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Motivation
Construction

Measures on Boolean algebras

We consider finitely–additive measures on Boolean algebras;

A measure µ is strictly positive on A if µ(A) > 0 for each
A ∈ A+. In this case we say that A supports µ;

Every (finitely–additive) measure on A can be uniquely
extended to a (σ–additive) Radon measure on Stone(A).
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Separable measures

Definition

A measure µ on a Boolean algebra A is separable if there is a
countable B ⊆ A such that

inf{µ(A4 B) : B ∈ B} = 0

for each A ∈ A

Equivalently. . .

A measure µ on A is separable iff

the (pseudo–)metric space (A, dµ) is separable,
dµ(A,B) = µ(A4 B)

the space L1(µ) is separable.
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Spaces with small measures

Problem

How to characterize Boolean algebras carrying only separable
measures?

Theorem (Fremlin)

Under MA(ω1) a Boolean algebra A carries a non–separable
measure if and only if A contains an uncountable independent
sequence.

In ZFC: ?
(This is one of the problems connected to the programme of the
classification of finitely–additive measures.)
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Uniformly regular measures

Definition

A measure µ on A is uniformly regular if there is a countable
family D ⊆ A such that

inf{µ(A \ D) : D ∈ D, D ⊆ A} = 0

for every A ∈ A.

Equivalently. . .

A measure µ on A is uniformly regular if and only if

µ is a Gδ point in the space of probability Radon measures on
Stone(A) with weak∗ topology (Pol, 1982).
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Characterization of uniform regularity

Theorem (Džamonja, Pbn)

If a Boolean algebra supports a non–atomic uniformly regular
measure, then it is isomorphic to a subalgebra of the Jordan
algebra containing a dense Cantor subalgebra.
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Separability versus uniform regularity

The obvious connection:

Remark

Every uniformly regular measure is separable.

Less obvious connection:

Theorem (Plebanek, PBN)

All Boolean algebras without a non–separable measure carry a
uniformly regular measure.
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What about strictly positive measures?

Theorem (Plebanek, PBN)

All Boolean algebras without a non–separable measure carry a
uniformly regular measure.

Question

Can we prove an analogous theorem for strictly positive measures?
I.e. is it true that all Boolean algebras supporting a measure either
supports a uniformly regular measure or a non–separable one?
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Bell’s space

Theorem (Bell)

There is a zero–dimensional compact separable space K without a
countable π–base and which cannot be mapped continuously onto
[0, 1]ω1 .

K is compact zerodimensional, so A = Clopen(K ) is a
Boolean algebra;

K is separable, so A supports a measure;

K has no countable π–base, so it does not support a
uniformly regular measure;

is every measure on K separable?
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Construction

For A ⊆ ω let

A0 = {x ∈ 2ω : x(n) = 0 for each n ∈ A}

For A ⊆ P(ω) let
A0 = {A0 : A ∈ A}.

Let K (A) be

K (A) = Stone(algebra generated by A0) ⊆ P(2ω).

Example: K (Fin) = 2ω.
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Separability

Fact

K (A) is separable for each A ⊆ P(ω).

consider g ∈ 2ω;

let
Fg = {B ∈ alg(A0) : g ∈ B};

it is a filter on alg(A0);

let xg ∈ K (A) be any ultrafilter extending Fg ;

the set
{xg : supp(g) is finite}.

is dense in K (A).
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Cofinality and π-bases

Fact

If A does not contain a countable cofinite subfamily, then K (A)
does not have a countable π–base.

Piotr Borodulin–Nadzieja Measures on Bell’s space



Motivation
Construction

Independence

Remark

If A contains an uncountable almost disjoint family, then alg(A0)
contains an uncountable independent sequence.

let {Aα : α < ω1} ⊆ A be almost disjoint (Aα ∩ Aβ is finite
for each α 6= β);

then {A0
α : α < ω1} is an uncountable independent sequence.
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The space

Theorem (Džamonja, PBN)

Let {Tα : α < ω1} ⊆ P(ω) be such that for each α < β < ω1

T0 = ∅,
Tβ \ Tα is infinite,

Tα \ Tβ is finite.

Let
T = {T : T =∗ Tα for some α < ω1}.

Then K (T ) supports only separable measures. Consequently, the
Boolean algebra alg(T 0) supports only separable measures but not
a uniformly regular one.
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The end

Thank you for your attention!

This research was supported by the ESF Research Networking
Programme INFTY.
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