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Abstract

We show that a conjunction of Mazur and Gelfand–Phillips properties of a Banach
space E can be naturally expressed in terms of weak∗ continuity of seminorms on
th unit ball of E∗.

We attempt to carry out a construction of a Banach space of the form C(K)
which has the Mazur property but does not have the Gelfand–Phillips property.
For that purpose we analyze compact spaces on which all regular measures lie in
the weak∗ sequential closure of atomic measures, and set–theoretic properties of
generalized densities on the natural numbers.

1. Introduction

A Banach space E has the Mazur property if every x∗∗ ∈ E∗∗ which is weak∗ sequen-
tially continuous on E∗ is in fact weak∗ continuous, and consequently is in E. Here a
weak∗ sequential continuity of a function ϕ : E∗ → R refers to the following familiar
condition:

limn→∞ ϕ(x∗n) = ϕ(x∗) whenever x∗n is a sequence converging to x∗ in the weak∗

topology of the space E∗.

Obviously every reflexive space E has the Mazur property; it is also not difficult to
check that so does every separable E, since the ball in E∗ is metrizable in the weak∗

topology. There are several examples of Banach spaces E which have the Mazur property,
though the weak∗ topology of E∗ is far from being metrizable; see section 3 below. For
such spaces it is the combination of linearity and sequential continuity that makes a
given x∗∗ weak∗ continuous. In particular, it is easy to give an example of a separable
E and a weak∗ sequentially continuous but not continuous seminorm on E∗ — see the
remark after Lemma 2.2. Kazimierz Musia l posed the following problem (communicated
privately).

The first author was partially supported by the Polish Ministry of Sciences and Higher Education
under grant no. N201 017 31/1314.

The second author was partially supported by KBN grant 1 P03A 02827 (2004–07).
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Problem 1.1 Let E be a Banach space with the Mazur property, and suppose that ϕ :
E∗ → R is a weak∗ sequentially continuous function, which is a seminorm on E∗. Is ϕ
weak∗ continuous on the unit ball BE∗?

We show below (in Section 2) that the answer to the question above is positive if
and only if the space E has the Gelfand–Phillips property. Let us now recall the latter
notion.

A bounded subset A of a Banach space E is said to be limited if

lim
n→∞

sup
x∈A

|x∗n(x)| = 0,

for every weak∗ null sequence x∗n ∈ E∗. It is easy to check that every relatively norm
compact set is limited. The space E is said to have the Gelfand–Phillips property if this
may be reversed, i.e. if every limited subset of E is relatively norm compact.

We refer the reader to Section 3 for the discussion of Mazur and Gelfand–Phillips
properties of Banach spaces. Let us note here that in view of the solution to Problem
1 it is natural to ask about possible connections between those two properties. There
are easy examples of Banach spaces with the Gelfand–Phillips property but without the
Mazur property. However, the list of known examples might suggest that the Mazur
property does imply the other one. In fact such a statement was announced in [10] but
the argument mentioned there is incorrect (see the remark at the end of section 3).

In the second part of a present paper we consider the following problem.

Problem 1.2 Is there a compact space K such that the underlying Banach space C(K)
has the Mazur property but does not have the Gelfand–Phillips property?

Our approach is based on some related results on the weak∗ topology in the spaces
of measures, presented in section 4 and section 5. In particular, Proposition 4.3 gives
a technical criterion which guarantees that a Banach space of the form C(K) has the
Mazur property, while Theorem 5.1 singles out a certain class of compact spaces for
which such a criterion is applicable.

Building on a result due to Schlumprecht [28], we give in the final section a posi-
tive solution to Problem 1.2. Our construction, however, relies on some set–theoretic
assumption, which consistency has not been established yet. This assumption is related
to (generalized) densities on natural numbers, and leads to new cardinal invariants that
are named in section 6∗.

In the sequel, by ω we mean the set of natural numbers, E always denotes a (real)
Banach space, and K stands for a Hausdorff compact space. By C(K) we denote the
Banach space of continuous functions, and identify C(K)∗ with the space M(K) of all
signed Radon measures on K of finite variation. Moreover, we write P (K) for the set of
all probability measures from M(K). For a given t ∈ K, δt ∈ P (K) is the Dirac measure
at t.

∗the authors are grateful to Tomek Bartoszyński, Adam Krawczyk and Michael Hrusak for discussions
concerning that topic
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2. On seminorms on E∗

Let us fix a Banach space E and a seminorm ϕ : E∗ → R+. Note that ϕ is weak∗

(sequentially) continuous if and only if it is weak∗ (sequentially) continuous at 0 ∈ E∗.
Indeed, if a net x∗t converges to x∗ then

−ϕ(x∗ − x∗t ) ≤ ϕ(x∗t ) − ϕ(x∗) ≤ ϕ(x∗t − x∗),

which, together with continuity at 0, implies that limt ϕ(x∗t ) = ϕ(x∗) (and we may
replace a net by a sequence for the sequential version of the statement). Note also that
a sequentially continuous seminorm is norm continuous, since ||xn|| → 0 implies weak∗

convergence.

Lemma 2.1 If E has the Mazur property and a seminorm ϕ is weak∗ sequentially con-
tinuous then there is A ⊆ E such that ϕ(x∗) = supa∈A x

∗(a) for every x∗ ∈ E∗.

Proof. By the Hahn–Banach theorem for every fixed x∗0 there is a linear functional z on
E∗ such that |z| ≤ ϕ and z(x∗0) = ϕ(x∗0). If ||x∗n|| → 0 then |z(x∗n)| ≤ ϕ(x∗n) → 0; hence
z ∈ E∗∗ and z is weak∗ sequentially continuous. By the Mazur property z is in E, and
this immediately gives the required formula. ♦

Lemma 2.2 Let A be a bounded subset of a Banach space E and consider a seminorm
ϕ : E∗ → R+ given by the formula

ϕ(x∗) = sup
a∈A

|x∗(a)|.

Then

(i) ϕ is weak∗ sequentially continuous if and only if A is limited;

(ii) ϕ is weak∗ continuous on BE∗ if and only if A is relatively norm compact.

Proof. If A is limited then by definition ϕ is weak∗ sequentially continuous at 0 so, by
the remark above, is weak∗ sequentially continuous. We shall check (ii).

If A is relatively norm compact then for a given ε > 0 there is a finite ε–net
a1, . . . , ak ∈ A. We have |x∗t (a)| ≤ 2ε whenever |x∗(ai)| ≤ ε for i ≤ k and ||x∗|| ≤ 1.
This means that ϕ is continuous on BE∗ .

Suppose that A is not relatively norm compact; then for some ε > 0 we can find a
sequence an, and a sequence x∗n in BE∗ such that such that x∗n(an) ≥ ε and x∗n(ai) = 0
for every n ∈ ω and i < n. Consider ψ(x∗) = supn∈ω |x

∗(an)|; then ψ(x∗n) ≥ ε for every
n, but if x∗ is the cluster point of {x∗n : n ∈ ω} then we have x∗(an) = 0 for all n,
so ψ(x∗) = 0. Since ψ is not weak∗ continuous on BE∗ , it is not continuous at 0, and
therefore ϕ ≥ ψ is not weak∗ continuous either. ♦

We remark that in (ii) of Lemma 2.2 we do not have the continuity on the whole of
E∗; in fact we can easily give an example of a separable Banach space E, and a seminorm
ϕ on E∗ which is sequentially weak∗ continuous but not weak∗ continuous.
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Let en denote the unit vector (0, . . . , 1, . . .); we consider E = l1 and E∗ = l∞: Then

A = {(1/k)ek : k ∈ ω} ⊆ l1,

is relatively norm compact (hence limited), so if we consider ϕ : l∞ → R defined as
in Lemma 2.2 then ϕ is weak∗ sequentially continuous. To see that ϕ is not weak∗

continuous note that 0 lies in the weak∗ closure of the set {nen : n ∈ ω} ⊆ l∞ while
ϕ(nen) = 1 for every n ∈ ω.

Theorem 2.3 For a Banach space E the following are equivalent:

(a) every weak∗ sequentially seminorm ϕ on E∗ is weak∗ continuous on BE∗;

(b) E has the Mazur property and the Gelfand–Phillips property.

Proof. (a) → (b). If z ∈ E∗∗ is weak∗ sequentially continuous then ϕ(x∗) = |z(x∗)| is a
weak∗ sequentially continuous seminorm; hence (a) implies the Mazur property.

For any bounded set A ⊆ E, we have a seminorm ϕ on E∗ as in Lemma 2.2. If A is
a limited subset of E then ϕ is weak∗ sequentially continuous, so weak∗ continuous on
BE∗ by (a), and it follows from Lemma 2.2 that A is relatively norm compact.

(b) → (a). By the Mazur property and Lemma 2.1, if ϕ is a weak∗ sequentially
continuous seminorm then ϕ(x∗) = supa∈A x

∗(a) for some A ⊆ E. Now Lemma 2.2(i)
tells us that A is limited so relatively norm compact by the Gelfand–Phillips property,
and Lemma 2.2(ii) finishes the proof. ♦

3. Mazur versus Gelfand–Phillips

The Gelfand–Phillips property has attracted considerable attention over the last
twenty years, which resulted in several interesting papers, see for instance Bourgain
& Diestel [5], Drewnowski [6], Schlumprecht [28], Sinha & Arora [26], Freedman [9]. The
class (GP) of spaces having this property is quite wide, and includes

(i) l1(κ) for every κ;

(ii) every E such that the ball in E∗ is weak∗ sequentially compact, or more generally

(iii) every E such that the ball in E∗ contains weak∗ sequentially precompact norm-
ing subset (see [6]);

(iv) C(K) for every K which is Valdivia compact (this class includes all Corson
compact and dyadic spaces, [26]).

Let us recall that a compact space K is Corson compact (Valdivia compact) if for
some κ there is an embedding g : K → Rκ such that g[K] ⊆ Σ(Rκ) (g[K] ∩ Σ(Rκ) is
dense in g[K], respectively). Here Σ(Rκ) is the subspace of Rκ of elements having count-
able support. Corson and Valdivia compacta have numerous applications in functional
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analysis; we refer the reader to a survey paper Kalenda [12] for the background and
further references on this topic.

The Mazur property is more isolated and rather difficult to handle. However, it
appeared quite naturally in the theory of Pettis integration of Banach space valued
functions, see Edgar [7] and Talagrand [27]; cf. Leung [18], Wilansky [29]. A recent
paper by Kalenda [13] allows one to analyze the property from another perspective.

It is clear that E has the Mazur property if E∗ has a weak∗ angelic ball; therefore all
weakly compactly generated Banach spaces are in (MP), see [7] for details. The space
l1(κ) is in (MP) unless there are weakly inaccessible cardinals ≤ κ, see [7]. (A cardinal
number κ is weakly inaccessible if κ is a regular limit cardinal; for our purpose it is worth
recalling that, consistently, such numbers do not exist.)

A Banach space C(K) has the Mazur property under one of the following assumption
on a compact space K (see Plebanek [22, 23, 24, 25])

(i) K is first–countable;

(ii) K is Corson compact;

(iii) K = {0, 1}κ, and there are no weakly inaccessible cardinals ≤ κ (so for sure in
case κ = ω1 and, consistently, for all κ).

It is well-known that the class (GP) is not included in (MP): Let K = [0, ω1], i.e.
K is the space of ordinals α ≤ ω1 equipped with the interval topology. Then K is
scattered and C(K) has the Gelfand–Phillips property by a result due to Drewnowski [6]
mentioned above. The space C(K) does not have the Mazur property, since the formula
ϕ(µ) = µ({ω1}) defines ϕ ∈ C(K)∗∗ \ C(K) which is weak∗ sequentially continuous.

Recall that if A is a limited set in any Banach space E then A is conditionally weakly
compact (every sequence in A has a subsequence which is weakly Cauchy), and is even
relatively weakly compact provided E contains no copy of l1, see Bourgain & Diestel [5].
We remark below that the Mazur property always implies such a weak version of the
Gelfand–Phillips property, considered by Leung [17].

Proposition 3.1 If E has the Mazur property and the set A ⊆ E is limited then A is
relatively weakly compact.

Proof. Otherwise, we can pick z∗∗ ∈ E∗∗ \ E which lies in the weak∗ closure of A.
If x∗n → 0 in the weak∗ topology then eventually |x∗n(a)| ≤ ε for all a ∈ A hence
|z∗∗(x∗n)| ≤ ε. This means that z∗∗ is weak∗ sequentially continuous, a contradiction. ♦

All the facts on the classes (MP) and (GP) we have mentioned so far might suggest
that simply the class (MP) is included in (GP). Such a result is claimed in [10] but
Theorem 2 announced there is not correct. That result in particular says that if E has
the Mazur property then the unit ball in E∗ is weak∗−M−compact, i.e. according to the
author’s definition for every bounded sequence x∗n, its weak∗ closure contains a weak∗

converging subsequence. This is not true: Consider E = C({0, 1}c); then E has the
Mazur property in most cases, for instance if c = ω1, ω2, . . .. On the other hand, there
is an embedding g : βω → {0, 1}c and if µn = δg(n) then there are no weak∗ converging
sequences in their closure simply because βω contains no nontrivial converging sequence.

5



4. Towards a counterexample

We shall now investigate if there is a Banach space of the form C(K) which is in (MP)
but not in (GP). We plan to obtain a desired compact space K as a compactification of
the natural numbers ω with the discrete topology. Such a compactification K ⊇ ω will
be seen as the Stone space ULT(A) of all ultrafilters on some algebra A of subsets of ω.

Let A be any Boolean algebra; for any A ∈ A we write

Â = {F ∈ ULT(A) : A ∈ F};

recall that Â is then a clopen subset of ULT(A) and the family {Â : A ∈ A} is by
definition a base of the topology on ULT(A).

If we want to violate the Gelfand–Phillips property in a space of the form C(K), then
we can use the following result due to Schlumprecht ([28], Theorem 6); here subsequential
completeness of a sequence (fn) in C(K) means that every subsequence contains further
subsequence which has a supremum in C(K).

Theorem 4.1 Let (fn) be a normalized sequence in in C+(K) of functions having pair-
wise disjoint supports. If (fn) is subsequentially complete then A = {fn : n ∈ ω} ⊆ C(K)
is limited (and so C(K) does not have the Gelfand–Phillips property since A is obviously
not relatively norm compact).

In what follows we shall say that a family P of infinite subsets of ω is a π–base if
every infinite B ⊆ ω contains some P ∈ P.

Corollary 4.2 Suppose that A is some algebra of subsets of ω containing all finite sets
and some π-base. Then the Banach space C(K), where K = ULT(A), does not have the
Gelfand–Phillips property.

Proof. Given n ∈ ω, {n} ∈ A and so Vn = {̂n} is a clopen subset of K. Then the
characteristic functions fn = χVn

form a sequence as in Theorem 4.1 — the subsequential
completeness follows form the fact that A contains a π–base. ♦

We now turn to analysing how to guarantee the Mazur property of the space C(K)
(we follow here Plebanek [23]). Every functional z∗∗ ∈ C(K)∗∗ gives rise to a function

ϕ : K → R, ϕ(t) = z∗∗(δt) for t ∈ K.

If z∗∗ is weak∗ sequentially continuous then ϕ is a sequentially continuous function on
K, since the convergence tn → t in K implies weak∗ convergence δtn → δt. If we want to
check that C(K) enjoys the Mazur property we need to know that ϕ is in fact continuous.
Moreover, one needs to check the formula

z∗∗(µ) =

∫
ϕ dµ,
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for every probability Radon measure on K (then the formula extends easily to every
signed Radon measure ν via the decomposition ν = ν+ − ν− and we finally have z∗∗ =
φ ∈ C(K)).

In the proof presented in [23] or [25] that C({0, 1}κ) has the Mazur property we could
use a result due to Mazur himself [19], that every sequentially continuous function on
{0, 1}κ is continuous (provided there are no weakly inaccessible cardinals up to κ; see
also [21]). For the construction below we shall need a new idea at this stage.

First let us recall that in any topological space X, if B ⊆ X then the smallest
sequentially closed subset of X containing B can be written as

⋃

ξ<ω1

sclξ(B),

where scl0(B) = B, and for 0 < ξ < ω1, sclξ(B) is the set of limits of all converging
sequences from

⋃
η<ξ sclη(B).

Given a compact space K, we consider the operation of sequential closure in the
space P (K) with its weak∗ topology. For any A ⊆ K we write

convA = conv {δa : a ∈ A},

for simplicity, i.e. convA is the set of all probability measures supported by a finite
subset of A. Moreover, we put

S(A) =
⋃

ξ<ω1

sclξ(convA),

i.e. S(A) is the smallest weak∗ sequentially closed set in P (K) containing all probability
measures supported by finite subsets of A.

Proposition 4.3 Let K be a compactification of ω, and suppose that

(a) for every t ∈ K \ ω and every Y ⊆ ω, if t ∈ Y then δt ∈ S(Y );

(b) every µ ∈ P (K) belongs to S(K).

Then C(K) has the Mazur property.

Proof. Let z∗∗ ∈ C(K)∗∗ be weak∗ sequentially continuous and let ϕ : K → R be defined
as above. We will check that ϕ is continuous on ω ∪ {x} for every x ∈ K. This implies
that ϕ is continuous on K, since ω is dense (by a purely topological lemma, see [27],
Lemma 2.5.2). The function ϕ is continuous at n for every n ∈ ω, since n is isolated in K.
Assume towards a contradiction, that ϕ is not continuous on ω∪{x} for some x ∈ K \ω.
Then there is Y ⊆ ω such that x ∈ Y and, say, ϕ(y) > ϕ(x) + ε for every y ∈ Y . But
then, using linearity and sequential continuity of z∗∗ we get z∗∗(µ) ≥ z∗∗(δx)+ε for every
µ ∈ S(Y ), a contradiction with δx ∈ S(Y ).

We have z∗∗(µ) =
∫
ϕ dµ for every µ ∈ convK, so by sequential continuity the same

formula holds for every µ ∈ S(K), and therefore (b) guaranties z∗∗ = ϕ. ♦
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5. When S(K) = P (K)

Given a measure µ ∈ P (K) and a sequence (tn) in K, (tn) is said to be µ–uniformly
distributed if

1

n

∑

i≤n

δti → µ,

in the weak∗ topology of M(K). Mercourakis [20] mentions several classes of compact
spaces K for which every µ ∈ P (K) admits a uniformly distributed sequence. Note that
for such spaces K we have in particular S(K) = P (K). We shall name below another
large class of spaces satisfying S(K) = P (K), obtained from Boolean algebras via the
Stone isomorphism.

Let us recall the notion of a minimally generated Boolean algebra introduced by
Koppelberg [14, 15]. We say that a Boolean algebra B is a minimal extension of A if
A ⊆ B and there is no algebra C such that A ( C ( B.

A Boolean algebra B is minimally generated if there is a continuous sequence of
algebras (Aα)α≤κ, such that A0 = {0, 1}, Aα+1 is a minimal extension of Aα for every
α < κ and Aκ = B.

The notion of a minimally generated algebra is a useful tool for various set–theoretic
constructions, see e.g. Koszmider [16] and the references therein. It is also interesting
from the measure–theoretic angle; it was shown in [4] that if K is a Stone space of a
minimally generated algebra then measures on K are small in various senses; for instance
if the said algebra is generated in ω1 steps then every µ ∈ P (K) is uniformly regular,
which is a property which guaranties the existence of uniformly distributed sequences.
We now present the following general result.

Theorem 5.1 If K is the Stone space of a minimally generated algebra A then S(K) =
P (K).

It will be convenient to recall several definitions and facts before we prove 5.1. Let A

be a Boolean algebra and let K be its Stone space. Every (finitely additive) measure µ
on A can be transferred to the measure µ̂ on the algebra of clopen subsets of K via the
formula µ̂(Â) = µ(A), and then extended to the unique Radon measure on K. Therefore
we may treat finitely additive measures on A rather than Radon measures on K. In this
way our space P (K) becomes simply the space P (A) of all probability (finitely additive)
measures on A, where P (A) is equipped with the topology of convergence on all A ∈ A.

With every ultrafilter F on an algebra A we can associate a 0–1 measure δF ∈ P (A),
where δF(A) = 1 if A ∈ F and is 0 otherwise. We shall write S(A) ⊆ P (A) for the least
sequentially closed set of measures containing convex combinations of 0–1 measures on
A. To prove Theorem 5.1 we need to show that P (A) = S(A) whenever A is minimally
generated.

A measure µ on A is non–atomic if for every ε > 0 there is a finite partition of 1 into
elements of measure at most ε. Below we shall use the classical decomposition theorem
(see e.g. Theorem 5.2.7 in [2]).
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Theorem 5.2 (Hammer & Sobczyk) Every µ ∈ P (A) can be uniquely decomposed into
ν + φ, where ν is non–atomic and φ =

∑
i aiδFi

, Fi ∈ ULT(A).

The following fact is proved in [4], Lemma 4.7. Here we write µ∗ and µ∗ for the
corresponding outer and inner measures; note that the condition µ∗(B) = µ∗(B) means
that we can find A0, A1 ∈ A such that A0 ⊆ B ⊆ A1, µ(A1) − µ(A0) being arbitrarily
small.

Lemma 5.3 If B is an algebra that is minimally generated over algebra A and µ ∈ P (A)
is non–atomic then µ∗(B) = µ∗(B) for every B ∈ B. Consequently, every non–atomic
µ ∈ P (A) has the unique extension to µ̃ ∈ P (B).

The next lemma can be checked by induction on α.

Lemma 5.4 Let µ, ν, φ ∈ P (A). Suppose that µ = aν + bφ for some a, b ≥ 0 with
a+ b = 1. Then for every α < ω1 we have µ ∈ sclα(A) whenever ν, φ ∈ sclα(A).

Lemma 5.5 Let B be minimally generated over A. Suppose that µ ∈ P (A) is non–
atomic and (µn)n is a sequence of measures from P (A) converging to µ. Then µ has the
unique extension to µ̃ on B and if µ̃n is any extension of µ̃n to B for every n, then µ̃n

converge to µ̃.

Proof. Consider a non–atomic measure µ ∈ P (A) and its extension µ̃ ∈ P (B) (which is
unique by Lemma 5.3).

Take a sequence of measures (µn)n from P (B) converging to µ, and let µ̃n ∈ P (B)
be any extension of µn for every n (we do not assume that µn is non–atomic and thus µ̃n

may not be uniquely determined). We are to show that the sequence µ̃n(B) converges
to µ̃(B) for every B ∈ B. Indeed, fix ε > 0; by Lemma 5.3 there are A0, A1 ∈ A

such that A0 ⊆ B ⊆ A1 and µ(A1) − µ(A0) < ε/2. Let n0 be such that µn(A0) >
µ(A0)−ε/4 and µn(A1) < µ(A1)+ε/4 for every n > n0. Then µn(A1)−µn(A0) < ε, and
µn(A0) < µ̃n(B) < µn(A1) and µn(A0) < µ̃(B) < µn(A1) for every n > n0. It follows
that |µ̃n(B) − µ̃(B)| < ε for every n > n0. ♦

Lemma 5.6 If B is minimally generated over A and µ ∈ S(A), then µ has an extension
to µ̃ ∈ S(B).

Proof. Let B be minimally generated over A. We show that for every α if µ ∈ sclα(A),
then it has an extension to µ̃ ∈ sclα(B).

Assume that µ ∈ scl0(A), i.e. µ = a0δF0
+ . . .+ akδFk

for some ai ∈ R, Fi ∈ ULT(A)
for i ≤ k. Clearly, µ̃ = a0δF ′

0
+ . . . + akδF ′

k
, where F ′

i is any extension of Fi to an
ultrafilter on B for every i ≤ k, extends µ and µ̃ ∈ scl0(B).

Suppose now that every µ ∈ sclβ(A) has an extension to µ̃ ∈ sclβ(A) for every β < α
and consider µ ∈ sclα(A). Use Theorem 5.2 to decompose µ into non–atomic and purely
atomic parts; suppose for instance that µ = 1/2(ν + φ), where ν is non–atomic and φ is
purely atomic (the general case will follow by an obvious modification of coefficients).
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Let ν̃ ∈ P (B) be the unique extension of ν and let φ̂ ∈ P (B) be any extension of

φ to strictly atomic measure. Let µ̃ = 1/2(ν̃ + φ̂). By Lemma 5.4 it is enough to show

that ν̃ ∈ sclα(B) as φ̂ ∈ scl1(B).
Since ν ∈ sclα(A), there is a sequence (νn)n from

⋃
β<α sclβ(A) converging to ν. By

the inductive assumption for every n there is an extension ν̃n ∈
⋃

β<α sclβ(B) of νn. By
Lemma 5.5 ν̃n converges to ν̃. Thus, ν̃ ∈ sclα(B) and we are done. ♦

Proof. (of Theorem 5.1) Fix a sequence of minimal extensions Aα, α ≤ κ generating A.
Assume towards a contradiction that P (A) \ S(A) 6= ∅ while P (Aα) = S(Aα) for every
α < κ.

It follows from Theorem 5.2 and Lemma 5.4 then we can pick a non–atomic measure
µ ∈ P (A) \ S(A). Then for each α < κ the restriction µα of µ to Aα cannot be non–
atomic (if µα were non–atomic then we would have µ ∈ S(A) by Lemma 5.6 and Lemma
5.3).

We have shown that κ is the first α ≤ κ at which µ is non–atomic on Aα. But this
plainly implies that κ has countable cofinality. Therefore we can write A as

⋃
n∈ω Bn,

where Bn+1 is minimally generated over Bn for every n, and, putting νn = µ|Bn, we
have νn ∈ S(Bn) for every n. Every νn extends to some ν ′n ∈ S(A) by Lemma 5.3.
Finally, we get µ = limn→∞ ν ′n ∈ S(A), a contradiction. ♦

6. Condensing filters on ω

In this section we investigate for which algebras A of subsets of ω the Stone space
K = ULT(A) satisfies S(K) = P (K) (i.e. condition (i) of Proposition 4.3). As we shall
see this problem is naturally connected with properties of densities on ω. Some of the
concepts and remarks presented here, in particular the one of densities of the form dϕ

have been suggested by Tomek Bartoszyński, Adam Krawczyk and Michael Hrusak.
We shall denote by [ω]ω the family of all infinite subsets of ω; [ω] will stand for the

whole power set of ω (note that the symbol P is already in use). For A,B ⊆ ω we
write A ⊆∗ B if A is almost included in B, i.e. if the set A \B is finite. Recall that the
asymptotic density of a set A ⊆ ω, denoted usually by d(A), is defined as

d(A) = lim
n→∞

|A ∩ n|

n
,

provided the limit exists.
We start by the following simple example which illustrates the main idea.

Example 6.1 There is an algebra A ⊆ [ω] containing all finite sets, such that in the
space K = ULT(A) (which contains ω as a dense discrete subset) there is F ∈ K, such
that δF ∈ S(ω), while F is not in the sequential closure of ω.

Proof. Let F be the filter of all sets A ⊆ ω of density 1; let A be the algebra generated
by F , that is A = {A ⊆ ω : d(A) = 1 or d(A) = 0}. Consider now F ∈ K = ULT(A).
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Every infinite B ⊆ ω contains an infinite subset A of density zero, and this easily
implies that ω contains no converging sequences; in particular ω is a sequentially closed
subset of K. On the other hand, δF ∈ S(ω), simply because

δF = lim
n→∞

1

n

n∑

i=1

δi.

♦

Recall that if F ⊆ [ω]ω is any family closed under finite intersections then a set
A ∈ [ω]ω is called a pseudo-intersection of F if A ⊆∗ F for every F ∈ F . From the
topological point of view, if F ∈ ULT(A) has a pseudo-intersection A then elements of
A form a sequence converging to F in the Stone space of A. The cardinal number p is
defined so that whenever we have a family F ⊆ [ω]ω of fewer than p, and F is closed
under finite unions, then F has a pseudo-intersection. We can imitate those classical
concepts as follows.

For an infinite set B ⊆ ω fix a strictly increasing enumeration b1 < b2 < b3 < . . . of
its elements. Then for any A define the relative density of A in B by

dB(A) = d({n : bn ∈ A}),

provided the limit exists.

Definition 6.2 We say that B ∈ [ω]ω is a condenser of a family A ⊆ [ω]ω if dB(A) = 1
for every A ∈ A.

It is clear that if B is a pseudo-intersection of F then B is a condenser of F ; letting F
be the filter {A ⊆ ω : d(A) = 1} we have an example of a filter having ω as a condenser,
but having no pseudo-intersection. We note that a condenser of a filter need not be its
element.

Example 6.3 There is a filter F whose all condensers lie outside F .

Proof. Let Gn = (2n−1, 2n]∩ω for every n ≥ 0. Let F be a filter generated by the family

{
⋃

n∈D

Gn : d(D) = 1}.

If B is any selector of the family {Gn : n ≥ 0} then dB(F ) = 1 for every F ∈ F . However,
it is easy to check that for every F ∈ F there is F1 ∈ F such that dF (F1) = 1/2. ♦

The relevance of condensers comes from the observation that if F ∈ ULT(A) has
a condenser B then δF ∈ S(B). In fact we may consider here a slightly more general
notion of density. For a function ϕ : ω → R+ define

dϕ(A) = lim
n→∞

Σi∈A∩nϕ(i)

Σi∈nϕ(i)
,

provided the limit exists. We say that a density dϕ condenses a filer F if dϕ(A) = 1 for
every A ∈ F . We have the following obvious lemma.

11



Lemma 6.4 Let A be an algebra of subsets of ω containing all finite sets. Suppose
that F ∈ ULT(A) is such a filter that for some ϕ the density dϕ condenses F . Then
δF ∈ S(ω).

Let us write k (k∗) for the minimal cardinal number κ for which there is a family
A = {Aξ : ξ < κ} ⊆ [ω]ω, such that Aξ ⊆∗ Aη whenever η < ξ < κ, and A has no
condenser (respectively, there is no ϕ : ω → R+ with dϕ(Aξ) = 1 for every ξ < κ). We
have the following obvious inequalities

ω1 ≤ p ≤ k ≤ k∗ ≤ c,

but it is not known if any of the relations p < k, k < k∗ is consistent with the usual
axioms of set theory. One can check that k∗ ≤ b and that k∗ < b is relatively consistent,
basing on some results on the cardinal number b, see Blass [3]. Ideals of the form
{A ⊆ ω : dϕ(A) = 0}, where ϕ : ω → R+, are sometimes called Erdös–Ulam ideals;
cardinal invariants of such ideals on ω are considered by Hrusak [11] and Sokoup &
Farkas [8].

The following problem may be stated independently of Banach space properties we
are discussing.

Problem 6.5 Is it consistent that there is a Boolean algebra A of subsets of natural
numbers such that

(i) no ultrafilter on A has a pseudo–intersection;

(ii) every ultrafilter on A has a condenser (or at least is condensed by some density)?

Equivalently, we ask here if there is a compactification K of ω such that for every
t ∈ K \ ω, t is not a limit of a sequence from ω while δt is the the limit of a sequence of
purely atomic measures supported by ω.

7. A possible example

Recall that A ⊆ [ω]ω) is a m.a.d. family if it is maximal pairwise almost disjoint.
The cardinal number h mentioned below is the the distributivity number, i.e. the

smallest cardinality of a collection T of m.a.d. families, whose union is splitting, i.e. for
every infinite A ⊆ ω there is T ∈

⋃
T such that both A∩ T and A \ T are infinite. It is

known that p ≤ h ≤ b, see [3].

Theorem 7.1 (Balcar, Pelant, Simon [1]) There is a family of infinite sets S ⊆ [ω]ω

such that

— S is a ⊆∗–tree of height h,

— each level of S, except of the root (which is ω), is a m.a.d. family,

— every infinite A ⊆ ω contains some element from S.

12



A ⊆∗–tree satisfying the above properties is often called a base matrix tree. We can
assume that each of its nodes has c immediate successors.

Theorem 7.2 Let S be a base matrix tree of Theorem 7.1, and let A be an algebra of
subsets of ω generated by S together with all finite sets. Further let K be the Stone space
of all ultrafilters on A.

(i) The Banach space C(K) does not have the Gelfand–Phillips property.

(ii) The space K satisfies S(K) = P (K).

(iii) If h < k∗ then for every t ∈ K \ ω and every Y ⊆ ω, if t ∈ Y then δt ∈ S(Y ).

(iv) Consequently, assuming h < k∗ the space C(K) has the Mazur property.

Proof. Part (i) follows from Corollary 4.2 since S contains a π-base. Part (ii) follows
from Theorem 5.1 since the algebra A, as a tree algebra, is minimally generated, see e.g.
[4] (actually, S(K) = P (K) can be also derived from a result due to Sapounakis that
every measure on K has a uniformly distributed sequence (see [20]).

Let us write S as the union of the tree levels Lξ, ξ < h, so every Lξ is an almost
disjoint family, and every A ∈ Lξ has c immediate almost disjoint successors.

We now check (iii). Let t ∈ K \ ω be such that t ∈ Y for some Y ⊆ ω. We write
t = F when thinking of t as of an ultrafilter on A.

Suppose that F ∩Lξ 6= ∅ for every ξ < h; then F is generated by a family Aξ, ξ < h,
where Aξ ∈ F ∩ Lξ, forming a branch. Then the sets Aξ ∩ Y are infinite and form a
⊆∗–decreasing family so by our assumption h < k∗ there is a function ϕ : Y → R+ such
that the corresponding density dϕ satisfies dϕ(Aξ) = 1 for every ξ < h. This implies that
δt is the limit of measures from conv Y , see Lemma 6.4.

Suppose now that A ∈ F ∩ Lξ while no B ∈ Lξ+1 is in F . Since t = F lies in the
closure of Y we can choose a sequence of almost disjoint Bn ∈ Lξ+1 such that Bn ⊆∗ A
and Bn ∩ Y is infinite for every n. For every n we can pick an ultrafilter Fn on A,
containing Bn ∩ Y and such that Fn is generated by some branch of the tree S. Writing
tn = Fn we have δtn ∈ S(Y ) by the above argument. But we have tn → t in the space
K, so δt is also in S(Y ) as the limit of δtn .

The remaining case is that the first γ for which F ∩ Lγ = ∅ is the limit ordinal but
then we can argue in a similar manner: for ξ < γ pick Aξ ∈ F ∩ Lξ; there must be a
sequence of distinct Bn ∈ Lγ such that each Bn ⊆∗ Aξ for ξ < γ and Bn ∩ Y is infinite.
Again we get t = F as the limit of branches.

Finally, (iv) follows from (iii) and Lemma 4.3. ♦

Unfortunately, it is not known if the assumption h < k∗ appearing in part (iii) of
Theorem 7.2 is consistent with ZFC.

At least, we can show that it is consistent with ZFC that there exists a Boolean
algebra with a properties similar to this from the above Theorem and from Problem 6.5.
We have to relax the property that all ultrafilters have to possess condensers. Instead
of this, we will demand that all ultrafilters have be feeble.

13



Definition 7.3 A filter F ⊆ P (ω) is feeble provided there is a finite–to–one function
f : ω → ω such that f [F ] is co–finite for every F ∈ F .

Note that the assumption h < b is consistent with ZFC. Namely, in standard Hechler’s
model h = ℵ1 whereas b = c (see [3]).

Theorem 7.4 Assume h < b. Then there is a Boolean algebra A ⊆ P (ω) such that

(i) no ultrafilter on A has a pseudo–intersection;

(ii) every ultrafilter on A is feeble.

The following fact reveals the connection between feebleness and condensers and
shows that the above object is somehow similar to this of Problem 6.5.

Fact 7.5 If a filter F has a condenser, then it is feeble.

Proof. Assume P is a condenser of F and fix a co–infinite N ⊆ ω of density 1. Fix
increasing enumerations p1 < p2 < . . . of elements of P and n1 < n2 < . . . of elements
of N . Let f : ω → ω be such that f |ω\P is any bijection onto ω \ N and f(pk) = nk.
Clearly, f is a bijection and f [F ] has density 1 for every F ∈ F .

Notice that the function g(n) = [log2(n)] proves the feebleness of the density filter.
Indeed, it is finite–to–one and if A is co–infinite, then d∗(g

−1[A]) < 1/2.
Therefore, g ◦ f witnesses that F is feeble. ♦

The proof of Theorem 7.4 resembles this of Theorem 7.2, but we need several def-
initions and lemmas. We find it convenient to say that for a filter F ⊆ P (ω) with a
pseudo–intersection a family A ⊆ P (ω) is a m.a.d. family below F , if it is a maximal in-
finite family such that A is pairwise almost disjoint and consists of pseudo–intersections
of F .

Lemma 7.6 Let A be a m.a.d. family below a filter F and let f : ω → ω be a bijection.
Then there is a refinement B of A (i.e. for every B ∈ B there is A ∈ A such that
B ⊆∗ A) such that B is a m.a.d. family below F and f [B] has density 0 for every
B ∈ B.

Proof. Let B be a maximal family such that

• B is pairwise almost disjoint,

• B is a refinement of A,

• if B ∈ B, then f [B] has density 0.

The family B is a m.a.d. family below F . Indeed, assume that there is an infinite
N /∈ B such that N ∩ B is finite for every B ∈ B. Clearly, N ∩ A is infinite for some
A ∈ A. Hence, every infinite M ⊆ A ∩N such that f [M ] is of density 0 contradicts the
maximality assumption. ♦
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Lemma 7.7 There is a base matrix tree S such that if T is a linearly ordered by ⊆∗

subfamily of S (a tower), then there is a bijection fT : ω → ω such that

(a) fT [S] has density 1 for every S ∈ T ;

(b) fT [S] has density 0 if S (∗ T for every T ∈ T .

Proof. Let S ′ be a base matrix tree with all branches cofinal. Denote by (L′
ξ)ξ<h the

levels of S ′. We define the levels (Lξ)ξ<h of S inductively modifying the levels of S ′. Let
L0 = L′

0 and ξ < h.
Assume that we have defined Lα for every α < ξ. Consider a tower T = (Tα)α<ξ,

where Tα ∈ Lα. Since T has a pseudo-intersection, there is a bijection fT : ω → ω such
that fT [Tα] has density 1 for every α < ξ.

Consider the maximal almost disjoint family A which refines L′
ξ and which is below

T . Use Lemma 7.6 to find a refinement BT of A such that fT [B] has density 0 for every
BT ∈ B.

Repeat this procedure for every tower T of height ξ and enumerate Lξ =
⋃

T BT . ♦

The following theorem due to Solomon is proved in ([3], Theorem 9.10).

Theorem 7.8 Every filter generated by less than b sets is feeble.

Before proving the main theorem notice that if a Boolean algebra is generated by a
base matrix tree, then it does not have an ultrafilter with a pseudo–intersection. Oth-
erwise, we could easily find an infinite subset of the pseudo–intersection which does not
contain any element of the tree.

Proof. (of Theorem 7.4) Let A be the Boolean algebra generated by S from Lemma
7.7. We can repeat the proof of Theorem 7.2 to show that A satisfies the demanded
conditions.

Let F be an ultrafilter on A. Following the terminology of the proof of Theorem 7.2
we have to deal with two cases. If there is no α < h such that F ∩ Lα = ∅, then F is
generated by h many sets. So, by Theorem 7.8 it is feeble, since h < b.

Otherwise, there is α < h such that F ∩ Lα = ∅. Consider the family

T = {T ∈ S ∩ F : T ∈ Lβ, β < α}.

Since it is a tower, we can find a bijection fT as in Lemma 7.7. Then fT [F ] is of density
1 for every F ∈ F . If g : ω → ω is a function witnessing the feebleness of density filter
(eg. this from the proof of Fact 7.5), then g ◦ fT proves that F is feeble. ♦

Unfortunately the Boolean algebra from Theorem 7.4 cannot be used directly to
produce a Banach space with Mazur property and without Gelfand-Phillips property.
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