Geometria algebraiczna, Problem List 9

Let K be an algebraically closed field and $m, n \in \mathbb{N}_{>0}$.

- (1) Let V be a finite subset of \mathbb{P}^2 . Show that there is a line $L \subset \mathbb{P}^2$ such that $V \cap L = \emptyset$.
- (2) Let us consider the natural action of $GL_3(K)$ on K^3 . Show that this action induces a transitive action of $GL_3(K)$ on:
 - (a) \mathbb{P}^2
 - (b) the set of two-dimensional K-linear subspaces of K^3 ;
 - (c) the set of lines in \mathbb{P}^2 .
- (3) For $A \in GL_3(K)$ and $F \in K[X, Y, Z]$, consider:

$$A \cdot F := F \left(A \cdot \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \right) \in K[X, Y, Z].$$

Show the following:

- (a) the above formula gives an action of $GL_3(K)$ on K[X, Y, Z];
- (b) for each $d \in \mathbb{N}$, the above action preserves the set of homogenous polynomials of degree d.
- (4) Show that the action from Problem 3. gives an action of $GL_3(K)$ on the set of algebraic subsets of \mathbb{P}^2 and that this action restricted to the set of lines in \mathbb{P}^2 coincides with the action from Problem 2(c).
- (5) Let F, G be homogenous polynomials in K[X, Y, Z], $x \in \mathbb{P}^2$, and $A \in GL_3(K)$. Show that (using the previous problems to interpret the appropriate actions) we have:

$$I(x, F \cap G) = I(A \cdot x, (A \cdot F) \cap (A \cdot G)).$$

(6) Let

$$0 \to A_1 \to A_2 \to \ldots \to A_n \to 0$$

be an exact sequence of finite-dimensional vector spaces over K, that is for each $i \in \{1, ..., n\}$, we have:

$$im(A_{i-1} \to A_i) = \ker(A_i \to A_{i+1}),$$

where $A_0 = 0 = A_{n+1}$.

Show the following "Inclusion–Exclusion Principle":

$$\sum_{i=1}^{n} (-1)^{i} \dim_{K}(A_{i}) = 0.$$

(7) For $k \in \mathbb{N}$, let R_k be the K-linear space consisting of homogenous polynomials of degree k in K[X,Y,Z]. Assume that $d \ge m+n$ and that we have an exact sequence of the form

$$0 \to R_{d-m-n} \to R_{d-n} \times R_{d-m} \to R_d \to E \to 0,$$

where E is a K-vector space. Show that:

$$\dim_K(E) = mn.$$

(8) For $F \in K[X_1, \ldots, X_n]$, let $F^* \in K[X_1, \ldots, X_{n+1}]$ be the homogenization of F with respect to X_{n+1} . Show that for all $F, G \in K[X_1, \ldots, X_n]$, we have:

$$X_{n+1}^t(F+G)^* = X_{n+1}^rF^* + X_{n+1}^sG^*,$$

where:

$$r = \deg(G)$$
, $s = \deg(F)$, $t = r + s - \deg(F + G)$.