Motivation Construction

Measures on Bell's space

Piotr Borodulin-Nadzieja

Finite and infinite sets, 2011, Budapest

joint work with Mirna Džamonja

Image: A (1)

문 문 문

Measures on Boolean algebras

- We consider finitely-additive measures on Boolean algebras;
- A measure μ is strictly positive on 𝔄 if μ(A) > 0 for each A ∈ 𝔄⁺. In this case we say that 𝔅 supports μ;
- Every (finitely-additive) measure on A can be uniquely extended to a (σ-additive) Radon measure on Stone(A).

伺 ト イヨト イヨ

Measures on Boolean algebras

- We consider finitely-additive measures on Boolean algebras;
- A measure μ is strictly positive on 𝔄 if μ(A) > 0 for each A ∈ 𝔄⁺. In this case we say that 𝔅 supports μ;
- Every (finitely-additive) measure on A can be uniquely extended to a (σ-additive) Radon measure on Stone(A).

伺 ト イヨト イヨト

Measures on Boolean algebras

- We consider finitely-additive measures on Boolean algebras;
- A measure μ is strictly positive on 𝔄 if μ(A) > 0 for each A ∈ 𝔄⁺. In this case we say that 𝔅 supports μ;
- Every (finitely-additive) measure on A can be uniquely extended to a (σ-additive) Radon measure on Stone(A).

Separable measures

Definition

A measure μ on a Boolean algebra \mathfrak{A} is *separable* if there is a countable $\mathcal{B} \subseteq \mathfrak{A}$ such that

$\inf\{\mu(A \bigtriangleup B) \colon B \in \mathcal{B}\} = 0$

for each $A \in \mathfrak{A}$

Equivalently...

A measure μ on \mathfrak{A} is separable iff

- the (pseudo–)metric space (\mathfrak{A}, d_{μ}) is separable, $d_{\mu}(A, B) = \mu(A \bigtriangleup B)$
- the space $L_1(\mu)$ is separable.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Separable measures

Definition

A measure μ on a Boolean algebra \mathfrak{A} is *separable* if there is a countable $\mathcal{B} \subseteq \mathfrak{A}$ such that

$$\inf\{\mu(A \bigtriangleup B) \colon B \in \mathcal{B}\} = 0$$

for each $A \in \mathfrak{A}$

Equivalently...

A measure μ on \mathfrak{A} is separable iff

• the (pseudo-)metric space (\mathfrak{A}, d_{μ}) is separable, $d_{\mu}(A, B) = \mu(A \bigtriangleup B)$

• the space $L_1(\mu)$ is separable.

・ロト ・回ト ・ヨト

Separable measures

Definition

A measure μ on a Boolean algebra \mathfrak{A} is *separable* if there is a countable $\mathcal{B} \subseteq \mathfrak{A}$ such that

$$\inf\{\mu(A \bigtriangleup B) \colon B \in \mathcal{B}\} = 0$$

for each $A \in \mathfrak{A}$

Equivalently...

A measure μ on \mathfrak{A} is separable iff

- the (pseudo–)metric space (\mathfrak{A}, d_{μ}) is separable, $d_{\mu}(A, B) = \mu(A \bigtriangleup B)$
- the space $L_1(\mu)$ is separable.

Spaces with small measures

Problem

How to characterize Boolean algebras carrying only separable measures?

Theorem (Fremlin)

Under MA(ω_1) a Boolean algebra \mathfrak{A} carries a non-separable measure if and only if \mathfrak{A} contains an uncountable independent sequence.

In ZFC: ? (This is one of the problems connected to the programme of the classification of finitely–additive measures.)

・ロト ・日本 ・モート ・モート

Spaces with small measures

Problem

How to characterize Boolean algebras carrying only separable measures?

Theorem (Fremlin)

Under MA(ω_1) a Boolean algebra \mathfrak{A} carries a non-separable measure if and only if \mathfrak{A} contains an uncountable independent sequence.

In ZFC: ? (This is one of the problems connected to the programme of the classification of finitely–additive measures.)

・ロト ・日本 ・モート ・モート

Measures on Bell's space

▲ □ ► ▲ □ ►

In ZFC: ? (This is one of the problems connected to the programme of the classification of finitely–additive measures.)

Piotr Borodulin–Nadzieia

Under MA(ω_1) a Boolean algebra \mathfrak{A} carries a non-separable measure if and only if \mathfrak{A} contains an uncountable independent sequence.

Theorem (Fremlin)

How to characterize Boolean algebras carrying only separable measures?

Problem

Spaces with small measures

Uniformly regular measures

Definition

A measure μ on \mathfrak{A} is *uniformly regular* if there is a countable family $\mathcal{D} \subseteq \mathfrak{A}$ such that

$$\inf\{\mu(A \setminus D) \colon D \in \mathcal{D}, \ D \subseteq A\} = 0$$

for every $A \in \mathfrak{A}$.

Equivalently. . .

A measure μ on ${\mathfrak A}$ is uniformly regular if and only if

• μ is a G_{δ} point in the space of probability Radon measures on Stone(\mathfrak{A}) with weak* topology (Pol, 1982).

イロン イヨン イヨン イヨン

Uniformly regular measures

Definition

A measure μ on \mathfrak{A} is *uniformly regular* if there is a countable family $\mathcal{D} \subseteq \mathfrak{A}$ such that

```
\inf\{\mu(A \setminus D) \colon D \in \mathcal{D}, \ D \subseteq A\} = 0
```

for every $A \in \mathfrak{A}$.

Equivalently...

A measure μ on $\mathfrak A$ is uniformly regular if and only if

• μ is a G_{δ} point in the space of probability Radon measures on Stone(\mathfrak{A}) with weak* topology (Pol, 1982).

イロン イヨン イヨン イヨン

Motivation Construction

Characterization of uniform regularity

Theorem (Džamonja, Pbn)

If a Boolean algebra supports a non-atomic uniformly regular measure, then it is isomorphic to a subalgebra of the Jordan algebra containing a dense Cantor subalgebra.

The obvious connection:

Remark

Every uniformly regular measure is separable.

Less obvious connection:

Theorem (Plebanek, PBN)

All Boolean algebras without a non–separable measure carry a uniformly regular measure.

イロト イヨト イヨト イヨト

The obvious connection:

Remark

Every uniformly regular measure is separable.

Less obvious connection:

Theorem (Plebanek, PBN)

All Boolean algebras without a non–separable measure carry a uniformly regular measure.

イロン イヨン イヨン イヨン

The obvious connection:

Remark

Every uniformly regular measure is separable.

Less obvious connection:

Theorem (Plebanek, PBN)

All Boolean algebras without a non–separable measure carry a uniformly regular measure.

・ロン ・回と ・ヨン・

The obvious connection:

Remark

Every uniformly regular measure is separable.

Less obvious connection:

Theorem (Plebanek, PBN)

All Boolean algebras without a non-separable measure carry a uniformly regular measure.

| 4 同 🖌 4 三 🖌 4 三 🕨

Motivation Construction

What about strictly positive measures?

Theorem (Plebanek, PBN)

All Boolean algebras without a non-separable measure carry a uniformly regular measure.

Question

Can we prove an analogous theorem for strictly positive measures? I.e. is it true that all Boolean algebras supporting a measure either supports a uniformly regular measure or a non-separable one?

- 4 回 2 - 4 回 2 - 4 回 2

Motivation Construction

What about strictly positive measures?

Theorem (Plebanek, PBN)

All Boolean algebras without a non-separable measure carry a uniformly regular measure.

Question

Can we prove an analogous theorem for strictly positive measures? I.e. is it true that all Boolean algebras supporting a measure either supports a uniformly regular measure or a non-separable one?

・ 同 ト ・ ヨ ト ・ ヨ ト

There is a zero-dimensional compact separable space K without a countable π -base and which cannot be mapped continuously onto $[0, 1]^{\omega_1}$.

- K is compact zerodimensional, so A = Clopen(K) is a Boolean algebra;
- K is separable, so \mathfrak{A} supports a measure;
- K has no countable π-base, so it does not support a uniformly regular measure;
- is every measure on K separable?

(4月) (日)

There is a zero-dimensional compact separable space K without a countable π -base and which cannot be mapped continuously onto $[0, 1]^{\omega_1}$.

- K is compact zerodimensional, so A = Clopen(K) is a Boolean algebra;
- K is separable, so $\mathfrak A$ supports a measure;
- K has no countable π-base, so it does not support a uniformly regular measure;
- is every measure on K separable?

・ 同・ ・ ヨ・

There is a zero-dimensional compact separable space K without a countable π -base and which cannot be mapped continuously onto $[0, 1]^{\omega_1}$.

- K is compact zerodimensional, so A = Clopen(K) is a Boolean algebra;
- K is separable, so \mathfrak{A} supports a measure;
- K has no countable π-base, so it does not support a uniformly regular measure;
- is every measure on K separable?

A (1) > A (1) > A

There is a zero-dimensional compact separable space K without a countable π -base and which cannot be mapped continuously onto $[0, 1]^{\omega_1}$.

- K is compact zerodimensional, so A = Clopen(K) is a Boolean algebra;
- K is separable, so \mathfrak{A} supports a measure;
- K has no countable π-base, so it does not support a uniformly regular measure;
- is every measure on K separable?

A (1) > A (1) > A

There is a zero-dimensional compact separable space K without a countable π -base and which cannot be mapped continuously onto $[0, 1]^{\omega_1}$.

- K is compact zerodimensional, so A = Clopen(K) is a Boolean algebra;
- K is separable, so \mathfrak{A} supports a measure;
- K has no countable π-base, so it does not support a uniformly regular measure;
- is every measure on K separable?

For $A \subseteq \omega$ let $A^{0} = \{x \in 2^{\omega} : x(n) = 0 \text{ for each } n \in A\}$ For $A \subseteq P(\omega)$ let $A^{0} = \{A^{0} : A \in A\}.$ Let K(A) be

 $K(\mathcal{A}) =$ Stone(algebra generated by $\mathcal{A}^0) \subseteq P(2^{\omega})$.

Example: $K(\operatorname{Fin}) = 2^{\omega}$.

イロト イヨト イヨト イヨト

For $A \subseteq \omega$ let $A^0 = \{x \in 2^\omega : x(n) = 0 \text{ for each } n \in A\}$ For $\mathcal{A} \subseteq P(\omega)$ let $\mathcal{A}^0 = \{A^0 : A \in \mathcal{A}\}.$

Let $K(\mathcal{A})$ be

 $K(\mathcal{A}) =$ Stone(algebra generated by $\mathcal{A}^0) \subseteq P(2^{\omega}).$

Example: $K(\operatorname{Fin}) = 2^{\omega}$.

< 日 > < 回 > < 回 > < 回 > < 回 > <

2

For $A \subseteq \omega$ let $A^0 = \{x \in 2^\omega : x(n) = 0 \text{ for each } n \in A\}$ For $\mathcal{A} \subseteq P(\omega)$ let $\mathcal{A}^0 = \{A^0 : A \in \mathcal{A}\}.$ Let $K(\mathcal{A})$ be

 $\mathcal{K}(\mathcal{A}) = ext{Stone}(ext{algebra generated by } \mathcal{A}^0) \subseteq \mathcal{P}(2^\omega).$

Example: $K(Fin) = 2^{\omega}$.

< 日 > < 回 > < 回 > < 回 > < 回 > <

For $A \subseteq \omega$ let $A^0 = \{x \in 2^\omega : x(n) = 0 \text{ for each } n \in A\}$ For $\mathcal{A} \subseteq P(\omega)$ let $\mathcal{A}^0 = \{A^0 : A \in \mathcal{A}\}.$ Let $K(\mathcal{A})$ be

 $\mathcal{K}(\mathcal{A}) = ext{Stone}(ext{algebra generated by } \mathcal{A}^0) \subseteq \mathcal{P}(2^{\omega}).$ Example: $\mathcal{K}(ext{Fin}) = 2^{\omega}.$

▲圖▶ ▲屋▶ ▲屋▶

Fact

$K(\mathcal{A})$ is separable for each $\mathcal{A} \subseteq P(\omega)$.

• consider $g \in 2^{\omega}$;

Iet

$$\mathcal{F}_g = \{ B \in \mathrm{alg}(\mathcal{A}^0) \colon g \in B \};$$

- it is a filter on $alg(\mathcal{A}^0)$;
- let $x_g \in K(\mathcal{A})$ be any ultrafilter extending \mathcal{F}_g ;

• the set

```
\{x_g : \operatorname{supp}(g) \text{ is finite}\}.
```

æ

Fact

 $K(\mathcal{A})$ is separable for each $\mathcal{A} \subseteq P(\omega)$.

• consider $g \in 2^{\omega}$;

let

$$\mathcal{F}_g = \{ B \in \mathrm{alg}(\mathcal{A}^0) \colon g \in B \};$$

- it is a filter on $alg(\mathcal{A}^0)$;
- let $x_g \in K(\mathcal{A})$ be any ultrafilter extending \mathcal{F}_g ;

• the set

```
\{x_g : \operatorname{supp}(g) \text{ is finite}\}.
```

3

Fact

 $K(\mathcal{A})$ is separable for each $\mathcal{A} \subseteq P(\omega)$.

- consider $g \in 2^{\omega}$;
- Iet

$$\mathcal{F}_g = \{B \in \mathrm{alg}(\mathcal{A}^0) \colon g \in B\};$$

- it is a filter on $alg(\mathcal{A}^0)$;
- let $x_g \in K(\mathcal{A})$ be any ultrafilter extending \mathcal{F}_g ;
- the set

```
\{x_g : \operatorname{supp}(g) \text{ is finite}\}.
```

3

Fact

 $K(\mathcal{A})$ is separable for each $\mathcal{A} \subseteq P(\omega)$.

- consider $g \in 2^{\omega}$;
- Iet

$$\mathcal{F}_{g} = \{B \in \mathrm{alg}(\mathcal{A}^{0}) \colon g \in B\};$$

- it is a filter on $alg(\mathcal{A}^0)$;
- let $x_g \in K(\mathcal{A})$ be any ultrafilter extending \mathcal{F}_g ;

• the set

```
\{x_g : \operatorname{supp}(g) \text{ is finite}\}.
```

ヘロン 人間 とくほど 人間 とう

3

Fact

 $K(\mathcal{A})$ is separable for each $\mathcal{A} \subseteq P(\omega)$.

• consider $g \in 2^{\omega}$;

Iet

$$\mathcal{F}_g = \{B \in \mathrm{alg}(\mathcal{A}^0) \colon g \in B\};$$

• it is a filter on $alg(\mathcal{A}^0)$;

• let $x_g \in \mathcal{K}(\mathcal{A})$ be any ultrafilter extending \mathcal{F}_g ;

• the set

 $\{x_g : \operatorname{supp}(g) \text{ is finite}\}.$

< □ > < @ > < 注 > < 注 > ... 注

Fact

 $K(\mathcal{A})$ is separable for each $\mathcal{A} \subseteq P(\omega)$.

• consider $g \in 2^{\omega}$;

Iet

$$\mathcal{F}_g = \{B \in \mathrm{alg}(\mathcal{A}^0) \colon g \in B\};$$

- it is a filter on $alg(\mathcal{A}^0)$;
- let $x_g \in K(\mathcal{A})$ be any ultrafilter extending \mathcal{F}_g ;
- the set

$$\{x_g : \operatorname{supp}(g) \text{ is finite}\}.$$

イロン イヨン イヨン イヨン

3

Motivation Construction

Cofinality and π -bases

Fact

If \mathcal{A} does not contain a countable cofinite subfamily, then $\mathcal{K}(\mathcal{A})$ does not have a countable π -base.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Remark

If \mathcal{A} contains an uncountable almost disjoint family, then $alg(\mathcal{A}^0)$ contains an uncountable independent sequence.

- let {A_α: α < ω₁} ⊆ A be almost disjoint (A_α ∩ A_β is finite for each α ≠ β);
- then $\{A^0_{\alpha}: \alpha < \omega_1\}$ is an uncountable independent sequence.

(日) (日) (日)

Remark

If \mathcal{A} contains an uncountable almost disjoint family, then $alg(\mathcal{A}^0)$ contains an uncountable independent sequence.

- let {A_α: α < ω₁} ⊆ A be almost disjoint (A_α ∩ A_β is finite for each α ≠ β);
- then $\{A^0_{\alpha}: \alpha < \omega_1\}$ is an uncountable independent sequence.

(日) (日) (日)

Remark

If \mathcal{A} contains an uncountable almost disjoint family, then $alg(\mathcal{A}^0)$ contains an uncountable independent sequence.

- let {A_α: α < ω₁} ⊆ A be almost disjoint (A_α ∩ A_β is finite for each α ≠ β);
- then $\{A^0_{\alpha}: \alpha < \omega_1\}$ is an uncountable independent sequence.

イロト イヨト イヨト イヨト

Theorem (Džamonja, PBN)

Let $\{T_{\alpha} \colon \alpha < \omega_1\} \subseteq P(\omega)$ be such that for each $\alpha < \beta < \omega_1$

- $T_0 = \emptyset$,
- $T_{eta} \setminus T_{lpha}$ is infinite,
- $T_{\alpha} \setminus T_{\beta}$ is finite.

Let

$$\mathcal{T} = \{ T \colon T =^* T_\alpha \text{ for some } \alpha < \omega_1 \}.$$

Then $\mathcal{K}(\mathcal{T})$ supports only separable measures. Consequently, the Boolean algebra $\operatorname{alg}(\mathcal{T}^0)$ supports only separable measures but not a uniformly regular one.

ヘロン 人間 とくほど 人間 とう

3

Theorem (Džamonja, PBN)

Let $\{T_{\alpha} \colon \alpha < \omega_1\} \subseteq P(\omega)$ be such that for each $\alpha < \beta < \omega_1$

- $T_0 = \emptyset$,
- $T_{eta} \setminus T_{lpha}$ is infinite,
- $T_{\alpha} \setminus T_{\beta}$ is finite.

Let

$$\mathcal{T} = \{ T \colon T =^* T_\alpha \text{ for some } \alpha < \omega_1 \}.$$

Then $\mathcal{K}(\mathcal{T})$ supports only separable measures. Consequently, the Boolean algebra $\operatorname{alg}(\mathcal{T}^0)$ supports only separable measures but not a uniformly regular one.

▲□→ ▲注→ ▲注→

3

Thank you for your attention!

This research was supported by the ESF Research Networking Programme **INFTY**.

(4月) (日)

- ∢ ⊒ →