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A topological space K is minimally generated

if it is a Stone space of a minimally generated

Boolean algebra.
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Theorem (Koppelberg) There is a small Boolean

algebra which is not minimally generated.
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Theorem (Fremlin) MA(!

1

) implies that small

Boolean algebras admit only separable mea-

sures.
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bras admit only separable measures.

More precisely: If � is a measure on a minimally

generated Boolean algebra then it is a count-

able sum of weakly uniformly regular measures.



Corollary:

The following classes of Boolean algebras (spaces)

admit only separable measures:

� interval algebras (ordered spaces);

� tree algebras;

� superatomic algebras (scattered spaces);

� monotonically normal spaces.



Corollary:

The following classes of Boolean algebras (spaces)

are not included (at least, not in ZFC) in the

class of minimally generated Boolean algebras:

� retractive algebras;

� Corson compacta.



Another corollaries:

A length of minimally generated Boolean alge-

bra has to be a limit ordinal but not necessarily

a cardinal.

In the realm of minimally generated spaces

ccc = separability

Moreover, if we assume Suslin Conjecture then

ccc = existence of strictly positive measure
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Is there a compact in�nite space K such that

� K does not contain a nontrivial convergent

sequence;

� K does not contain a copy of �!?

Theorem (Fedorchuk) CH implies the exis-

tence of such space.

It is not known if it is consistent to assume

that there is no E�mov space.



Problem How to characterize minimally gen-

erated spaces?

Theorem (Koppelberg) Every minimally gen-

erated space has a tree �-base.



Problem How to characterize minimally gen-

erated spaces?

Theorem (Koppelberg) Every minimally gen-

erated space has a tree �-base.

Question Is it true that every minimally gen-

erated space is discretely generated?


