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A topological space K is minimally generated

if it is a Stone space of a minimally generated

Boolean algebra.
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De�nition A measure � de�ned on a compact

space is separable if the space L

1

(�) is separa-

ble.

A measure �j� is separable if there is a count-

able C � � such that

inff�(E 4 C): C 2 Cg = 0

for every E 2 �.

Theorem (PBN) Minimally generated com-

pact spaces admit only separable measures.

More precisely: If � is a measure on a minimally

generated compact space, then it is a count-

able sum of weakly uniformly regular measures.
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erated;

� One can extend it minimally by an in�nite

subset of !;

� Consider a minimally generated Boolean al-

gebra

Fin � A � P (!);

such that A cannot be extended minimally

by a subset of !.
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De�nition A Banach space E has the Mazur

property if every x
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2 E

��

which is weak se-

quentially continuous on E

�

belongs to E.

De�nition A Banach space E is said to have

the Gelfand{Phillips property if every limited

subset of E is relatively norm compact.

� there is a Banach space E with the Gelfand{

Philips property and without the Mazur prop-

ery;

� it is not known if the Mazur property im-

plies the Gelfand-Phillips property.

� C(X) is an example of Banach space with

the Mazur property and without the Gelfand-

Phillips property (if only such X exists).
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� M is a condeser of a �lter F on ! if d

M

(F ) =

1 for every F 2 F .

k = minfjAj : A � P (!) generates a �lter

without a condenser g:

� it is easy to see that if M is a pseudo{

intersection of a �lter F , then it is a con-

denser of this �lter. Therefore

p � k:
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Con(p < k)?
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A �lter F on ! is feeble if there a �nite{to{one

function f : ! ! ! such that f [F ] is co{�nite

for every F 2 F .

Every �lter with a condenser is feeble.

Theorem If h < b, then there is a minimally

generated Boolean algebra such that no ultra-

�lter on A has an in�nite pseudo{intersection

but every ultra�lter on A is feeble.


