ALGEBRA 1R, Problem List 13

Let R and S be commutative rings with 1.

(1) For each prime number p, we identify $\mathbb{Z}_{(p)}$ with the corresponding subring of Q. Show the following:

$$\bigcap_{p} \mathbb{Z}_{(p)} = \mathbb{Z}.$$

(2) Assume that R is UFD and let $f, g \in R[X]$. Show that if cont(f) = 1 and cont(g) = 1, then cont(fg) = 1. Recall that we have:

$$cont (a_0 + a_1 X + \ldots + a_n X^n) = 1$$

if and only if there is no irreducible element $p \in R$ such that:

$$p|a_0, p|a_1, \ldots, p|a_n.$$

- (3) Show that $X^{p-1} + X^{p-2} + \cdots + X + 1 \in \mathbb{Q}[X]$ is irreducible, where p is a prime number.
- (4) Find a greatest common divisor and a least common multiple for:
 - (a) $X^4 X$, $X^6 X$ in $\mathbb{C}[X]$, (b) $X^4 X$, $X^6 X$ in $\mathbb{C}[X]$,

 - (c) 4-2i, 13+i in $\mathbb{Z}[i]$,
 - (d) 13, 12 + 5i in $\mathbb{Z}[i]$,
- (5) Let

$$R := \{ a_0 + 2a_1X + \ldots + 2a_nX^n \in \mathbb{Z}[X] \mid a_0, a_1, \ldots, a_n \in \mathbb{Z}; \ n \in \mathbb{N} \}.$$

Show the following:

- (a) R is a subring of $\mathbb{Z}[X]$;
- (b) the ideal $(2X) \cap (2X^2)$ is not principal in R;
- (c) the elements 2X and $2X^2$ have no least common multiple in R.
- (6) Show that the following conditions are equivalent:
 - (a) There are R_1, R_2 , non-zero rings with 1 such that

$$R \cong R_1 \times R_2$$
.

(b) There are $u_1, u_2 \in R \setminus \{0\}$ such that

$$u_1 + u_2 = 1$$
, $u_1^2 = u_1$, $u_2^2 = u_2$.

- (c) There is $u \in R \setminus \{0, 1\}$, which is an *idempotent*, that is $u^2 = u$.
- (7) Show that

$$(R \times S)^* = R^* \times S^*$$
.

which is an equality of subsets of $R \times S$.

- (8) Let $n \in \mathbb{N}$ and $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$, where $\alpha_i \in \mathbb{N}$ and p_1, \dots, p_k are pairwise distinct prime numbers. Show the following:
 - (a) For $\alpha \in \mathbb{N}$ and a prime number p, we have:

$$|\mathbb{Z}_{p^{\alpha}}^*| = p^{\alpha} - p^{\alpha - 1}.$$

(b) We have:

$$|\mathbb{Z}_n^*| = (p_1^{\alpha_1} - p_1^{\alpha_1 - 1}) \cdot \dots \cdot (p_k^{\alpha_k} - p_k^{\alpha_k - 1}).$$

(9) Show that:

$$\mathbb{Q}[X,Y]/(XY) \ncong \mathbb{Q}[X,Y]/(X) \times \mathbb{Q}[X,Y]/(Y).$$