Compact spaces and convergent sequences

Piotr Borodulin-Nadzieja

Instytut Matematyczny Uniwersytetu Wrocławskiego **Definition** A Boolean algebra \mathfrak{B} extends an algebra \mathfrak{A} **minimally** if $\mathfrak{A} \subseteq \mathfrak{B}$ and there is no algebra \mathfrak{C} such that $\mathfrak{A} \subsetneq \mathfrak{C} \subsetneq \mathfrak{B}$.

Definition A Boolean algebra \mathfrak{B} extends an algebra \mathfrak{A} **minimally** if $\mathfrak{A} \subseteq \mathfrak{B}$ and there is no algebra \mathfrak{C} such that $\mathfrak{A} \subsetneq \mathfrak{C} \subsetneq \mathfrak{B}$.

Definition A Boolean algebra \mathfrak{A} is **minimally generated** if there is a sequence $(\mathfrak{A}_{\alpha})_{\alpha < \kappa}$ such that

- $\mathfrak{A}_0 = \{0, 1\};$
- $\mathfrak{A}_{\alpha+1}$ extends \mathfrak{A}_{α} minimally for $\alpha < \kappa$;
- $\mathfrak{A}_{\gamma} = \bigcup_{\alpha < \gamma} \mathfrak{A}_{\alpha}$ for limit γ ;
- $\mathfrak{A} = \bigcup_{\alpha < \kappa} \mathfrak{A}_{\alpha}.$

Definition A Boolean algebra \mathfrak{A} is **minimally generated** if there is a sequence $(\mathfrak{A}_{\alpha})_{\alpha < \kappa}$ such that

- $\mathfrak{A}_0 = \{0, 1\};$
- $\mathfrak{A}_{\alpha+1}$ extends \mathfrak{A}_{α} minimally for $\alpha < \kappa$;
- $\mathfrak{A}_{\gamma} = \bigcup_{\alpha < \gamma} \mathfrak{A}_{\alpha}$ for limit γ ;
- $\mathfrak{A} = \bigcup_{\alpha < \kappa} \mathfrak{A}_{\alpha}.$

A topological space K is minimally generated if it is a Stone space of a minimally generated Boolean algebra.

A measure $\mu|\Sigma$ is separable if there is a countable $\mathcal{C} \subseteq \Sigma$ such that

 $inf\{\mu(E \triangle C) \colon C \in \mathcal{C}\} = 0$

for every $E \in \Sigma$.

A measure $\mu|\Sigma$ is separable if there is a countable $\mathcal{C} \subseteq \Sigma$ such that

 $inf\{\mu(E \triangle C) \colon C \in \mathcal{C}\} = 0$

for every $E \in \Sigma$.

Theorem (PBN) Minimally generated compact spaces admit only separable measures.

A measure $\mu|\Sigma$ is separable if there is a countable $\mathcal{C} \subseteq \Sigma$ such that

 $inf\{\mu(E \triangle C) \colon C \in \mathcal{C}\} = 0$

for every $E \in \Sigma$.

Theorem (PBN) Minimally generated compact spaces admit only separable measures.

More precisely: If μ is a measure on a minimally generated compact space, then it is a countable sum of weakly uniformly regular measures.

The algebra Fin ⊆ P(ω) is minimally generated;

- The algebra $Fin \subseteq P(\omega)$ is minimally generated;
- One can extend it minimally by an infinite subset of ω;

- The algebra Fin ⊆ P(ω) is minimally generated;
- One can extend it minimally by an infinite subset of ω;
- Consider a minimally generated Boolean algebra

$$Fin \subseteq \mathfrak{A} \subseteq P(\omega),$$

such that \mathfrak{A} cannot be extended minimally by a subset of ω .

Theorem (Haydon) There is a compact but not sequentially compact space carrying only separable measures.

Efimov Problem Is there an infinite compact space X such that X does not contain nontrivial convergent sequences and does not contain a copy of $\beta \omega$?

Efimov Problem Is there an infinite compact space X such that X does not contain nontrivial convergent sequences and does not contain a copy of $\beta \omega$?

If MA is assumed, then there is a (minimally generated) compact space without a copy of $\beta\omega$ such that convergent sequences consist only of point of character \mathfrak{c} ;

Is there a minimally generated compactification X of ω such that:

- X does not contain a nontrivial convergent sequence of natural numbers;
- for every $x \in X$ there is a sequence $(n_k)_{k \in \omega}$ of natural numbers such that

$$\delta_x = \lim_{k \to \infty} \frac{1}{k} (\delta_{n_1} + \dots + \delta_{n_k})?$$

Definition A Banach space E is said to have the Gelfand–Phillips property if every limited subset of E is relatively norm compact.

A subset A of E is limited if

$$\lim_{n \to \infty} \sup_{x \in A} x_n^*(x) = 0,$$

for every weak^{*} null sequence x_n^* in E^* .

Definition A Banach space E is said to have the Gelfand–Phillips property if every limited subset of E is relatively norm compact.

 there is a Banach space E with the Gelfand– Philips property and without the Mazur propery;

Definition A Banach space E is said to have the Gelfand–Phillips property if every limited subset of E is relatively norm compact.

- there is a Banach space E with the Gelfand– Philips property and without the Mazur propery;
- it is not known if the Mazur property implies the Gelfand-Phillips property.

Definition A Banach space E is said to have the Gelfand–Phillips property if every limited subset of E is relatively norm compact.

- there is a Banach space E with the Gelfand– Philips property and without the Mazur propery;
- it is not known if the Mazur property implies the Gelfand-Phillips property.
- C(X) is an example of Banach space with the Mazur property and without the Gelfand-Phillips property.

Definition A Banach space E is said to have the Gelfand–Phillips property if every limited subset of E is relatively norm compact.

- there is a Banach space E with the Gelfand– Philips property and without the Mazur propery;
- it is not known if the Mazur property implies the Gelfand-Phillips property.
- C(X) is an example of Banach space with the Mazur property and without the Gelfand-Phillips property (if only such X exists).

• for $A \subseteq \omega$ define the asymptotic density function by

$$d(A) = \lim_{n \to \infty} \frac{|A \cap n|}{n},$$

provided this limit exists.

• for $A \subseteq \omega$ define the asymptotic density function by

$$d(A) = \lim_{n \to \infty} \frac{|A \cap n|}{n},$$

provided this limit exists.

• for an infinite $M = \{m_1 < m_2 < ...\} \subseteq \omega$ and $A \subseteq \omega$ define the relative density by

$$d_M(A) = d\{k \colon m_k \in A\}.$$

• for $A \subseteq \omega$ define the asymptotic density function by

$$d(A) = \lim_{n \to \infty} \frac{|A \cap n|}{n},$$

provided this limit exists.

• for an infinite $M = \{m_1 < m_2 < ...\} \subseteq \omega$ and $A \subseteq \omega$ define the relative density by

$$d_M(A) = d\{k \colon m_k \in A\}.$$

• we say that M is a condeser of a filter \mathcal{F} on ω if $d_M(F) = 1$ for every $F \in \mathcal{F}$.

- M is a pseudo-intersection of a filter \mathcal{F} on ω if $M \subseteq^* F$ for every $F \in \mathcal{F}$.
 - $\mathfrak{p} = min\{|\mathcal{A}| \colon \mathcal{A} \subseteq P(\omega) \text{ generates a filter}$

without a pseudo-intersection }.

• M is a pseudo-intersection of a filter \mathcal{F} on ω if $M \subseteq^* F$ for every $F \in \mathcal{F}$.

 $\mathfrak{p} = min\{|\mathcal{A}| \colon \mathcal{A} \subseteq P(\omega) \text{ generates a filter}$ without a pseudo-intersection }.

• M is a condeser of a filter \mathcal{F} on ω if $d_M(F) =$ 1 for every $F \in \mathcal{F}$.

 $\mathfrak{k} = \min\{|\mathcal{A}| \colon \mathcal{A} \subseteq P(\omega) \text{ generates a filter}$ without a condenser $\}.$ • M is a pseudo-intersection of a filter \mathcal{F} on ω if $M \subseteq^* F$ for every $F \in \mathcal{F}$.

 $\mathfrak{p} = min\{|\mathcal{A}| : \mathcal{A} \subseteq P(\omega) \text{ generates a filter}$ without a pseudo-intersection }.

• M is a condeser of a filter \mathcal{F} on ω if $d_M(F) = 1$ for every $F \in \mathcal{F}$.

 $\mathfrak{k} = \min\{|\mathcal{A}| \colon \mathcal{A} \subseteq P(\omega) \text{ generates a filter} \\$ without a condenser }.

• it is easy to see that if M is a pseudointersection of a filter \mathcal{F} , then it is a condenser of this filter. Therefore

$$\mathfrak{p} \leq \mathfrak{k}.$$

If \mathfrak{A} is a minimally generated Boolean algebra such that no ultrafilter on \mathfrak{A} has an infinite pseudo-intersection but every ultrafilter has a condenser, then $X = Stone(\mathfrak{A})$ satisfies the demanded properties.

In particular, C(X) has the Mazur property but does not have the Gelfand–Phillips property.

If \mathfrak{A} is a minimally generated Boolean algebra such that no ultrafilter on \mathfrak{A} has an infinite pseudo-intersection but every ultrafilter has a condenser, then $X = Stone(\mathfrak{A})$ satisfies the demanded properties.

In particular, C(X) has the Mazur property but does not have the Gelfand–Phillips property.

 $Con(\mathfrak{p} < \mathfrak{k})?$

A filter \mathcal{F} on ω is feeble if there a finite-to-one function $f: \omega \to \omega$ such that f[F] is co-finite for every $F \in \mathcal{F}$.

A filter \mathcal{F} on ω is feeble if there a finite-to-one function $f: \omega \to \omega$ such that f[F] is co-finite for every $F \in \mathcal{F}$.

Every filter with a condenser is feeble.

A filter \mathcal{F} on ω is feeble if there a finite-to-one function $f: \omega \to \omega$ such that f[F] is co-finite for every $F \in \mathcal{F}$.

Every filter with a condenser is feeble.

Theorem If $\mathfrak{h} < \mathfrak{b}$, then there is a minimally generated Boolean algebra such that no ultrafilter on \mathfrak{A} has an infinite pseudo-intersection but every ultrafilter on \mathfrak{A} is feeble.