algebra. Assume that f(L

�

; R

�

) : � <

� < cg is such that R

�

is a nontrivial sequence in Stone(A) and L

�

is its

subsequence no separated in R

�

by A for every � < �. Let (A

n

)

n2!

be a

disjoint sequence in A. Then there is an in�nite, co{in�nite � � ! and a

collection f(L

0

�

; R

0

�

) : � < � < cg such that for every � < � and n 2 ! we

have: R

0

�

(n) is an extension of R

�

(n) to an ultra�lter in A(

S

n2�

A

n

), L

0

�

is

the corresponding subsequence of R

0

�

and A(

S

n2�

A

n

) does not separate L

0

�

in R

0

�

.
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Proof. For � � ! denote

A

�

=

[

n2�

A

n

:

Consider the algebras A(A

�

) for � � !. Fix � < � and n 2 !. We de�ne

R

�

�

(n) in the following way. If A

�

does not split the ultra�lter F = R

�

(n),

then R

�

�

(n) is the unique extension of F in A(A

�

). If A

�

splits F , then let

R

�

�

(n) be de�ned as the extension of F by A

c

�

. L

�

�

(n) = R

�

�

(m) if L

�

(n) =

R

�

(m).

Consider an almost disjoint family � of in�nite subsets of ! of cardinality

c. We show that there is � 2 � such that no L

�

�

is separated in R

�

�

by A(A

�

).

Suppose otherwise; then by a cardinality argument, there are � < �, �; � 2 �

and U

1

; U

2

2 A such that � 6= � and

Z

�

= (A

�

\ U

1

) [ (A

c

�

\ U

2

) separates L

�

�

in R

�

�

and

Z

�

= (A

�

\ U

1

) [ (A

c

�

\ U

2

) separates L

�

�

in R

�

�

:

Set

A = (A

�\�

\ U

1

) [ (A

c

�\�

\ U

2

);

and notice that A 2 A (as � \ � is �nite). It su�ces to show that the set A

separates L

�

in R

�

.

Consider F = L

�

(n) for some � < � and n 2 !. We show that A 2 F .

Denote F

�

= L

�

�

(n) and F

�

= L

�

�

(n). Obviously, Z

�

2 F

�

and Z

�

2 F

�

.

It means that either Z

1

�

= (A

�

\ U

1

) 2 F

�

or Z

2

�

= (A

c

�

\ U

2

) 2 F

�

and

either Z

1

�

= (A

�

\ U

1

) 2 F

�

or Z

2

�

= (A

c

�

\ U

2

) 2 F

�

. To show that A 2 F

we have to consider three cases. We will repeatedly use basic properties of

ultra�lters.

1. If Z

1

�

2 F

�

and Z

2

�

2 F

�

or Z

2

�

2 F

�

and Z

1

�

2 F

�

, then both U

1

, U

2

belong to F and, since either A

�\�

2 F or A

c

�\�

2 F , A 2 F .

2. If Z

2

�

2 F

�

and Z

2

�

2 F

�

, then the set A

�\�

cannot belong to F

(because then ; 2 F

�

), so A

c

�\�

2 F but U

2

2 F and, therefore, A 2 F .

3. Assume that Z

1

�

2 F

�

and Z

1

�

2 F

�

. Notice �rst that in this case

F

�

;F

�

have to be unique extensions of F (by A

�

, A

�

respectively). There-

fore, F has a unique extension in A(A

�

; A

�

) and Z

1

�

\Z

1

�

= A

�\�

\U

1

belongs

to this extension. But A

�\�

\ U

1

2 A and, again, A 2 F .

Similar methods are used to prove that for every element F of R

�

not

belonging to L

�

we have A =2 F . Hence, A separates L

�

in R

�

, a contradic-

tion.
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It follows that there is � 2 � such that A(A

�

) does not separate L

0

�

= L

�

�

in R

0

�

= R

�

�

for � < �; � is in�nite and co{in�nite.

Proof. (of Theorem 4.1.5) Let � : c ! c � c be a surjection such that if

�(�) = (; �), then  � � and �(0) = (0; 0). We construct an increasing

sequence of Boolean algebras (A

�

)

�2c

each of size less than c. For every

� < c �x

� an enumeration fA

�

�

: � < cg of disjoint sequences in A

�

,

� an enumeration fS

�

�

: � < cg of disjoint sequences ofG

�

sets in Stone(A

�

).

Let A

0

= Clopen(2

!

). Fix R

0

0

(0) to be an extension of S

0

0

in A

0

and L

0

0

(0) to

be some non{separated subsequence.

Assume thatA

�

is constructed and we have a family f(L

�

�

(�); R

�

�

(�)) : (�; �) =

�(�); � < �g of sequences of ultra�lters and their non{separated subse-

quences. Let �(�) = (; �). De�ne R



�

(�) to be an extension of S



�

in

A

�

. Fix a subsequence L



�

(�) non{separated by A

�

(such a subsequence

exists since jA

�

j < c). Apply Lemma 4.1.8 to the sequence A



�

and to

f(L

�

�

(�); R

�

�

(�)) : (�; �) = �(�); � � �g to produce A

�+1

. Let L

�

�

(� + 1) =

L

0

�

�1

(�;�)

and R

�

�

(� + 1) = R

0

�

�1

(�;�)

for every pair (�; �) such that there is

� � � and �(�) = (�; �).

On a limit step � take A

�

=

S

�<�

A

�

. Set R

�

�

(�) to be the unique

extension of all R

�

�

(�) and L

�

�

(�) to be the unique extension of all L

�

�

(�)

for � < � and pair (�; �) such that there is � < � and �(�) = (�; �). It is

easy to see that in this way the limit steps preserve the property that L

�

�

is

non{separated in R

�

�

.

Finally, let A =

S

�<c

A

�

and K = Stone(A). We demonstrate that K

satis�es all the required conditions.

Indeed, it is easy to see that K has SCP (and, therefore, is Grothendieck).

If A = fA

n

: n 2 !g is a disjoint sequence in A, then there is � < c such

that A

n

2 A

�

for every n. It is then enumerated as A

�

�

for some � and, thus,

S

n2N

A

n

is added at step �

�1

(�; �), for some in�nite N .

Similarly, consider a disjoint sequence (F

n

)

n2!

of closed G

�

sets together

with �xed countable bases. Since the co�nality of c is uncountable all ele-

ments of these bases appear in A

�

for some � < c. The sequence (F

n

j A

�

)

n2!

is labeled as R

�

�

for some �. From that point using Fact 4.1.7 we bother to

keep L

�

�

not separated in R

�

�

. Therefore, (F

n

)

n2!

is not a copy of �!.
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If we assume (*), then for every � < c the set of disjoint sequences of

closed sets in A

�

is of cardinality c. Therefore, for every � < c we can think

about fS

�

�

: � < cg as being an enumeration of disjoint sequences of closed

sets in A

�

. Since (*) also implies that c is regular, the above proof shows

that K does not contain copies of �! consisting of G

<c

sets.

By Argyros's theorem (see [30]), every Boolean algebra with SCP con-

tains an independent sequence of size !

1

, so K from the above theorem is

not Koppelberg compact and, what is more important, under CH �! is em-

beddable in K. Therefore, one cannot hope that the above example will turn

out to be a E�mov space in ZFC.

4.2 Condensed and feeble �lters

In the previous section we have seen that one can quite easily construct a

Koppelberg compacti�cations of ! without convergent subsequences of !.

Now we will try to construct such spaces with some additional properties.

This section is an interim report on a work in progress and, thus, it is more

laconic than the previous ones.

In [45] Grzegorz Plebanek asked the following question:

(GM) Is there a Banach space satisfying the Mazur property but without

the Gellfand{Philips property?

De�ning the above properties exceeds the scope of this section. The

reader is referred to [45] for the de�nitions and background. We will consider

a statement in the language of Boolean algebras, which implies a positive

answer to the above question.

Recall that the asymptotic density of a set A � !, denoted here by d(A),

is de�ned as

d(A) = lim

n!1

jA \ nj

n

;

provided this limit exists. For an in�nite B = fb

0

< b

1

< b

2

< : : : g � !

let d

B

(A) = d(fn : b

n

2 Ag) if this limit exists. We say that A � ! is a

condenser for a �lter F on ! if d

A

(F ) = 1 for every F 2 F . Notice that the

idea of condenser is in a sense analogous to the idea of pseudo{intersection.

However, it is unclear if the property of having a condenser is preserved by

bijective images. This motivated us to introduce the following, more general
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(or perhaps equivalent), notion: a �lter F is condensed if there is a bijection

f : ! ! ! such that f [F ] is of density 1 for every F 2 F .

Problem 4.2.1 Is there a minimally generated Boolean subalgebra A of P (!)

such that no x 2 K = Stone(A) has an in�nite pseudo{intersection but all

x 2 K n ! are condensed (as �lters on !)?

If K is as above, then it has the following properties:

(a) no x 2 K n ! is a limit of a sequence of natural numbers in K;

(b) for every x 2 K there is a sequence (n

i

)

i2!

of natural numbers such

that

�

x

= lim

k!1

1

k

X

1�i�k

�

n

i

;

where \lim" is meant in the sense of weak

�

topology.

There is no nontrivial convergent subsequence of ! in K (see the previous

section) and thus (a) is satis�ed. To see (b) notice that for every A 2 x we

have

lim

k!1

1

k

X

1�i�k

�

f

�1

(i)

(A) = 1;

where f witnesses that x is condensed. It follows directly from the equality

�

f

�1

(i)

(A) = �

i

(f [A]) and the de�nition of density function. The sequence

(f

�1

(i))

i2!

satis�es the claimed property.

The properties listed above imply that if K is as in Problem 4.2.1, then

C(K) is as in Problem (GM). We will not prove it here. However, it is

worth mentioning that both these properties refer to the space of the �nite

measures on K with the weak

�

topology. Property (a) ensures that C(K)

does not have the Gellfand{Philips property, while (b) and Theorem 3.2.10

imply that each measure on K can be \approximated" by the measures of

the form �

n

, for n 2 !. This is a su�cient condition for the Mazur property.

Problem 4.2.1 has a negative answer, e.g. if CH is assumed. Indeed, then

K has to be of cardinality 2

c

if all convergent subsequences of ! have to be

killed. But there are only c many bijections on !, so only c many elements

of K can be condensed.

We investigate if it is consistent to assume that there exists K as in

Problem 4.2.1. Consider the following cardinal coe�cient, analogous to the
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pseudo{intersection number:

k = minfjAj : A generates a non{condensed �lter on !g:

We try to place k among well{known cardinal coe�cients. We need a

couple of de�nitions.

De�nition 4.2.2 A �lter F � P (!) is feeble provided there is a �nite{to{

one function f : ! ! ! such that f [F ] is co{�nite for every F 2 F .

Fact 4.2.3 For a �lter F � P (!) the following implications hold:

(a) if F has an in�nite pseudo{intersection, then it is condensed;

(b) if F is condensed, then it is feeble.

Proof. Assume that F � P (!) is a �lter and P is a pseudo{intersection of

F . Every bijection f : ! ! ! such that f [P ] is of density 1 witnesses that F

is condensed.

To prove the second implication notice that the function f(n) = [log

2

(n)]

demonstrates the feebleness of the �lter of density 1 sets. Indeed, if A � ! is

not co{�nite, then f

�1

[A] cannot have density greater than 1=2. If a �lter F

is condensed, then there is a bijection g : ! ! ! such that g[F ] is of density

1. Hence, f � g proves that F is feeble.

Recall that the bounding number b is the smallest cardinality of any un-

bounded family in !

!

(with respect to �

�

). Every �lter generated by less

than b sets is feeble and, by a result due to Simon, there is a non{feeble �lter

generated by b many sets (see [5]).

Fact 4.2.4 The following inequalities hold:

(a) p � k,

(b) k � b,

(c) if 2

�

> c, then k � �.

Proof. Of these (a) and (b) are simple consequences of Fact 4.2.3 and of

Simon's result. To check the last inequality consider a subalgebra A of P (!)

generated by an independent sequence of size � (we skip the trivial case

� > c). Then jKj = 2

�

> c. Since there are only c many bijections on !,

there is a non{condensed x 2 K = Stone(A). But every x 2 K = Stone(A)

is generated by � many sets. Hence, k � �.
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It should be pointed out that Fact 4.2.4(c) implies that it is consistent to

assume that k < b (so, that there is a feeble but non{condensed �lter).

Problem 4.2.5 Con(p < k)?

We show that a certain assumption on the coe�cient k implies a positive

answer to Problem 4.2.1.

Consider a �

�

{tree T = fT

�

: � 2 �

<�

g on !, i.e. a subfamily of P (!)

with the properties:

� T

;

= !;

� T

�

^

�

�

�

T

�

for every � 2 �

<�

and � 2 �;

� T

�

\ T

�

=

�

; if j�j = j� j and � 6= � .

Let T be a subalgebra of P (!) generated by T . Assume x 2 K = Stone(T).

If there is � 2 �

�

such that x is generated by the family fT

�j

:  < �g, then

we say that x is a branch. Otherwise, we say that x is a knot. Every knot is

generated by a family of the form

fT

�j

:  � j�jg [ fT

c

�

^

�

: � 2 �g;

where � 2 �

<�

(we assume here that � is in�nite). It is often convenient to

parametrize a �

�

{tree by a proper subset of �

<�

. In this case knots in K

can have other forms. For example, if T is parametrized by the sequences of

lengths being successor ordinals, then knots are generated by

fT

�j

:  � j�jg [ fT

c

�

^

�

: � 2 �g;

if j�j is a successor ordinal and

fT

�j

:  < j�jg [ fT

c

�

^

�

: � 2 �g;

if j�j is limit.

In Chapter 3 we mentioned the Balcar{ Simon{Pelant theorem. We recall

it once again in its full strength. Here, h stands for the distributivity number

(see [5] for the de�nition and basic properties). Recall that A � P (!) is a

m.a.d. family if it is maximal pairwise almost disjoint. We �nd it convenient

to say that for a �lter F � P (!) a family A � P (!) is a m.a.d. family

below F , if it is a maximal family such that A is pairwise almost disjoint and

consists of pseudo{intersections of F .

57



Theorem 4.2.6 (Balcar, Simon, Pelant [4]) There is a family of in�nite

sets S � P (!) such that

� S is a �

�

{tree of height h,

� each level of S, except of the root (which is !), is a m.a.d. family,

� every in�nite A � ! has a subset in S.

For our purposes it is not important that S is dense in [!]

!

, but rather

that it is splitting, i.e. for every in�nite A � ! there is T 2 S such that both

A\ T and A n T are in�nite. This property ensures that no ultra�lter in the

algebra generated by S has an in�nite pseudo{intersection.

A�

�

{tree satisfying the above properties is often called a base matrix tree.

We can assume that its each node has c immediate successors. Thus, it can

be indexed by the set � = f� 2 c

<h

: j�j is a successor ordinal or j�j = 0g.

Lemma 4.2.7 Let A be a m.a.d. family below a �lter F and let f : ! ! !

be a bijection. Then there is a re�nement B of A (i.e. for every B 2 B there

is A 2 A such that B �

�

A) such that B is a m.a.d. family below F and

f [B] has density 0 for every B 2 B.

Proof. Let B be a maximal family such that

� B is pairwise almost disjoint,

� B is a re�nement of A,

� if B 2 B, then f [B] has density 0.

The family B is a m.a.d. family below F . Indeed, assume that there is an

in�nite N =2 B such that N \ B is �nite for every B 2 B. Clearly, N \ A is

in�nite for some A 2 A. Hence, every in�nite M � A\N such that f [M ] is

of density 0 contradicts the maximality assumption.

Theorem 4.2.8 Assume @

1

= h < b. Then there is a Koppelberg com-

pacti�cation K of ! such that no subsequence of ! is convergent and every

x 2 K n ! is feeble (as a �lter on !).

Proof. Let S = fS

�

: � 2 �g be a splitting �

�

{tree of height h. We will

construct new �

�

{splitting tree T = fT

�

: � 2 �g such that T is a re�nement

of S and for every � 2 c

<h

there is a bijection f

�

: ! ! ! such that
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(a) f

�

[T

�

] has density 1 for every � 2 � such that � extends � ;

(b) f

�

[T

�

^

�

] has density 0 for every � 2 c.

We de�ne the levels of T inductively modifying the levels of S as follows.

Let T

;

= S

;

= !. Let � < h. Assume that we have de�ned T

�

for every

j�j � � (j�j < � for a limit �) and consider � of length �. Put P = fT

�

: � 2

� and � extends �g. Let f

�

be such that f

�

[T ] has density 1 for every P 2 P.

Such function exists since P has an in�nite pseudo{intersection. Let A be a

maximal in�nite family such that

� A is pairwise almost disjoint,

� A re�nes the (� + 1){st level of S,

� if A 2 A, then A is a pseudo{intersection of P.

Use Lemma 4.2.7 to �nd a re�nement B of A below P such that f

�

[B] has

density 0 for every B 2 B. Enumerate B = fT

�

^

�

: � 2 cg and notice that

for every � 2 c

�

we can repeat the above procedure independently.

The�

�

{tree T constructed in this way is splitting since for every successor

� < h its �{th level re�nes the �{th level of S. Therefore, no ultra�lter on

T = alg(T ) has an in�nite pseudo{intersection. The proof is completed by

showing that K = Stone(T) satis�es the other desired properties.

The algebra T is minimally generated since it is a �

�

{tree; so K is Kop-

pelberg compact.

Consider x 2 K. If x is a knot, then it is generated by families fT

c

�

^

�

: � 2

cg and fT

�

: � 2 � and � extends �g for some � 2 c

<h

. Therefore, the bijec-

tion f

�

proves that x is condensed and, hence, feeble.

Assume now that x is a branch. Then it is generated by h many sets. By

our assumption h < b, so x is, again, feeble.

The following theorem can be proved in exactly the same way, since its

assumption implies that each branch in a base matrix tree is condensed.

Theorem 4.2.9 Assume @

1

= h < k. Then there is a Koppelberg com-

pacti�cation K of ! such that no subsequence of ! is convergent and every

x 2 K n ! is condensed.
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Of course, the conclusion of Theorem 4.2.9 is stronger than that of 4.2.8,

but it is not known if its assumption does not contradict ZFC (see Problem

4.2.5), while @

1

= h < b occurs in the standard Hechler model. Note that

a positive answer to Problem 4.2.1 would be consistent also if we manage

to prove that in standard Hechler's or Dordal's model every !

1

{tower is

condensed.
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